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1 Introduction
The problem of the regularity of minimizers is a natural question that arises
in the general field of calculus of variations. For many classical differential
and variational problems it is not always wise to attack the issue with classical
methods, but it is more useful to set the question in a weaker ambient, and to
find a solution in this settings, where for example it can be shown relatively
easily that a minimizer exists. Of course, once this minimizer is obtained,
the successive step is to show that, due to its property of minimizing, it has
more regularity than the ambient space in which it was found, trying to show
that it is in fact regular enough to be a classical solution of the problem in
the initial formulation.

The content of this work is focused in particular on the length-minimizers,
or geodesics, in sub-Riemannian manifolds, particularly in Carnot groups, Lie
groups with a stratified nilpotent Lie algebra. In a sub-Riemannian setting,
some first results on such curves were shown by Strichartz in [15], who showed
that under an assumption called the strong bracket generating hypothesis,
every geodesic is locally a length minimizer. In the same paper Strichartz
erroneously claimed also that every length minimizer was also a geodesic,
or a regular minimizer, and concluded that, as in the case of Riemannian
geometry, they were smooth. But this claim derived from a wrong use of the
Pontryagin Maximum Theorem, specifically an omission of the special case
of the theorem. Nonetheless, in [16] he corrected himself and the result holds
if one assumes the strong bracket generating hypothesis. But the question
whether there can exist "abnormal", non smooth, sub-Riemannian length
minimizer in general assumptions remained open.

The answer to it arrived in 1991 when Montgomery in [10] showed an
example of such an abnormal (although still smooth) length minimizer. In
the following years numerous other examples emerged and it was finally un-
derstood that such non-regular minimizers are in fact not only existing but
also not pathological, in the sense that are very common. This whole aspect
and the events that lead to it is greatly discussed in [17], where they also
show the ubiquity of non-smooth minimizers.

The question whether length minimzers in sub-Riemannian manifolds,
that a priori are only Lipschitz regular, are in fact C∞ smooth is still unan-
swered, but there have been various improvements in the understanding of
what regularity they possess.

In the special case of Carnot groups, a particular type of sub-Riemannian
manifolds, it is known that if the distribution is at most of step two, then
the (constant-speed) minimizers are indeed smooth. Moreover, in [7] the
problem in Carnot groups of step three is also faced through the use of
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certain polynomials, drawing the same conclusion.
In [18] Sussmann shows that in the setting of real-analytic manifolds, and

consequently also Carnot groups, length minimizing arcs parameterized by
arc-length are real-analytic on a open dense subset of times in their domains
of definition.

Lately Le Donne and Hakavuori showed a general result in the most
general setting of sub-Riemannian manifolds stating that length minimizers
do not have corner-type singularities (See [5]). The paper relies on previous
works made by Monti and Leonardi in [8]. Further results are [13], [4] and
[2]. Other useful material that discuss the general problem of regularity
of length minimizers in sub-Riemannian manifolds or in the special case of
Carnot groups is found in [12], [19],

This paper inserts itself in this context of work, trying to give some re-
sults in the difficult problem of the characterization of length minimizers’
regularity. It is partly inspired by the methods used in [9] through pages
290-319. It comes within the general framework discussed in [13], where
Monti, Pigati and Vittone show that in Carnot-Carathéodory spaces, with-
out any further assumpion on the space or on the length-minimizing curves,
minimizers possess at any point at least one tangent curve.

This is why, in this work, we will explore the problem when there is a
fixed direction (that will be denoted by X1 = ∂/∂x1), and we will eventually
arrive to the conclusion that, along this fixed direction, the length minimizer
"looks like" the graph of a Lipschitz function.

The thesis will initially present the Carnot-Carathéodory metric, the nat-
ural metric of sub-Riemannian manifolds, and we will prove some of its
properties that will be useful later in the dissertation. We shall see what
admissible curves are, and these curves will be the main object of the results
presented. Thereafter we will give the notion of Carnot group, and we will
see how to endow Rn with such a structure. We will visit some useful prop-
erties and in particular the Hall method construction of a basis for this type
of groups.

The first result is the so-called Height estimate, that gives an upper bound
for a quantity of the curve in terms of its excess. In Rn, we set the m vector
fields
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X1(x) =
∂

∂x1

X2(x) =
∂

∂x2

+∑
j≻2

p2,j(x)
∂

∂xj

⋮

Xm(x) =
∂

∂xm
+ ∑
j≻m

pm,j(x)
∂

∂xj
.

where pi,j are monomials precisely described in Section 3. These m vector
fields form a system of generators that endows Rn with a structure through
which it is isomorphic to the nilpotent Lie algebra of step s on m generators.
This structure also gives a "weight" 1 ≤ wi ≤ s to every coordinate xi, for all
i = 1, . . . , n.
Call X = (X1, . . . ,Xm); we say that a Lipschitz continuous curve γ ∶ [0,1] →
Rn is X-admissible if γ̇ = ∑

m
j=1 hjXj(γ) a.e., where hj ∈ L∞(0,1) for j =

1, . . . ,m. We introduce the notion of excess for an admissible curve. Let ⟨⋅, ⋅⟩
be the scalar product on the span of X1, . . . ,Xm that makes the m vector
fields orthonormal, and let γ ∶ [0,1]→ Rn be a Lipschitz curve.

Definition. The parametric excess of γ at a point η ∈ [0,1], at a scale r > 0
such that η + r ≤ 1, in direction X1 is

E(γ; η; r;X1) ∶=
1

r

η+r

∫
η

⟨γ̇(θ) −X1, γ̇(θ) −X1⟩dθ.

Theorem 1.1 (Height estimate). Let X1, . . . ,Xm be defined as above. Let
γ ∶ [0,1] → Rn be an X-admissible curve parameterized by arc-length, with
γ(0) = 0. Let r ≤ 1. Then for all i = 2, ..., n there exist αi, βi positive integers
such that:

1) αi + βi + 1 = wi;

2)
⎛

⎝

∣γi(t)∣

∣t∣
αi

⎞

⎠

1
βi+1

≤ t
√
E(γ; 0; r;X1) for all 0 < t ≤ r.

An X-admissible curve γ is called a length-minimizer if for any other
admissible curve ζ with same domain and same extremes, the length or total
variation of γ is always equal or inferior to the one of ζ. We will reformulate
this theorem through the definition of the (geometric) excess, or simply ex-
cess, of a curve, in the case that the curve is in fact a length-minimizer. Call
Γ the support of the curve and τΓ its unit tangent vector.

