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Introduction

One of the main problems in sub-Riemannian geometry is the regularity of length-minimizing
curves (or geodesics). It has been open since the work of R. S. Strichartz [22] and U.
Hamenstädt [8] in the late 1980s. In particular, in [22] it was claimed that every geodesic
parametrized by constant speed corresponds to a solution for a suitable Hamiltonian
system in the cotangent bundle, hence its expected C∞ smoothness and overall “good"
behavior, in perfect analogy with the Riemannian case. This claim was soon proved
wrong, precisely due to the unexpected, and initially only theoretical, possibility of so-
called abnormal length minimizers, an actual example of which was later displayed by
R. Montgomery in [16]. Their existence is the fundamental reason why the problem’s
complexity far exceeds that of its Riemannian version.

In Sections 2.1 through 2.4 of this thesis, our goal is to introduce the basic concepts of
sub-Riemannian geometry and to develop a first order theory for horizontal curves (i.e.,
curves whose tangent vectors at any point lie inside the prescribed distribution of tangent
planes). This will eventually allow us to distinguish candidate minimizers (extremals) be-
tween normal and abnormal, a distinction which is closely related to the concept of dual
curve, and to illustrate the massive difference in their behavior. Notably, it is needed to
work around the horizontality constraint, therefore such a straightforward application of
variational calculus techniques as in the Riemannian case is impossible. We also discuss
higher-order constraints for abnormal extremals, such as the Goh condition.

In 2016, the first general regularity result for sub-Riemannian geodesics was obtained: fol-
lowing on from some partial results in the years before [14] [12], Enrico Le Donne and Eero
Hakavuori established that length minimizers in sub-Riemannian manifolds never present
corner-type singularities [7]. Chapter 3 of this thesis is mainly devoted to the presentation
of their inductive argument, which is carried out by initially performing a reduction to the
model case of a Carnot group, particularly favorable because of its additional algebraic
structure: nilpotency and stratification are key properties to allow for successfully lifting
curves from a quotient Carnot group (Lemma 3.3.3), while the subsequent corrections to
the lifted curve are performed by employing conjugation maps (Lemma 3.3.4). In Chapter
1 we establish the necessary Lie theory to thereinafter introduce Carnot groups (Section
2.5) and properly understand them simultaneously as nilpotent Lie groups and as sub-
Riemannian manifolds; we also introduce the Baker-Campell-Hausdorff formula, a crucial
tool throughout our whole survey as it bridges the gap between group and Lie algebraic
operations.
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The reasons that make the above mentioned reduction to Carnot groups possible can
be traced back to the pivotal role they have in the context of sub-Riemannian geometry:
namely, they emerge as “tangent" metric spaces to all sub-Riemannian manifolds that
satisfy a technical condition (equiregularity), once having adequately generalized the no-
tion of “tangency". Subsection 2.5.1 aims to present this issue in a precise way. However,
to effectively transfer the entire problem onto these infinitesimal models of the original
spaces, the local approximation (possibly preceded by a “regularization" procedure) needs
to preserve length minimizers and other properties of curves. These highly technical is-
sues, addressed in [18] and [10], mostly extend beyond the scope of this work, even though
we manage to adequately face some related questions in Subsection 2.5.1 and Section 3.4.



Chapter 1

Basic facts about Lie groups

Refernces for Chapter 1 are [21], [13], [23].

1.1 The structure of Lie groups and the Baker-Campell-
Hausdorff formula

Definition 1.1.1. A Lie Algebra (over R) is a real vector space g endowed with a bilinear
map (called Lie Bracket)

[·, ·] : g× g −→ R

such that, for all x, y, z ∈ g:

(i) [x, y] = −[y, x];

(ii)
[
[x, y], z

]
+
[
[y, z], x

]
+
[
[z, x], y

]
= 0 (Jacobi’s identity).

A Lie algebra is called nilpotent if there exists k ∈ N such that the iterated brackets
vanish [

...
[
[x1, x2], x3

]
..., xk

]
= 0, (1.1)

for every x1, ..., xk ∈ g. The minimal k for which (1.1) holds is called the step of the Lie
algebra.
A Lie algebra is called Abelian if [x, y] = 0 for all x, y ∈ g, i.e., if it is a nilpotent Lie
algebra of step 1.
Observe that the set of vector fields over an open set of Rn (as well as over any given
manifold) is a Lie algebra, with bracket defined as the commutator [X, Y ] = XY − Y X.

Definition 1.1.2. Let Ω be an open subset of Rn, let X be a smooth vector field on Ω.
Given t ∈ R, we define the exponential of the field tX as the operator:

exp(tX)f(x) := f(ϕX,t(x)) x ∈ Ω,

where ϕX,t represents the flow of X at time t. For each x ∈ Ω, there exists a δ(x) > 0
such that the exponential is well defined for t ∈ (−δ(x), δ(x)).
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If we take f to be the identity function, then we can also identify the exponential exp(tX)
with an integral curve of X, i.e. exp(tX)(x) = ϕX,t(x) is the solution to the Cauchy
problem γ̇(t) = X(γ(t)), γ(0) = x. It is possible to show that the following Taylor
expansion holds:

exp(tX)f(x) =
k∑

j=0

tj

j!
Xjf(x) +O(tk+1). (1.2)

Hence, we have

exp(tX) =
∞∑
k=0

tk

k!
Xk

as formal power series.
One may now observe that the operators exp(sX)◦exp(tY ) and exp(sX+tY +st[X, Y ]/2)
have the same expansion up to the term of degree 2. This formal procedure can, in fact,
be pushed to any degree, constructing a formal power series S(s, t;X, Y ) = sX + tY +∑

j,k≥1 s
jtkZj,k(X, Y ), where each Zj,k is a fixed combination of iterated commutators of

X and Y , containing X j times and Y k times. This series satisfies the formal identity
exp(sX) exp(tY ) = exp(S(s, t;X, Y )), known as the Baker-Campell-Hausdorff formula.