3



Definition. The excess of Γ at the point x ∈ Γ, at a scale r > 0, in direction
X1 is

E(Γ;x; r;X1) = ⨏
Γ∩Br(x)

⟨τΓ −X1, τΓ −X1⟩dH
1.

where H 1 is the 1-dimensional Hausdorff measure built from the Carnot-
Carathéodory metric arising in Rn from the m vector fields X1, . . . ,Xm.

Using this estimate we then prove the next result: the Lipschitz approx-
imation of length minimizing curves. We set the projection map π ∶ Rn → R,
π(x1, . . . , xn) = x1.

Theorem 1.2 (Lipschitz approximation). Let γ ∶ [−1,1] → Rn be a length
minimizer parameterized by arch-length, with γ(0) = 0 and support Γ. For
any ε > 0 there exist a closed set I ⊂ π(Γ ∩B1/4) and a curve γ̄ ∶ I → Rn with
support Γ̄ such that:

i) Γ̄ ⊂ Γ;

ii) γ̄1(t) = t for t ∈ I, i.e. γ̄ is a graph along X1;

iii) ∣(γ̄(s)−1 ⋅ γ̄(t))
i
∣
1/wi

≤ ε∣t − s∣ for s, t ∈ I, i = 2, ..., n;

iv) H 1 (B1/4 ∩ Γ̄ ∖ Γ) ≤ C(ε,αi, βi)E(Γ; 0; 1;X1);

v) L 1 (π (Γ ∩B1/4) ∖ I) ≤ C(ε,αi, βi)E(Γ; 0; 1;X1).

As in the spirit of [9], where the results were concerning minimal surfaces,
we hope that theorems 1.1 and 1.2 will be the starting point for further results
and regularity theorems for length minimizing curves.
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2 Brief introduction to Carnot-Carathéodory
spaces

2.1 Carnot-Carathéodory metrics

Consider m vector fields X1, ...,Xm in Rn, and assume they are pointwise
linearly independent. Each vector field can be identified as an n-tuple, since
we have the basis of the tangent bundle ∂1 = ∂/∂x1, . . . , ∂n = ∂/∂xn, thus we
can write Xj(x) = ∑

n
i=1 aij(x)∂i = (a1j(x), ..., anj(x)); we also assume that

aij ∈ C∞ for j = 1, ..,m and i = 1, ..., n. We shall write the coefficients aij in
the n ×m matrix

A(x) =

⎛
⎜
⎜
⎝

a11(x) ... a1m(x)
⋮ ⋱ ⋮

an1(x) ... anm(x)

⎞
⎟
⎟
⎠

.

We define its norm as
∥A∥ ∶= sup

v∈Rm,∣v∣≤1

∣Av∣ .

Definition 2.1. A Lipschitz continuous curve γ ∶ [0, T ] → Rn, T ≥ 0, is
said to be X-admissible if there exists a vector of measurable funtions h =

(h1, ..., hm) ∶ [0, T ]→ Rm such that:

(i) hj ∈ L∞(0, T ) for all j = 1, ...,m;

(ii) γ̇(t) = A(γ(t))h(t) = ∑m
j=1 hj(t)Xj(γ(t)) for a.e. t ∈ [0, T ].

In particular, the curve γ is said to be X-subunit if it is X -admissible and

∥h∥
∞
=∥

√

∑
m
j=1 h

2
j∥

∞

≤ 1.

Notice that, since the vector fields are linearly independent in every point,
the vector h is unique.

We now define the metric on Ω.

Definition 2.2. The Carnot-Carathéodory metric d ∶ Rn ×Rn → [0,+∞] on
Rn is defined as follows:

d(x, y) = inf {T ≥ 0 ∶ there exists a X -subunit path γ ∶ [0, T ]→ Ω

such that γ(0) = x and γ(T ) = y}

and if the above set is empty, then we set d(x, y) = +∞.

It can be shown that if d(x, y) < +∞ for all x, y ∈ Rn, then d is indeed a
metric on Rn.
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2.2 Properties of the metric d

Lemma 2.3. Let x0 ∈ Rn and r > 0. Define B = B(x0, r) = {x ∈ Rn ∶ ∣x − x0∣ < r} .

Let M = supx∈B∥A(x)∥ and γ ∶ [0, T ] → Rn be a X-subunit curve such that
γ(0) = x0. If MT < r then γ(t) ∈ B for all t ∈ [0, T ].

Proof. Assume by contradiction that

t̄ ∶= inf {t ∈ [0, T ] ∶ γ(t) ∉ B} ≤ T.

Then

∣γ(t̄) − x0∣ =∣∫

t̄

0
γ̇(θ)dθ∣ = ∣∫

t̄

0
A(γ(θ))h(θ)dθ∣

≤ ∫

t̄

0
∣A(γ(θ))h(θ)∣dθ ≤ ∫

t̄

0
∥A(γ(θ))∥∣h(θ)∣dθ

≤ t̄M ≤ TM < r,

and therefore γ(t̄) ∈ B, which is open. This is in contradiction with the
definition of t̄.

Proposition 2.4. Let K ⊂ Rn be a compact set and X = (X1, ...,Xm) the
vector fields giving rise to the metric d. Then there exists a constant β > 0,
depending on K and X, such that

d(x, y) ≥ β ∣x − y∣ (2.1)

for all x, y ∈K.

Proof. Let ε > 0, Kε = {x ∈ Rn ∶ miny∈K ∣x − y∣ ≤ ε}, and M = supx∈Kε∥A(x)∥.
Take x, y ∈K and set r = min{ε, ∣x − y∣} . Let γ ∶ [0, T ]→ Rn be a X -subunit
curve such that γ(0) = x and γ(T ) = y. Since ∣γ(T ) − γ(0)∣ = ∣x − y∣ ≥ r, by
Lemma 2.3 we have TM ≥ r. If r = ε then

T ≥
ε

M
≥

ε

MD
∣x − y∣ ,

where D ∶= supx,y∈K ∣x − y∣ . If r = ∣x − y∣ then T ≥ ∣x − y∣ /M. Since the subunit
curve γ is arbitrary, by the definition of d we get

d(x, y) ≥ min{
1

M
,
ε

MD
}∣x − y∣ .
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With the above result we can show that d is indeed a metric.

Proposition 2.5. If d(x, y) < +∞ for all x, y ∈ Rn, then (Rn, d) is a metric
space.