Definition 1.1.3. A Lie group is a smooth manifold G, which is also a group (G, ·) such
that the map from G×G to G which assigns xy−1 to (x, y) is smooth.

For a ∈ G, let La be the “left translation" operator, i.e., Laf(x) := f(a−1x).

Definition 1.1.4. A vector field X on G is called left-invariant if

La(Xf) = X(Laf)

for every a ∈ G.

There is a 1:1 correspondence between tangent vectors at the identity e ∈ G and left-
invariant vector fields on G: for any given vector v ∈ TeG, which can also be thought of
as a real linear functional defined on smooth functions which satisfies Leibnitz’s identity,
there exists a unique left-invariant vector field X such that Xe = v. More specifically, the
correspondence is given by Xf(x) = v(Lx−1f).

The space of left-invariant vector fields over G is a Lie algebra Lie(G) (if equipped with
the commutator operation as bracket), called the Lie algebra of G.
In the nilpotent case, an a posteriori procedure to construct a Lie group with a prescribed
(nilpotent) Lie algebra is also possible: given such a Lie algebra g, it is possible to show
that if we equip g with the composition law

x · y = S(1, 1;x, y) = x+ y +
1

2
[x, y] +

1

12

[
[x, y], x

]
− 1

12

[
[x, y], y

]
+ ...

then we obtain a Lie group structure with g as its underlying manifold. Moreover, if we
denote this group by G, then Lie(G) = g, and G is the unique connected and simply
connected Lie group, up to isomorphism, with g as its Lie algebra (Ado’s theorem), see



[23], p.31. More specifically, if the Lie algebra is real and finite-dimensional, then there is a
bijective correspondence between connected Lie subgroups of a Lie group and subalgebras
of its Lie algebra.
Any nilpotent Lie algebra is a solvable group when equipped with the group operation
above: indeed, a group is solvable if and only if every normal subgroup is strictly contained
in its normalizer. Hence the associated Lie group is also solvable; this fact will be useful
later.

Definition 1.1.5. Let G and H be Lie groups. A Lie group homomorphism is a smooth
map F : G −→ H which is also a group homomorphism. If it is also a diffeomorphism,
then it is called a Lie group isomorphism.

Fact 1.1.6. Any Lie group homomorphism is smooth.

Given a group homomorphism ϕ : G −→ H, thanks to the correspondence between Lie
algebras and tangent spaces at the identity, the tangent map at the identity dϕe : TeG −→
TeH induces a (linear) map ϕ∗ : g −→ h such that the following diagram commutes:

G H

g h

φ

exp exp

φ∗

Definition 1.1.7. Let G be a Lie group, and let H be a normal subgroup of G. Then H
is also a Lie group and so is the quotient G/H, as its group operation is again continuous
(G/H has the quotient topology). We denote the canonical projection homomorphism by
π : G −→ G/H , and the induced map between the Lie algebras by π∗ .

1.2 Stratified groups
In the following G will be a Lie group, and g will be the Lie algebra Lie(G) of G.

Definition 1.2.1. A stratified group G is a nilpotent, connected and simply connected
Lie group which admits a stratification, i.e., a decomposition

g = V1 ⊕ V2 ⊕ ...⊕ Vs , Vs ̸= 0, (1.3)

with the property that, for i = 1, ..., s− 1, Vi =
[
V1, Vi−1

]
, and

[
V1, Vs

]
= {0}.

The integer r = dimV1 is called the rank of the Lie algebra/Lie group.

The definition of rank we just gave is equivalent to the definition of rank found in [9].
The observations below are straightforward.

• g is nilpotent of step s;

•
[
Vi, Vj

]
⊂ Vi+j, whenever i+ j ≤ s;



•
[
Vi, Vj

]
= {0}, whenever i+ j > s.

Let us fix an adapted basis of g, i.e. a basis X1, ..., Xn, n = dimg, whose order is coherent
with the stratification:

X1, .., Xr︸ ︷︷ ︸
V1

, Xr+1, ..., Xr2︸ ︷︷ ︸
V2

, Xr2+1...,︸ ︷︷ ︸
V3

...Xn.

In the sequel, we will employ many times the so-called coordinates of the second kind.
That is, we locally identify G with Rn by means of

Rn ∋ (x1, ..., xn) ⇆ exp(xnXn) ◦ ... ◦ exp(x1X1)(0) =: exp(x1X1) · ... · exp(xnXn) ∈ G.

In the nilpotent case, this actually serves as a global coordinate system.

The stratification allows for the existence of a family of intrinsic dilations on G: first,
for any i = 1, ..., n, we define the degree of i, d ∈ {1, ..., s}, as d(i) = j if and only if
Xi ∈ Vj.
Because of the stratification assumption, for each r > 0 there is a (unique) linear auto-
morphism δr of the Lie algebra g such that

δr(Xi) = rdiXi.

These induce dilations on G (which are also group automorphisms): in exponential coor-
dinates of the second kind we have

δr(x1, ..., xn) := (rx1, ..., r
d(i)xi, ..., r

sxn).



Chapter 2

Introduction to Sub-Riemannian
Manifolds and First order theory

2.1 Sub-Riemannian manifolds

A sub-Riemannian manifold is a smooth, connected n−dimensional manifold M , endowed
with a smooth sub-bundle ∆ ⊂ TM of constant rank r and which is also bracket generat-
ing (more on this later), called the horizontal sub-bundle, and with a smooth metric g on
∆. Without loss of generality, we can localize the analysis by setting M = Rn, and assum-
ing that ∆ is generated by smooth orthonormal (with respect to g) vector fields X1, ..., Xr.

In this chapter, we denote the scalar product between x, y ∈ Rd as x · y.

A Lipschitz continous curve γ : [0, 1] −→ M = Rn is said to be horizontal if γ̇(t) ∈ ∆γ(t)

for a.e. t ∈ [0, 1]. This happens iff there exist uniquely defined functions h = (h1, ..., hr) ∈
L∞([0, 1],Rr), called the controls associated to γ, such that:

γ̇(t) =
r∑

j=1

hj(t)Xj(t) = h ·X(t). (2.1)

We define the length of γ as:

L(γ) :=

∫ 1

0

|h(t)|dt. (2.2)

Definition 2.1.1 (Carnot-Carathéodory distance). The Carnot-Carathéodory (CC) dis-
tance between x, y ∈ Rn is defined as

d(x, y) := inf{L(γ)| γ is horizontal, γ(0) = x, γ(1) = y}

If d is an actual distance (i.e., if we are taking the infimum over a non-empty set), the re-
sulting metric space (M,d) is called a Carnot-Carathéodory space. The structure induced
by such a distance is then called sub-Riemannian, as intuitively the “allowed" directions
in x are a subspace of TxM .

11



Additionally, upon defining L2(γ) :=
(∫ 1

0
|h(t)|2

) 1
2 and

d2(x, y) = inf{L2(γ) | γ is horizontal, γ(0) = x, γ(1) = y},

we have that, since L(γ) is independent of the parametrization of γ, then d(x, y) = d2(x, y)
by applying the Cauchy-Schwarz inequality, for which curves parametrized at constant
speed are equality cases (i.e. L(γ) = L2(γ)). The quantity L2(γ) = (2E(γ))

1
2 is closely

related to the energy E(γ).

2.2 The Hörmander condition
Consider a point p ∈ Rn and a vector field X on Rn. By the Baker-Campell-Hausdorff
formula, exp(sX) exp(tY ) and exp(sX + tY + st[X, Y ]/2) have the same expansion up to
the term of degree 2. As a consequence, for small t ∈ R the following holds:

exp(−tY ) exp(−tX) exp(tY ) exp(tX)(p) = exp(t2[X, Y ])(p) + o(t2) (2.3)

Roughly speaking, if X, Y are in the set of admissible directions along which we can move,
then so is the commutator [X, Y ]. Applying this to iterated commutators should suggest
the validity of the following:

Theorem 2.2.1 (Chow-Rashevski Theorem). If the bracket generating condition

rankL (X1, ..., Xr)(p) = n (2.4)

holds at any p ∈ Rn, then for any x, y ∈ Rn there exists an horizontal curve joining x and
y (i.e., the CC distance is an actual distance).

Here L (X1, ..., Xr)(p) denotes the Lie algebra generated by X1, ..., Xr together with the
bracket operation, evaluated at the point p. This theorem was proved independently by
W.L.Chow [6] and P.K.Rashevski [20].

In the theory of Partial differential equations, requirement (2.4) is also known as the
Hörmander condition. From now on we assume it is always verified.

2.3 Length minimizers and First-order necessary con-
ditions

Definition 2.3.1. An horizontal curve γ : [0, 1] −→ Rn is a length minimizer if L(γ) =
d(γ(0), γ(1)).

As a consequence of the Ball-box theorem (see [19]), the topology induced by the CC
distance is precisely the Euclidean topology of Rn. Thanks to this fact, it is possible to
prove the local (in the sense of the Euclidean topology) existence of length minimizers:



Theorem 2.3.2. For every x ∈ Rn there exist ρ > 0 such that if d(x, y) < ρ, then there
exists a length minimizer connecting x and y.

However, contrary to the case of Riemannian geometry, length minimizers are in general
not unique, not even locally.
To study length minimizers, we would like to derive necessary conditions for a horizontal
curve to be length-minimizing. To do this, we begin with some definitions.
Given a system of vector fields X = (X1, ..., Xr), fix a length minimizer γ : [0, 1] −→ Rn

(defined on the whole interval [0,1]), with associated controls h. Without loss of generality
assume γ(0) = 0 and |h| = c (the curve is parametrized by constant speed). For any
x ∈ Rn, we define γx : [0, 1] −→ Rn as the solution of{

γ̇x = h ·X(γx)

γx(0) = x .