Proof. The symmetry property follows from the fact that if γ ∶ [0, T ] → Rn

is X-subunit then γ̄(t) = γ(T − t) is X-subunit too.
Moreover, if γ1 ∶ [0, T1] → Rn and γ2 ∶ [0, T2] → Rn are X-subunit curves

such that γ1(0) = x, γ1(T1) = z, γ2(0) = z and γ2(T2) = y then

γ(t) =

⎧⎪⎪
⎨
⎪⎪⎩

γ1(t), if t ∈ [0, T1]

γ2(t − T1), if t ∈ [T1, T1 + T2],

is a X-subunit curve such that γ(0) = x and γ(T1, T1 + T2) = y. Taking the
infimum one finds the triangle inequality d(x, y) ≤ d(x, z) + d(z, y).

Finally, d(x,x) = 0 and if x ≠ y, from Proposition 2.4 it follows that
d(x, y) > 0.

We now turn to a different definition of d. Let γ ∶ [0,1] → Rn be an X-
admissible curve with canonical vector of coordinates h ∈ L∞(0,1)m. Define

length1(γ) =∥h∥1 = ∫

1

0
∣h(t)∣dt,

and

d1(x, y) = inf{length1(γ) ∶γ ∶ [0,1]→ Rn is an X -admissible curve
such that γ(0) = x and γ(1) = y}.

If the above set is empty put d1(x, y) = +∞.

Theorem 2.6. For all x, y ∈ Rn the equality d(x, y) = d1(x, y) holds.

Proof. See [12, page 20].

Now let γ ∶ [0, T ] → (Rn, d) be an X -admissible curve with γ̇(t) =

A(γ(t))h(t), h ∈ L∞(0, T )m. The total variation of γ is

Var(γ) = sup
0≤t1<...<tk≤T

k−1

∑
i=1

d(γ(ti+1), γ(ti))

with the supremum taken over all finite partitions of [0,T].
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Theorem 2.7. Let γ ∶ [0,1] → (Rn, d) be a Lipschitz curve with canonical
coordinates h ∈ L∞ (0,1)

m. Then

lim
δ→0

d (γ(t + δ), γ(t))

∣δ∣
= ∣h(t)∣ (2.2)

for a.e. t ∈ [0,1]. Therefore

Var(γ) = ∫
1

0
∣h(t)∣dt. (2.3)

Proof. See [12, page 26].

Thanks to this result it can be seen that a curve is parameterized by arch-
length in the metric space (Rn, d) if and only if ∣h(t)∣ = 1 for a.e. t ∈ [0, T ].

2.3 Lie groups, Lie algebras and Carnot groups

Definition 2.8 (Lie algebra). A Lie algebra g over R is a real vector field
toghether with a R-bilinear mapping [⋅, ⋅] ∶ g → g × g, called the Lie bracket,
that satifies:

• [X,X] = 0 for all X ∈ g;

• [X, [Y,Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0 for all X,Y,Z ∈ g (the Jacobi
identity).

A consequence of these properties is that the Lie bracket is anticommutative,
i.e., [X,Y ] = −[Y,X] for all elements X,Y ∈ g.

A linear subspace a of g is said to be a Lie subalgebra if it is closed under
the Lie bracket, that is [a,a] ⊆ a. If a satisfies the stronger condition that
[g,a] ⊆ a then it is called an ideal of g. Given a subset S of g, the Lie
subalgebra generated by S is the smallest subalgebra that contains S. If a
Lie algebra g can be generated by m of its elements E1, . . . ,Em, and if any
other Lie algebra generated bym other elements F1, . . . , Fm is a homomorphic
image of g under the map Ei ↦ Fi, we say that it is the free Lie algebra on
m generators. The lower central series of a Lie algebra g is the sequence of
subalgebras recursively defined as follows:

gi = [g,gi−1]

for i > 1, and g1 = g. We have that gi ⊆ gi−1 for all i > 1, so this sequence
is decreasing, and, since [g,gi] ⊆ gi, it is a sequence of ideals. We say that
the Lie algebra is nilpotent of step s ∈ N if gs ≠ {0} and gs+1 = {0}. The free
nilpotent Lie algebra gm,s on m generators of step s is the quotient of the
free Lie algebra by the ideal gs+1.
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Definition 2.9 (Lie group). A Lie group is a smooth differentiable manifold
G that is also a group, and such that the group operations of product ⋅ ∶
G ×G→ G, (x, y)↦ x ⋅ y and inversion −1 ∶ G→ G,x↦ x−1 are smooth maps.

In the sequel we will always assume G to be connected and simply con-
nected. If g ∈ G, let τg ∶ G → G be the left translation x ↦ g ⋅ x. We can
associate to any Lie group a canonical Lie algebra g, which is the set of left
invariant vector fields X ∈ Γ(TG), i.e. X is a section of the tangent bundle
of G such that

(Xf)(τg(x)) =X(f ○ τg)(x)

for all x, g ∈ G and for all f ∈ C∞(G). This set is a vector space and endowed
with the usual commutator as Lie bracket, it becomes a Lie algebra, since
commutator of left invariant vector fields is still a left invariant vector field.

Let X ∈ g and consider the one-parameter subgroup γX ∶ R → G which is
solution to the Cauchy problem

(CP){ ˙γX(t) =X(γx(t))
γX(0) = 0 ∈ G.

The integral curve γX is defined for all t ∈ R since left invariant vector fields
are complete. The exponential map exp ∶ g→ G is defined by exp(X) = γX(1).
Define analogously exp(X)(g) taking g ∈ G as the initial datum instead of the
origin. Since X is left invariant, it can be seen that the integral curve of X
with initial datum g ∈ G is exactly the image of the curve γ solution of (CP)
via the left translation map τg. In particular exp(X)(g) = τg (exp(X)) =

g ⋅ exp(X), thus we obtain

exp(Y ) ⋅ exp(X) = exp(X)(exp(Y ))

for all X,Y ∈ g.
LetX ∈ g and define the map adX ∶ g→ g in the following way: adX(Y ) =

[X,Y ] for all Y ∈ g. If α = (α1, . . . , αk) is a multi-index of non negative
integers, define ∣α∣ = α1 + . . . + αk and α! = α1! ⋅ ⋅ ⋅ αk!. If α and β are multi-
indices set

Dαβ(X,Y ) =

⎧⎪⎪
⎨
⎪⎪⎩

(adX)α1(adY )β1⋯(adX)αk(adY )βk−1Y if βk ≠ 0

(adX)α1(adY )β1⋯(adX)αk−1X if βk = 0,

and
cαβ =

1

∣α + β∣α!β!
.
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The Campbell-Hausdorff formula states that

exp(X) ⋅ exp(Y ) = exp(P (X,Y )),

where
P (X,Y ) =

∞

∑
k=1

(−1)k+1

k
∑

αj+βj≥1

cαβDαβ(X,Y ).

The inner sum ranges over all α = (α1, . . . , αk) and β = (β1, . . . , βk) such that
αi + βi ≥ 1. It can be checked by direct computation that

P (X,Y ) =X +Y +
1

2
[X,Y ]+

1

12
[X, [X,Y ]]+

1

12
[Y, [Y,X]]+R(X,Y ) (2.4)

where R(X,Y ) is a formal series of commutators with at least 4 times iterated
brackets.

We say that the Lie group G is nilpotent of step s ∈ N if its Lie algebra g
it is. A nilpotent Lie group G is stratified if its Lie algebra g can be written
in the following way:

g = V1 ⊕ ...⊕ Vs

with V1, ..., Vs linear subspaces of g such that Vi = [V1, Vi−1] for i = 2, , , s and
Vs+1 = {0}. V1 generates the whole algebra g by iterated brackets. A Carnot
group is simply a stratified Lie group.

Now suppose we have a Carnot group G with Lie algebra g. We can
transport the Carnot group structure onto Rn, where n is the dimension of
g as a vector space over the field R.

Recall the stratification g = V1⊕ ...⊕Vs, and set mi = dimRVi. Fix a vector
basis X1, . . . ,Xn of g adapted to the stratification , i.e., if Mi =m1 + . . .+mi

for all i = 1, . . . , s and M0 = 0, then

XMj−1+1, . . . ,XMj
is a base of Vj for every j = 1, . . . , s.

Every basis element Xi will have its own weight wi ∈ {1, . . . , s} defined as
follows: if Xi ∈ Vj for some 1 ≤ j ≤ s, then wi = j.

IfX,Y ∈ g, thenX = ∑
n
i=1 xiXi and Y = ∑

n
i=1 yiYi for some x = (x1, . . . , xn), y =

(y1, . . . , Yn) ∈ Rn. We introduce a group law in Rn, denoted by ⋅ (and not to
be confused with the usual scalar product), in the following way:

x ⋅ y = z

where z = (z1, . . . , zn) is the only n-tuple such that P (X,Y ) = ∑
n
i=1 ziXi.

Equipped with this product, (Rn, ⋅) becomes a Lie group isomorphic to the
Carnot group G, and whose Lie algebra is isomorphic to g. The identity is
0, and we have that 0 ⋅ x = x ⋅ 0 = x for all 0 ∈ Rn.
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Finally, we now show some results that will be later used in Section 5. De-
fine for all λ > 0 the group dilations δλ ∶ Rn → Rn, δλ(x) = (λw1x1, . . . , λwnxn).
Let now X1, . . . ,Xn be a basis for g, write

Xj(x) =
n

∑
i=1

aij(x)∂i, j = 1, . . . , n,

and assume Xj(0) = ∂j. The coefficients aij ∈ C∞(Rn) and the product
x ⋅ y = P (x, y) are linked in the following way. Let γ ∶ (−η, η) → Rn be a
C1 curve such that γ(0) = 0 and γ̇(0) = ∂j. Since Xj is left invariant, if
f ∈ C1(Rn) then

Xjf(x) =Xj(f ○ τx)(0) = lim
t→0

f(P (x, γ(t))) − f(P (x,0))

t

=
∂f

∂x
(x)

∂P

∂y
(x,0)γ̇(0) =

∂f

∂x
(x)

∂P

∂yj
(x,0).

The vector fields have polynomial coefficients aij(x), and precisely

Xj(x) =
n

∑
i=1

∂Pi
∂yj

(x,0)∂i.

As a consequence the following homogeneity property holds

aij(δλ(x)) = λ
wi−wjaij(x), (2.5)

where wi and wj are the weights of xi and xj respectively.

Proposition 2.10. For all x, y, z ∈ Rn and λ > 0

(i) d(z ⋅ x, z ⋅ y) = d(x, y);

(ii) d(δλ(x), δλ(y)) = λ(.x, y).

Proof. Statement (i) follows from the fact that γ ∶ [0, T ] → Rn is a subunit
curve if and only if z ⋅γ is a subunit curve joining z ⋅x to z ⋅y, where (z ⋅γ)(t) ∶=
z ⋅ (γ(t)).

Let now γ ∶ [0, T ]→ Rn be a subunit curve joining x to y.

γ̇(t) =
m

∑
j=1

hj(t)Xj(γ(t)) =
n

∑
i=1

⎛

⎝

m

∑
j=1

hj(t)aij(γ(t))
⎞

⎠
∂i.
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Define γλ ∶ [0, λT ] → Rn by γλ(t) = δλ(γ(t/λ)). Then, by (2.5) with wj = 1 if
j = 1, . . . ,m

γ̇λ(t) =
n

∑
i=1

λwi−1
⎛

⎝

m

∑
j=1

hj(t/λ)aij(γ(t/λ))
⎞

⎠
∂i

=
n

∑
i=1

⎛

⎝

m

∑
j=1

hj(t/λ)aij(γλ(t))
⎞

⎠
∂i =

m

∑
j=1

hj(t/λ)Xj(γλ(t)).

As γλ(0) = δλ(x), γλ(λT ) = δλ(y) and γλ is subunit, it follows that
d(δλ(x), δλ(y)) ≤ λT . Since γ was arbitrary, d(δλ(x), δλ(y)) ≤ λd(x, y); the
converse inequality can be obtained in the same way.

If x ∈ Rn, introduce the homogeneous norm

∥x∥ =max { ∣xi∣
1/wi ∶ i = 1, ..., n} .

Proposition 2.11. There exist a constant C1 > 0 such that for all x, y ∈ Rn

we have
1

C1

∥y−1 ⋅ x∥ ≤ d(x, y) ≤ C1∥y
−1 ⋅ x∥ . (2.6)

Proof. Consider K = {x ∈ Rn ∶ d(x,0) = 1}. Since in Rn all norms are equiv-
alent, K is closed and bounded, and then by Harel-Borel theorem, com-
pact. Therefore the continuous function ∥ ⋅ ∥ ∶ K → [0,+∞) admits mini-
mum and maximum: for all x ∈ K, q1 ≤ ∥x∥ ≤ q2, with 0 < q1 ≤ q2. If
0 ≠ x ∈ Rn, ∥δλ(x)∥ = λ∥x∥ for all λ > 0. Consequently, setting λ = d(x,0)
and x̂ = δλ−1(x), we have that x̂ ∈ K thanks to property (ii) of (2.10) and
therefore q1d(x,0) ≤ ∥x∥ ≤ q2d(x,0). Using now the property (i) of the same
proposition, we get

q1d(x, y) ≤∥y
−1 ⋅ x∥ ≤ q2d(x, y) for all x, y ∈ Rn,

from which the thesis is obtained by setting C1 = max{q2,1/q1}.