It is then natural to define, for t ∈ [0, 1], the diffeomorphism (also known as optimal flow)
F : Rn −→ Rn as Ft(x) = γx(t).
On the other hand, for controls k ∈ L∞([0, 1],Rr) denote by qk the horizontal curve
solving {

q̇k = k ·X(qk)

qk(0) = 0.

Finally, we define the endpoint map End : L∞([0, 1],Rr) −→ Rn

End(k) := qk(1),

and, for a given v ∈ L∞([0, 1],Rr), the variation map ϕv : R −→ Rn+1 = Rn × R as

ϕv(s) :=

(
F−1
1 (qh+sv(1)),

∫ 1

0

(h+ sv)2
)

= (F−1
1 ◦ End(h+ sv), L2(h+ sv)2).

In other words, the first component of ϕv(s) is the starting point of the curve with controls
k, whose endpoint is the same as the curve with controls h + sv starting at the origin.
Denote ∂ϕv(s)

∂s
by ϕ′

v(s). We now prove the following lemma:

Lemma 2.3.3. If γ is a length minimizer parametrized by constant speed, then there
exists a ξ ∈ Rn \ {0} such that:

⟨ξ, ϕ′
v(0)⟩ = 0 ∀v ∈ L∞([0, 1],Rr). (2.5)

Proof. Suppose not, i.e., there exist v1, ..., vn+1 such that ϕ′
v1
(0), ..., ϕ′

vn+1
(0) are linearly

independent. Then the map
Φ : Rn+1 −→ Rn+1

Φ(s1, ..., sn+1) :=
(
F−1
1 (qh+s·v(1)), L2(qh+s·v)

2
)



has inverible Jacobian ∇Φ(0) because ∂Φ
∂si

(0) = ϕvi(0). By the inverse function theorem,
Φ is an open map in a neighborhood of 0. Hence, there exist a vector s = (s1, ..., sn) such
that, by defining h = h+ s · v:{

F−1
1 (qh(1)) = F−1

1 (qh(1))

L2(qh)
2 < L2(qh)

2.

Since F1 is a diffeomorphism, if s is sufficiently close to 0, then by local injectivity of F1

qh(1) = qh(1), contradicting the minimality of qh = γ.

Lemma 2.3.4. If v ∈ L∞([0, 1],Rr) and ϕv is the variation map associated with v, then

ϕ′
v(0) =

(∫ 1

0

JFt(0)
−1(v ·X(γ(t)))dt, 2

∫ 1

0

⟨h(t), v(t)⟩ dt

)
∈ Rn × R (2.6)

Proof. Let s ∈ R be fixed. For any t ∈ [0, 1] we define xh+sv(t) = F−1
t (qh+sv(t)). In

particular, the first n components in ϕv(s) form the vector xh+sv(1). We may differentiate
the following identity:

qh+sv(t) = Ft(xh+sv(t))

to obtain:
(h+ sv) ·X(qh+sv) = h ·X(qh+sv) + JFt(xh+sv)ẋh+sv

ẋh+sv = sJFt(xh+sv)
−1[v ·X(qh+sv)],

from which it follows that

xh+sv(t) = s

∫ t

0

JFτ (xh+sv(τ))
−1[v ·X(Fτ (xh+sv(τ)))]dτ,

i.e.,

ϕ′
v(0) =

(
∂xh+sv(1)

∂s

∣∣∣∣
s=0

, 2

∫ 1

0

⟨h(τ), v(τ)⟩ dτ
)

=

(∫ 1

0

JFτ (xh(τ))
−1[v ·X(Fτ (xh(τ)))]dτ, 2

∫ 1

0

⟨h(τ), v(τ)⟩ dτ
)
.

The desired identity (2.6) is easily achieved after observing that xh(τ) = F−1
τ (qh(τ)) =

F−1
τ (γ(τ)) = 0.

We now state the main result of this section:

Theorem 2.3.5. (First-order necessary conditions) Let γ : [0, 1] ∈ Rn, γ(0) = 0 be a
length minimizer, and let h be the associated controls. Assume γ is parametrized by
constant speed, i.e. |γ′| = |h| ≡ c. Then there exists ξ0 ∈ {0, 1}, ξ ∈ Lip([0, 1],Rn) such
that

(i) (ξ(t), ξ0) ̸= 0 for any t ∈ [0, 1];

(ii) for any j = 1, ..., r, ξ0hj + ξ ·Xj(γ)=0 holds a.e. on [0, 1];



(iii) ξ̇ = −
(∑r

j=1 hjJXj(γ)
)T

ξ a.e. on [0, 1].

Proof. Let ξ ∈ Rn+1{0} be as in Lemma 2.3.3, and express it as ξ := (ξ(0), ξ0/2). Using
Lemma 2.3.4, we deduce from (2.5) the following necessary condition:

0 =

∫ 1

0

r∑
j=1

vj(t){ξ(0), JFt(0)
−1Xj(γ(t))) + ξ0hjdt

=

∫ 1

0

r∑
j=1

vj(t){
〈
[JFt(0)

−1]T ξ(0), Xj(γ(t)))
〉
+ ξ0hj}dt,

(2.7)

For all v ∈ L∞([0, 1],Rr. By setting ξ(t) = [JFt(0)
−1]T ξ(0) we automatically get (ii)

thanks to the Fundamental lemma of the Calculus of Variations. (i) is trivial if ξ0 ̸= 0
(in which case we can normalize (ξ(t), ξ0) dividing by ξ0, and (ii) still holds). Conversely,
when ξ0 = 0 we must have, by definition of ξ ̸= 0, that ξ(0) ̸= 0, hence for every
t ∈ [0, 1], ξ(t) ̸= 0 as JFt(0)

−1 is invertible. We are left to prove (iii). Differentiating
ξ(t) = [JFt(0)

−1]T ξ(0) with respect to t, we get:

0 =

(
d

dt
JFt(0)

T

)
ξ(t) + JFt(0)

T ξ̇(t), a.e. on [0, 1], (2.8)

which leads to:
ξ̇(t) = −(JFt(0)

−1)T
(

d

dt
JFt(0)

T

)
ξ(t) (2.9)

therefore we just need to compute:

d

dt
JFt(0) = J

d

dt
Ft(x)

∣∣∣∣
x=0

= J

(
r∑

j=1

hj(t)Xj(Ft(x))

)∣∣∣∣
x=0

=
r∑

j=1

hj(t)JXj(Ft(0))JFt(0)

=

(
r∑

j=1

hj(t)JXj(γ(t))

)
JFt(0) a.e. on [0, 1].

(2.10)
Hence (iii) holds:

ξ̇(t) = −

(
r∑

j=1

hj(t)JXj(γ(t))

)T

ξ(t). (2.11)

Definition 2.3.6. A horizontal curve γ : [0, 1] −→ Rn with γ(0) = 0 and associated
controls h is an extremal if there exist ξ0 ∈ {0, 1} and ξ ∈ Lip([0, 1],Rn) such that the
conditions (i), (ii), (iii) hold.
If ξ0 = 1, we say that γ is a normal exremal.
If ξ0 = 0, we say that γ is an abnormal extremal.



The curve ξ ∈ Lip([0, 1],Rn) given by Theorem 2.3.5 is called a dual curve (or dual vari-
able) of γ.
In general, the dual curve is not unique, and in particular an extremal might be both
normal and abnormal. We will therefore call strictly normal (resp. strictly abnormal) the
extremals which are normal but not abnormal (resp. abnormal but not normal).

Theorem 2.3.5 also possesses an Hamiltonian formulation: let us define the Hamiltonian
function H : Rn × Rn −→ R

H(x, ξ) :=
r∑

j=1

⟨Xj(x), ξ⟩2 , x, ξ ∈ Rn. (2.12)

Theorem 2.3.7. If γ is a normal extremal, with dual curve ξ, then (γ, ξ) is C∞ smooth
and solves the system of Hamiltonian equations:{

γ̇ = −1
2
∂H
∂ξ
(γ, ξ)

ξ̇ = 1
2
∂H
∂x

(γ, ξ).
(2.13)

If γ is an abnormal extremal, with dual curve ξ, then H(γ, ξ) = 0.

This further emphasizes the duality between γ and ξ.

Proof. If γ is normal, then the following chains of equalities hold thanks to conditions (ii)
and (iii) in Theorem 2.3.5:

∂H

∂ξ
(γ, ξ) = 2

r∑
j=1

⟨Xj(γ), ξ⟩Xj(γ) = 2
r∑

j=1

(−ξ0hj)Xj(γ) = 2
r∑

j=1

−hjXj(γ) = −2γ̇

∂H

∂x
(γ, ξ) = 2

r∑
j=1

⟨Xj(γ), ξ⟩ ξjJXj(γ) = 2

(
−

r∑
j=1

hjJXj(γ)

)T

ξ,

which together prove the desired result.
If γ is abnormal, then by (ii) in Theorem 2.3.5:

H(γ, ξ) =
r∑

j=1

⟨Xj(γ), ξ⟩2 =
r∑

j=1

(−ξ0hj)
2 = 0.

With this in mind, it is possible to prove that normal extremals must be parametrized
at constant speed, while in the case of an abnormal extremal γ, with dual curve ξ,
quick calculations show that for every increasing Lipschitz continous homeomorphism
f : [0, 1] −→ [0, 1], a new parametrization of the same path γ̃ = γ ◦ f is also an abnormal
extremal, as ξ̃ = ξ ◦ f is an associated dual curve. For these reasons, we do not request
extremals to be parametrized at constant speed.



2.4 Properties of normal and abnormal extremals

2.4.1 Normal extremals

We begin with two fundamental results for normal extremals:

Proposition 2.4.1. Normal extremals are C∞ smooth.

Proof. Suppose γ : [0, 1] −→ Rn is a normal extremal with dual curve ξ and controls h.
By (ii) in Theorem 2.3.5 we know that if ξ, γ are Lipschitz continuous, then so are the
controls h. On the other hand, by (2.1) and (iii) in Theorem 2.3.5, we know that if h is
Lipschitz continuous then so are γ̇, ξ̇. Iterating the argument, we have the following two
implications:

γ, ξ ∈ Ci =⇒ h ∈ Ci([0, 1],Rr), (2.14)

h ∈ Ci([0, 1],Rr) =⇒ γ, ξ ∈ Ci+1, (2.15)

from which the claim follows by induction.