2.4 Chow-Hörmander condition

Given a real smooth manifold n-dimensionalM and two smooth vector fields
X,Y ∈ Γ(TM), thought as derivations on the set C∞(M), their Lie bracket,
or Lie product, is defined as

[X,Y ](f) =X(Y (f)) − Y (X(f)) for all f ∈ C∞(M).
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In coordinates, if X = ∑
n
i=1 ai(x)∂i and Y = ∑

n
j=1 bj(x)∂j, then

[X,Y ] =
n

∑
i=1

n

∑
j=1

(aj(x)∂jbi(x) − bj(x)∂jai(x))∂i.

Endorsed with the Lie brackets, the real vector space Γ(TM) of all vector
fields on M has a structure of Lie algebra.

Now, starting from smooth vector fields X1, ...,Xm ∈ C∞ (Rn;Rn), we
can proceed to find new vector fields by iterating the Lie brackets. The Lie
algebra generated with this procedure shall be denoted by L(X1, ...Xm); for
each x ∈ Rn this Lie algebra is a vector space L(X1, ...Xm)(x). If

rank L(X1, ...Xm) = n for all x ∈ Rn (2.7)

the vector fieldsX1, ...,Xm are said to satisfy the Chow-Hörmander condition.
This means that at every point, the vector fields X1, ...Xm and their iterated
Lie brackets generate the whole tangent space.

This condition is necessary for an important result concerning the relation
between Carnot-Carathéodory metric and the usual Euclidean one.

Theorem 2.12. Suppose X1, ...Xm ∈ C∞ (Rn;Rn) satisfy the Chow-Hörmander
condition. Let K ⊂ Rn be a compact set and assume that for all x ∈K condi-
tion (2.7) is guaranteed by iterated commutators of length less than or equal
to s. Then there exists a constant C > 0, depending on the compact set K,
such that

d(x, y) ≤ C ∣x − y∣
1/s (2.8)

for all x, y ∈K.

Proof. See [12, page 33].

This theorem, also known as the Chow–Rashevskii theorem, toghether
with proposition (2.4), tells us that if K ⊂ Rn is a compact set and the
family of vector fields X = (X1, ...,Xm) characterizing the metric d satisfies
the above requirements, then for all x, y ∈K

1

C
∣x − y∣ ≤ d(x, y) ≤ C ∣x − y∣

1/s
, (2.9)

there exists a constant C > 0 depending onK andX. Therefore the euclidean
topology of Rn and the one induced by the Carnot-Carathéodory metric are
equivalent. Another important fact descending from this theorem is the
connectivity of such a Carnot-Carathéodory space, i.e. for any two points
x, y there exist an X-admissible curve connecting them.

13



3 Hall Basis
In this section we will show a procedure to construct a basis of the Lie algebra
gm,s, due to Hall.

Let E1, ...,Em be them generators of are elements of gm,s, and let them be
basis elements of weight 1. The rest of the basis is defined recursively: if we
have defined basis elements of weights 1, ..., r − 1, they are simply ordered so
that E < F if weight(E)<weight(F ). Also, if weight(E) = q and weight(F ) =

t and r = q + t, then [E,F ] is a basis element of weight r if:

1. E and F are basis elements and E > F ;

2. if E = [G,H], then F ≥H.

Fix now the number of generators m and the step s ≥ 1 of the nilpotent
Lie algebra gm,s, and let n denote its dimension. Let E1, ...,Em, ...,En be the
Hall basis of gm,s, and consider the linear subspaces Vi, for i = 1, . . . , s, each
one the span of the basis elements of weight i respectively. We now have a
grading

gm,s = V1 ⊕ V2 ⊕ ....⊕ Vs.

This induces a grading on the isomorphic vector space Rn, by sending each
Ei ↦ ei, where {e1, . . . , en} is the canonical basis of Rn, and consequently
equipping it with a "graded coordinates system". Indeed for any element
x ∈ Rn, x = ∑m

i=1 xiei uniquely, and therefore, identifying any x element of Rn

with a n-tuple (x1, ..., xn), and remembering that every ei has an associated
weight wi = weight(Ei), we have

x = (x1, ..., xm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

w=1

, xm+1, ..xt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

w=2

, ..., xk, ..., xn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

w=s

).

Number the basis elements for the Lie algebra by ordering them as ex-
plained above, i.e., Em+1 = [E2,E1],Em+2 = [E3,E1],Em+3 = [E3,E2],Em+4 =

[E4,E1], etc. Consider now a basis element Ei and write it as a bracket of
lower order basis elements, Ei = [Ej1 ,Ek1], where j1 > k1. Repeat this process
of writing the left-most element as a bracket of always further lower basis
elements, until we obtain

Ei = [[⋯[[Ejp ,Ekp]Ekp−1],⋯,Ek2],Ek1], (3.1)

where kp < jp ≤ m, and kl+1 ≤ kl for 1 < l < p − 1. This expansion involves
p brackets, and we write `(i) = p and define `(1) = ... = `(m) = 0. We also
associate to this expansion a multi-index I(i) = (a1, ..., an), with aq defined

14



by aq = #{t ∶ kt = q}. For the first m basis elements, their associate multi-
index is (0, ...,0). We say that Ei is a direct descendant of each Ejt , and we
indicate this by writing jt ≺ i. Note that ≺ is a partial ordering. Moreover,
to any index i we can associate another index Λi ∈ {1, ...,m}, being the index
of the (unique) generator that has i as a direct descendant, that is Λi ≺ i; if
i ∈ {1, ...,m} already, then set Λi = i. Notice that if Λi = 1 if and only if i = 1.
If Ei = [Ej,Ek], then Λi = Λj, `(i) = `(j)+1 and each entry in I(i) is at least
as large as the corresponding entry in I(j).