Theorem 2.4.2. Any normal extremal γ : [0, 1] −→ Rn is locally length minimizing, and
in particular there exists δ > 0 such that whenever s, s′ ∈ [0, 1], 0 < s′ − s < δ, we have
that γ|[s,s′] is a length minimizer.

The second part follows from the first by an easy compactness argument. This theorem,
which is proved in [23], pp.27-29, is a special case of more general results in the context
of Optimal Control theory.

Observe that in the Riemannian case r = n, we have that every extremal is strictly
normal because of (i) and (ii) in Theorem 2.3.5. Moreover, (iii) is equivalent to the ODE
of Riemannian geodesics, hence every extremal is a geodesic.

2.4.2 Abnormal extremals

The results in Subsection 2.4.1 underline many common features between normal ex-
tremals and Riemannian geodesics. Abnormal extremals, on the other hand, satisfy
weaker conditions, that in general only provide Lipschitz regularity.

By (ii) in Theorem 2.3.5, for abnormal extremals we have

⟨ξ,Xj(γ)⟩ = 0 on [0,1], for all j = 1, ..., r. (2.16)

If we request the extremal to be length minimizing, a stronger condition holds:

Theorem 2.4.3. (Goh condition) If γ is a strictly abnormal length minimizer, then any
associated dual curve ξ satisfies:

⟨ξ, [Xi, Xj](γ)⟩ = 0 on [0,1], for all i, j = 1, ..., r. (2.17)



The proof is found in [2].
Abnormal extremals are often introduced in the literature as the (curves whose controls
are) singular points of the endpoint map End: more information about this characteriza-
tion is in [24], pp.12-13.

Recently, a generalization of the Goh condition to longer iterated commutators was found
in [5].

Theorem 2.4.3 admits the following consequence:

Corollary 2.4.4. If the horizontal distribution X1, ..., Xr has step 2, i.e., if

dim span{Xi, [Xj, Xk] : i, j, k ∈ {1, ..., r}}(x) = n ∀x ∈ Rn,

then any length minimizer is C∞ smooth.

Proof. Assume by contradiction that there is a length minimizer γ which is not C∞

smooth; then, by Proposition 2.4.1, γ must be strictly abnormal. Because of Theorem
2.4.3 and (2.16), any dual variable ξ is orthogonal (along γ) to Xi, [Xi, Xj] for any
i, j ∈ 1, ..., r. Our assumption is that the former vector fields generate the whole tangent
space at any point: this means that ξ is identically zero, which is absurd.

The following is another remarkable fact about abnormal extremals, which is proved in
[1]:

Theorem 2.4.5. Suppose the horizontal vectors X1, ..., Xr are analytic. Then the set of
points Σ in Rn which can be connected to the origin by an abnormal length minimizer is
a closed set with empty interior.

It is still unknown whether Σ always has measure zero (Morse-Sard problem).

2.5 Carnot groups

Consider a stratified group G, together with its Lie algebra g. The stratification of
g = V1 ⊕ ...⊕Vs, implies that the first stratum V1 is generating for the bracket operation.
This means that the subspace of TeG corresponding to V1 generates TeG through the
operation on the tangent vectors induced by the bracket. By left-invariancy, the same
happens in TpG, for every p ∈ G. This is equivalent to saying that V1 = ∆ is a generating
sub-bundle of the tangent bundle of the manifold G (which we identify with Rn thanks
to exponential coordinates of the second kind). In other words, the Hörmander condition
is satisfied and (G,∆) is a Carnot-Carathéodory structure with well-defined CC distance d.

For any p, x, y ∈ G and any r > 0, there holds

d(p · x, p · y) = d(x, y) and d(δr(x), δr(y)) = rd(x, y).



By left-invariancy and the fact that the horizontal sub-bundle coincides with the first
stratum, hence if γ is a horizontal curve s.t. γ(0) = x, γ(1) = y, then γ(t) = δr(γ(t)) is
also a horizontal curve, and L(γ) = r · L(γ).

As sub-Riemannian manifolds, Carnot groups also enjoy a purely metric characteriza-
tion [11]:

Theorem 2.5.1. Carnot groups are the only metric spaces X which are:

(i) Locally compact;

(ii) Geodesic (∀x, y ∈ X there is a geodesic joining x and y);

(iii) Isometrically homogeneous (∀x, y ∈ X there is an isometry sending x to y);

(iv) Self-similar (admitting a dilatation).

Of course, Rn together with the vector fields Xi := ∂xi
, i = 1, ..., n is an Abelian Carnot

group. However, the most popular example of non-Abelian Carnot group is the Heisenberg
group: the Carnot group (therefore the only simply connected Lie group) associated with
the Lie algebra of step 2 and rank 2 g = V1⊕V2 where V1 = span{X1, X2}, V2 = span{X3},
and with

[X2, X1] = X3 [X1, X3] = 0 [X2, X3] = 0

One of its representations is as R3 and X1 = ∂x1 , X2 = ∂x2 − x1∂x3 , X3 = ∂x3 .

Clearly, the Heisenberg group is (up to isomorphism) the only stratified group of rank 2
and step 2.
We report part of a characterization found independently by Dimixier and Saito in 1957,
which will be useful later:

Theorem 2.5.2. Let G be a real finite-dimensional Lie group, and let g be its Lie algebra.
The following are equivalent:

(i) exp is injective;

(ii) exp is a real analytic diffeomorphism;

(iii) G is solvable, simply connected and any quotient of g does not admit a subalgebra
isomorphic to e.