For every pair i and j with j ≺ i, we define the monomial pi,j by

pi,j(x) =
(−1)`(i)−`(j)

(I(i) − I(j))!
xI(i)−I(j) (3.2)

The next theorem gives the connection between the abstract Lie algebra
gm,s and the vector space Rn

Theorem 3.1. Fix s ≥ 1 and m ≥ 2 and let n denote the dimension of the
free, nilpotent Lie algebra on m generators of step s. Then the derivations

E1 =
∂

∂x1

E2 =
∂

∂x2

+∑
j≻2

pj,2
∂

∂xj

⋮

Em =
∂

∂xm
+ ∑
j≻m

pj,m
∂

∂xj

have the following properties:

1. They are homogeneous of weight one with respect to the grading

Rn = V1 ⊕ . . .⊕ Vs;

2. the Hall basis elements Ei they generate satisfy Ei(0) = ∂
∂xi

; in other
words, E1 through Em are free to step s at 0;

3. the graded Lie algebra they generate is isomorphic to gm,s.

Proof. See [3].

Now we show a lemma that will be used in the next section.
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Lemma 3.2. Consider the whole Hall basis E1, . . . ,Em, . . . ,En and suppose
that for i ∈ {m + 1, .., n}, the corresponding basis element Ei is of the form
Ei = [Ej,Eq] for some 1 ≤ q < j < i. Then

pi,Λi(x) = −
pj,Λi(x)xq

(I(i))
q

. (3.3)

In particular ∣pi,Λi(x)∣ ≤ ∣pj,Λi(x)xq∣ .

Proof. Indeed if we consider Ei = [Ej,Eq] and we remember its decomposi-
tion as in (3.1), we have that

Ei = [[⋅ ⋅ ⋅[[Ejp ,Ekp]Ekp−1], ⋅ ⋅ ⋅,Ek2],Ek1],

therefore Eq = Ek1 and Ej = [[⋅ ⋅ ⋅[[Ejp ,Ekp]Ekp−1], ⋅ ⋅ ⋅,Ek2]. Moreover Λi = Λj

and `(i) = `(j)+1 and all entries of I(i) are equal to those of I(j) except for
the q-th one, (I(i))

q
= (I(j))

q
+ 1. The thesis now follows immediately just

by looking at (3.2).
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4 Height estimate
Consider Rn endowed with the structure of graded Lie algebra as shown
in Section 3, so that we have 0 ≤ m ≤ n independent vector fields in Rn

X1, ...,Xm defined as follows

X1 =
∂

∂x1

X2 =
∂

∂x2

+∑
j≻2

pj,2(x)
∂

∂xj

⋮

Xm =
∂

∂xm
+ ∑
j≻m

pj,m(x)
∂

∂xj
.

Call X = (X1, ...,Xm) and let γ ∶ [0,1] → Rn be an X-admissible curve
parameterized by arc-length in the metric space (Rn, d), such that for a.e.
θ ∈ [0,1]

γ̇(θ) =
m

∑
i=1

hi(θ)Xi(γ(θ)),

where h1, ..., hm ∈ L∞ ([0,1]). Since γ is arc-length parameterized, we have
that

h2
1(θ) + ... + h

2
m(θ) = 1 for a.e θ ∈ [0,1]. (4.1)

Let ⟨⋅, ⋅⟩ be the scalar product on the span of X1, ...,Xm making them or-
thonormal. From now on we will use the norm induced by this scalar product,
when dealing with vectors of the tangent bundle.

Definition 4.1. The parametric excess of γ at a point η ∈ [0,1], at a scale
r > 0 such that η + r ≤ 1, in direction X1 is

E(γ; η; r;X1) ∶=
1

r

η+r

∫
η

⟨γ̇(θ) −X1, γ̇(θ) −X1⟩dθ.

Notice that

⟨γ̇(θ) −X1, γ̇(θ) −X1⟩ = ⟨γ̇(θ), γ̇(θ)⟩ − 2⟨γ̇(θ),X1⟩ + 1

= 1 + 1 − 2h1(θ) = 2(1 − h1(θ)).

From (4.1) we deduce that

– ∣hi∣ ≤ 1 for all i = 1, ...,m;
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– for all i ≠ 1, h2
i ≤ 1 − h2

1 = (1 − h1)(1 + h1) ≤ 2(1 − h1);

– for t ∈ [0,1] and for all i ≠ 1, ∫
t

0 ∣hi(θ)∣dθ ≤ t
√

1
t ∫

t

0 hi(θ)
2dθ ≤

≤ t
√

1
t ∫

t

0 2(1 − h1(θ))dθ = t
√
E(γ; 0; t;X1).

Theorem 4.2 (Height estimate). Let X1, . . . ,Xm vector fields on Rn defined
as above. Let γ ∶ [0,1] → Rn be an X-admissible curve parameterized by arc-
length, with γ(0) = 0. Let r ≤ 1. Then for all i = 2, ..., n there exist αi, βi
positive integers such that:

1) αi + βi + 1 = wi;

2)
⎛

⎝

∣γi(t)∣

∣t∣
αi

⎞

⎠

1
βi+1

≤ t
√
E(γ; 0; r;X1) for all 0 < t ≤ r. (4.2)

Proof. For semplicity, we shall use the notation E(t) = E (γ; 0; t;X1). We
will prove this result by induction on the weights of indices, and we will
show that 1), 2) and

∣pi,Λi(γ(θ))∣ ≤ t
αi (t

√
E(t))

βi
for all 0 ≤ θ ≤ t (4.3)

hold for every i ∈ {2, . . . , n}.

Initial step: For all i = 2, ..,m, i.e. indices of weight wi = 1,

∣γi(t)∣ ≤ ∫
t

0
∣hi(θ)∣dθ ≤ t

√
E(t) ⇐⇒

⎛

⎝

∣γi(t)∣

∣t∣
0

⎞

⎠

1
1+0

≤ t
√
E(t),

so 2) holds with αi = 0 and βi = 0, and indeed we have that αi + βi + 1 =

0 + 0 + 1 = 1 = wi. Moreover if i ∈ {1, . . . ,m} then pi,Λi = pi,i ≡ 1, thus also
(4.3) holds. Thus the initial step is proved.

Inductive step: Let i be of weight wi ≥ 2. Following Hall basis construc-
tion, i will be of the form i = [j, q] for some 1 ≤ q < j < i with weights wj and
wq such that wj +wq = wi. Λi is the (only) index in {2, ...,m} that has i as a
direct descendant. Notice that Λi can’t be 1 since i ≠ 1, and that Λi = Λj.