Here e is the Lie algebra of the isometries of three-dimensional space R3.

Clearly, a Carnot group is solvable (it is nilpotent) and simply connected, and one can
prove that e cannot appear as a subalgebra of some quotient. Hence in a Carnot group
the exponential map is injective.



2.5.1 Carnot groups as tangent spaces for sub-Riemannian man-
ifolds

Our interest in Carnot groups is motivated by the role that they play in the context of
sub-Riemannian geometry, similar to the one of Euclidean space in Riemannian geometry:
they appear as “tangent spaces" (in a more general sense which we will briefly illustrate; for
reference, see [23], pp.39-40) for a much larger class of metric spaces than just Riemannian
manifolds.

Definition 2.5.3. The Hausdorff distance between two non-empty subsets of a metric
space (X, d) is

dH(A,B) := max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
Actually, dH is not a distance (dH(A,A)=0, moreover dH can take the value +∞), but it
is when we restrict ourselves to compact subsets of X.

Definition 2.5.4. The Gromov-Hausdorff distance between two (non-empty) metric spaces
is defined as the infimum:

dGH(X, Y ) := inf dH(i(X), j(Y ))

taken among all possible isometric embeddings i : X −→ Z, j : Y −→ Z in some metric
space Z.

This quantity is well-defined (take Z = i(X)⊔j(Y )) and, again, it is not really a distance,
but it becomes one if we reduce to the class of all non-empty compact metric spaces (up
to isometry) [3].

Definition 2.5.5. A family (Xλ, xλ)λ>0 of pointed metric spaces is said to converge at
(X, x) if, for every R > 0: dGH(B

Xλ
R (xλ), B

X
R (x)) −→ 0 as λ −→ +∞.

Defining the dilated metric space (λX, dλX) as λX := X and dλX := λdX we are able to
extend the notion of tangent space:

Definition 2.5.6. A pointed metric space (Y, y) is a tangent space for X at x ∈ X if the
family (λX, x)λ>0 converges to (Y, y).

Before stating our fundamental result, we need to establish one more concept. Given a
sub-Riemannian manifold M , with generating sub-bundle ∆ = ∆0 = {X1, ..., Xr} for each
s ∈ N we define the set of vector fields ∆s+1 = {[Xi, Xj] : Xi ∈ ∆s, Xj ∈ ∆}. Since the
Hörmander condition holds, at each point p of M we have a flag of subspaces:

∆0(p) ⊂ ∆1(p) ⊂ ... ⊂ ∆g−1(p) ⊊ ∆g(p) = TpM.

Set d(i) = dim∆i(p). Then (d(0), d(1), ..., d(g)) is called the growth vector at p.

Definition 2.5.7. A point p ∈ M is equiregular (w.r.t. ∆) if the growth vector is constant
in a neighborhood of p.
A sub-Riemannian manifold is equiregular if each of its points is equiregular.



Theorem 2.5.8. (Mitchell [15], 1985) For each equiregular point p ∈ M , the unique
tangent space to (M,d) at p is a Carnot group, where d is the Carnot-Carathéodory
distance induced by ∆.

The situation for non-equiregular (also known as singular) points with respect to ∆ is
more complicated: a similar theorem which generalizes [15] was later proved by Bellaïche
in 1994 [4].





Chapter 3

Non minimality of corners in
sub-Riemannian geometry

3.1 Outline

In 2016, Enrico Le Donne and Eero Hakavuori provided a short proof [7] for the following
statement:

Theorem 3.1.1. Length-minimizing curves in sub-Riemannian manifolds do not have
corner-type singularities.

Previously, some partial results were known: in [14] (2008), the statement was proved for
a certain class of equiregular manifolds, which satisfy an additional technical condition.
These results were then extended in [12] (2015). More recently, a stronger result which
implies Theorem 3.1.1 (namely, that any point of any length minimizer possesses at least
one straight line as a tangent curve) was proven in [17] (2018).

As we will later explain, up to a desingularization, blow up and reduction argument,
to prove Theorem 3.1.1 it suffices to verify its validity for a Carnot group. Moreover, as
we will see, one may assume that the Carnot group has rank 2.

The proof is by induction on the step s of the group.
We will first show that the statement holds for s = 2. For s ≥ 3 we are able to project
the corner into a group of step s− 1 (Lemma 3.3.3); by inductive hypothesis, we can find
a shorter curve in the group of step s − 1, which we can lift back (Lemma 3.3.4) to the
original group modulo an error in the endpoint of degree s.
We will then correct the error by a system of curves placed along the corner, with end-
points in the subspace of degree s − 1 in Lemma 3.3.4, as a crucial consequence of the
fact that the space is a nilpotent stratified group.
The conclusion will follow from the fact that the order s with which the error scales is
strictly larger than the order s−1 with which the correction scales. Hence, after consider-
ing the situation at smaller scales, we will eventually show that an opportunely corrected
version of the lifted curve has a length that differs from the length of the corner by a
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quantity of the form:
−aϵ+ bϵs/(s−1)

for some positive constants a, b. For a sufficiently small ϵ the new curve is therefore strictly
shorter than the angle. The correction is achieved by modifying the initial corner with
an ϵ-dilation of the lifted curve and suitable dilations of the correcting curves.