By Lemma 3.2 we have that ∣pi,Λi(x)∣ ≤ ∣pj,Λi(x)xq∣. Therefore, using (4.2)
on γq and (4.3) on pj,Λi inductively, we have that there exist αq, βq, αj, βj
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positive integers, with αj + βj + 1 = wj and αq + βq + 1 = wq, such that

∣pi,Λi(γ(θ))∣ ≤ ∣pj,Λi(γ(θ))∣∣γq(θ)∣

≤

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

tαj (t
√
E(t))

βj
tαq (t

√
E(t))

βq+1
if q > 1

tαj (t
√
E(t))

βj
t if q = 1

≤ tαi (t
√
E(t))

βi
,

where in the first case we have set αi ∶= αj + αq and βi ∶= βj + βq + 1, and in
the second one αi ∶= αj +1 and βi ∶= βj. Notice that in both cases αi+βi+1 =
wj +wq = wi, as we wanted. And we therefore proved the induction step for
(4.3).

At this point we have that γ̇i = hΛipi,Λi and so

γi(t) = ∫
t

0
hΛi(θ)pi,Λi(γ(θ))dθ.

Hence using estimate (4.3) (that we already proved to be true at this step)
we obtain

∣γi(t)∣ ≤ t
αi (t

√
E(t))

βi

∫

t

0
∣hΛi(θ)∣dθ

≤ tαi (t
√
E(t))

βi
t
√
E(t)

= tαi (t
√
E(t))

βi+1

(4.4)

that becomes
⎛

⎝

∣γi(t)∣

tαi

⎞

⎠

1
βi+1

≤ t
√
E(t).

Now denote the support of γ by Γ = γ([0,1]) ⊂ Rn, and its unit tangent
vector by τΓ = γ̇ ∈ span{X1, . . . ,Xm} .

For any subset U ⊆ Rn we call

diam(U) = sup{d(x, y) ∶ x, y ∈ U}

the diameter of U , where d is the Carnot-Carathéodory metric introduced
in Section 2; by definition we set diam(∅) = 0. Let S be a subset of Rn and
δ > 0 a real number, and define

H 1
δ (S) = inf {

∞

∑
i=1

diam(Ui) ∶ S ⊆
∞

⋃
i=1

Ui, diam(Ui) < δ} .
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It can be proved that each H 1
δ is an outer measure. Since the map δ ↦

H 1
δ (S) is increasing, the limit

H 1(S) ∶= lim
δ↓0

H 1
δ (S) = sup

δ>0
H 1

δ (S)

exists (although it may be infinite). H 1 is a measure, upon restriction
onto the Carathéodory-measurable sets, and it is called the Hausdorff 1-
dimensional measure of (Rn, d).

There is a connection between the total variation of the curve γ and the
1-dimensional Hausdorff measure of its support Γ.

Lemma 4.3. Let (M,ν) be a metric space and let H1 be the 1-dimensional
Hausdorff measure in the metric ν. If γ ∶ [a, b]→M is continuous, then

H1 (γ([a, b])) > ν (γ(a), γ(b)) .

Proof. Define the auxiliary function ϕ(x) ∶= ν (x, γ(a)). Then ϕ ∶M → R is
1-Lipschitz, hence

H1 (ϕ (γ([a, b]))) ≤ H1 (γ([a, b])) .

On the other hand, since H1 coincides on R with outer Lebesgue measure,
and ϕ (γ([a, b])) is an interval of the kind [0, σ], we obtain

H1 (ϕ (γ([a, b]))) = sup
t∈[a,b]

ϕ (γ(t)) = sup
t∈[a,b]

ν (γ(t), γ(a)) ≥ ν (γ(a), γ(b))

and the proof is completed.

Theorem 4.4. Let (M,ν) be a metric space and suppose that γ ∶ [a, b]→M
is a Lipschitz curve with support Γ. Then

H 1(Γ) ≤ Var(γ), (4.5)

and equation holds if γ is injective.

Proof. Due to the Reparametrisation Theorem ([1, page 63]), we can assume
that ∣γ̇∣ = 1 a.e. and a = 0, b = Var(γ). Let δ > 0, choose k ∈ N such that
Var(γ)/k < δ, and set ρ ∶= Var(γ)/k, Ji ∶= [iρ, (i + 1)ρ], i = 0, . . . , k − 1.

Since γ is 1-Lipschitz, thus diam(γ(Ji)) ≤ diam(Ji) < δ, therefore

H 1
δ (Γ) ≤

k−1

∑
i=0

diam(Ji) = Var(γ),
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and (4.5) follows since δ > 0 was arbitrary.
Now suppose that γ is injective, and choose a ≤ t0 < ⋅ ⋅ ⋅ < tk ≤ b. We have

from Lemma 4.3

k−1

∑
i=0

ν (γ(ti+1, γ(ti)) ≤
k−1

∑
i=0

H1 (γ([ti, ti+1])) ≤ H
1 (γ([a, b])) ,

where the last inequality rely on the injectivity of γ and the additivity of the
Hausdorff measure. Since the partition {ti} was arbitrary, we deduce that

Var(γ) ≤ H1 (γ([a, b])) ,

hence the equality in (4.5) holds.

This, combined with Theorem 2.7 allows us to see that if γ is an X-
admissible curve with support Γ, for any K ⊂ Γ compact,

H 1(K) = ∫
γ−1(K)

∣h(θ)∣dθ.

Definition 4.5. The excess of Γ at the point x ∈ Γ, at a scale r > 0, in
direction X1 is

E(Γ;x; r;X1) = ⨏
Γ∩Br(x)

⟨τΓ −X1, τΓ −X1⟩dH
1.

An X-admissible curve γ ∶ [a, b] → (Rn, d) is called a length-minimizer if
for any other X-admissible curve ζ such that ζ(a) = γ(a) and ζ(b) = γ(b),
then Var(γ) ≤ Var(ζ), i.e. the total variation of the curve γ coincides with
the Carnot-Carathéodory distance d(γ(a), γ(b)) between its extremes. It is
easy to see that this implies that if γ is a length-minimizer and we consider
a point x = γ(t) ∈ Γ, if there exist times t1 < t < t2 such that γ(t1), γ(t2) ∈
∂Br(x), where Br(x) is the ball centered in x of radius r in the metric d,
then H1(Γ ∩Br(x)) = 2r.

Corollary 4.6 (to Height estimate). Let γ ∶ [0,1] → Rn be an X-admissible
length minimizer parameterized by arc-length, with γ(0) = 0 and support Γ.
Let r ≤ 1. Then for all i = 2, ..., n there exist αi, βi positive integers such that:

1) αi + βi + 1 = wi;

2)
⎛

⎝

∣γi(t)∣

∣t∣
αi

⎞

⎠

1
βi+1

≤ t
√
E(Γ; 0; r;X1) for all 0 < t ≤ r. (4.6)
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Proof. Observe that if Γ is a length minimizer and d(0, γ(1)) > r, then
H 1(Γ ∩ Br(x)) = r. Using this observation one can see that the two defi-
nitions of excess coincide, and then conclude.

Remark. The proof of the last corollary shows that in fact in order to obtain
such a result we only need Γ to satisfies certain density estimates, without
necessarily being a length minimizer; if there exist two constants 0 < c1 ≤ c2

such that
c1r ≤ H 1(Γ ∩Br(x)) ≤ c2r,

then (4.6) holds provided we insert an adequate constant in the right hand-
side of the inequality.
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5 Lipschitz approximation
Consider the group (Rn, ⋅) with the Carnot-Carathéodory metric d already
discussed. Recall the homogeneous norm in Rn

∥x∥ =max { ∣xi∣
1/wi ∶ i = 1, ..., n}

and the group dilations

δλ(x) = (λw1x1, . . . , λ
wnxn).

Define the projection π ∶ Rn → R letting π(x) = x1. Then it can be easily
deducted from (2.4) that π(x ⋅y) = (x ⋅y)1 = x1+y1 = π(x)+π(y). This means
that π ∶ (Rn, ⋅)→ (R,+) is a group homomorphism. Moreover, we have

∣π(x) − π(y)∣ = ∣x1 − y1∣ ≤ d(x, y).

Thus π is 1-Lipschitz from (Rn, d) to R.

Theorem 5.1 (Lipschitz approximation). Let γ ∶ [−1,1] → Rn be a length
minimizer parameterized by arch-length, with γ(0) = 0 and support Γ. For
any ε > 0 there exist a closed set I ⊂ π(Γ ∩B1/4) and a curve γ̄ ∶ I → Rn with
support Γ̄ such that:

i) Γ̄ ⊂ Γ;

ii) γ̄1(t) = t for t ∈ I, i.e. γ̄ is a graph along X1;

iii) ∣(γ̄(s)−1 ⋅ γ̄(t))
i
∣
1/wi

≤ ε∣t − s∣ for s, t ∈ I, i = 2, ..., n;

iv) H 1 (B1/4 ∩ Γ ∖ Γ̄) ≤ C(ε,αi, βi)E(Γ; 0; 1;X1);

v) L 1 (π (Γ ∩B1/4) ∖ I) ≤ C(ε,αi, βi)E(Γ; 0; 1;X1).

Proof. Let B1/4 = {x ∈ Rn ∶ d(x,0) < 1/4}. For η > 0 consider the set

Γ̄ = {x ∈ Γ ∩B1/4 ∶ E(Γ;x; r;X1) ≤ η for all 0 ≤ r ≤ 1/2} ⊂ Γ.

Take points x ∈ Γ ∩B1/4 and y ∈ Γ̄, with x ≠ y, and define λ = d(x, y) > 0. By
the triangle inequality we have λ ≤ 1/2. The set

Γλ = δ 1
λ
(y−1 ⋅ Γ)
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is the support of a length-minimizing curve and 0 ∈ Γλ. The point z =

δ1/λ(y−1 ⋅ x) is in Γλ and by the Proposition 2.10, d(z,0) = 1
λd(x, y) = 1. By

the height estimate (4.6) we have that for any i ≥ 2

(
∣zi∣

d(z,0)αi
)

1
βi+1

≤
√
E(Γλ; 0; 1;X1) =

√
E(Γ; y;λ;X1) ≤

√
η.

We also used the invariance properties of the excess. By (2.6), this in turn
gives

∣(y−1 ⋅ x)i∣ ≤ η
βi/2+1/2d(x, y)wi ≤ Cwi

1 ηβi/2+1/2∥y−1 ⋅ x∥
wi
. (5.1)

Depending on ε > 0, we choose η > 0 so small that for all i = 2, ..., n we
have

Cwi
1 ηβi/2+1/2 ≤min{εwi ,

1

2
} = εwi . (assume this on ε) (5.2)

In this way, the maximum norm is given by

∥y−1 ⋅ x∥ = max
j=1,...,n

∣(y−1 ⋅ x)j ∣
1/wj

= ∣(y−1 ⋅ x)1∣
1/w1

= ∣x1 − y1∣ ,

and (5.1) becomes

∣(y−1 ⋅ x)i∣
1/wi

≤ ε∣x1 − y1∣ , i = 2, ..., n. (5.3)

The projection π ∶ Γ̄→ R is injective because π(x) = π(y) means x1 = y1 and
thus, by (5.3), we have ∣(y−1 ⋅ x)i∣ = 0 for all i ≥ 2. This implies y−1 ⋅ x = 0

and so x = y. Let I = π (Γ̄) and denote by π−1 ∶ I → Γ̄ the inverse of the
projection. We define the curve γ̄ ∶ I → Rn letting

γ̄(t) = π−1(t), t ∈ I.

The support of γ̄ is Γ̄ ⊂ Γ. This is i). Then we have γ̄1(t) = π (π−1(t)) = t for
all t ∈ I. This is ii). Claim iii) follows from (5.3).

Next, we prove claim iv). For any point x ∈ B1/4 ∩ Γ ∖ Γ̄ there exist a
radius 0 < rx ≤ 1/2 such that

1

2rx
∫

Γ∩Brx(x)
∣τΓ −X1∣

2
dH 1 = E(Γ;x; rx;X1) > δ.

Then we have
B1/4 ∩ Γ ∖ Γ̄ ⊂ ⋃

x∈B1/4∩Γ∖Γ̄

Brx/5(x) ∩ Γ.

24



By the 5-covering lemma there exists a sequence of points xk ∈ B1/4 ∩ Γ ∖ Γ̄
such that, letting rk = rxk , we have

B1/4 ∩ Γ ∖ Γ̄ ⊂ ⋃
k∈N

Brk(xk) ∩ Γ,

and the balls Brk/5(xk) are pair-wise disjoint. Thus obtain

H 1 (B1/4 ∩ Γ ∖ Γ̄) ≤∑
k∈N
H1 (Brk(xk) ∩ Γ) =∑

k∈N
2rk

≤∑
k∈N

1

δ ∫Γ∩Brk(xk)
∣τΓ −X1∣

2
dH1

≤
1

δ ∫Γ∩B1

∣τΓ −X1∣
2
dH 1 =

2

δ
E(Γ; 0; 1;X1).

Finally, claim v) follows from iv) and the fact that the projection π is 1-
Lipschitz. The set I may assumed to be closed, because all the claims are
stable passing to the closure.
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