3.2 Preliminary definitions
Let γ : [−1, 1] −→ M be an absolutely continuous curve on a manifold M. We say that γ
has a corner-type singularity at time 0 if the left and right derivatives at 0 exist and are
linearly independent.
Let G be a Lie group. We say that a curve γ : [1, 1] −→ G is a corner if there exist
linearly independent vectors X1, X2 in the Lie algebra of G such that

γ(t) =

{
exp(−tX1) if t ∈ [−1, 0]

exp(tX2) if t ∈ (0, 1]

In such a case, we will say that γ is the corner from exp(X1) to exp(X2). The length of
such a corner is clearly |X1| + |X2|. Notice that at 0 the left derivative of γ is X1, while
the right derivative is X2. Hence, a corner has a corner-type singularity at 0.

We call a norm | · | strictly convex if its unit ball contains no non-trivial segments. In
other words, if |x| = |y| = 1 and |x+ y| = 2, then x = y.

3.3 Preliminary lemmas
In the following, we are going to prove a slightly stronger statement, namely:

Theorem 3.3.1. Length-minimizing curves in every Carnot group equipped with a CC
distance which comes from a strictly convex norm (on V1) do not have corner-type singu-
larities

Indeed, in the sub-Riemannian case the CC distance comes from the inner product of Rn,
which evidently induces a strictly convex norm. This will imply that length-minimizers
do not have corner-type singularities in any CC space.

Lemma 3.3.2. Let G be a step-2 Carnot group with a distance d associated to a strictly
convex norm. Then in (G, d) no corner is length minimizing.

Proof. Let X1, X2 be linearly independent vectors of the first layer V1. Fix ϵ > 0, and
consider the points:

g1 = exp((ϵ− 1)X1) g2 = exp(ϵ(X2 −X1)) g3 = exp((1
2
− ϵ)X2)



g4 = exp(−ϵ2X1) g5 = exp(1
2
X2) g6 = exp(ϵ2X1)

Since G has step 2, the Baker-Campell-Hausdorff formula reduces to exp(X) exp(Y ) =
exp(X + Y + 1

2
[X, Y ]). Therefore it is easy to verify that exp(X2) = exp(X1)g1...g6.

We may assume |X1| = |X2| = 1. Let D = d(e, exp(X2 − X1)) = |X2 − X1|. By left
invariancy and triangular inequality, we obtain D = d(exp(X1), exp(X2)) = d(e, g1...g6) ≤∑6

j=1 d(e, gj), which we explictly compute as:

6∑
j=1

d(e, gj) = (1− ϵ) + ϵD + (
1

2
− ϵ) + ϵ2 +

1

2
+ ϵ = 2− (2−D)ϵ+ 2ϵ2.

Crucially, by strict convexity of | · |, we have that −(2 − D) < 0, hence taking ϵ small
enough, we get that the corner is not length minimizing, as its length is 2.

Remark that if | · | was the norm coming from the inner product in Rn, then Corollary
2.4.4 would have already been a proof for our base case.

The next lemma encapsulates the argument’s main idea. Geometrically, we can interpret
its statement as the fact that curves in a quotient group can be isometrically lifted to the
original group. This is the foundation of our inductive step, since we are able to lift a
geodesic in the quotient and obtain a curve which only has error in the last layer.

Lemma 3.3.3. Let G be a Carnot group of step s. Assume there are no minimizing
corners in any Carnot group of step s − 1 with first layer isometric to the first layer of
G. For all linearly independent X1, X2 ∈ V1 there exists an h ∈ exp(Vs) such that:

d(h · exp(X1), exp(X2)) < |X1|+ |X2|. (3.1)

Proof. H = exp(Vs) is a central subgroup of G, as [Vs, g] = {0} and so for x ∈ H, y ∈ G,
we have exp(x) exp(y) = exp(x+ y) = exp(y+x) = exp(x) exp(y) by the Baker-Campell-
Hausdorff formula. Therefore we can take the quotient group G/H, which is also a
stratified group, but of step s − 1: the canonical projection π∗ between the Lie algebras
sends a generic element x1X1 + ... + xrs−1Xrs−1 + xrs−1+1Xrs−1+1 + ... + xnXn of g in
x1X1 + ...+ xrs−1Xrs−1 . We endow G/H with the unique norm that makes the canonical
projection an isometry, thus making G/H a Carnot group. Its first layer is π∗(V1), which
is isometric to V1. Hence, by the inductive hypothesis, in G/H corners are never length-
minimizers. For the same reason, if X1, X2 are independent, then so are π∗(X1) and
π∗(X2), and by hypothesis the corner from exp(π∗(X1)) to exp(π∗(X2)), which has length
|X1| + |X2|, is not length-minimizing. We have that exp(π∗(X)) = π(exp(X)) as π is a
Lie group homomorphism. Hence

d(π(exp(X1)), π(exp(X2))) < |X1|+ |X2|

But at the same time, by left-invariance of d:

d(π(exp(X1), π(exp(X2))) = d(H exp(X1), H exp(X2)) = inf
h∈H

d(h · exp(X1), exp(X2)).

such an h ∈ exp(Vs) is an error of degree s.



The next lemma is instead the technical core of the argument. We take care of the error
coming from the previous lemma, by using vectors in the layer s − 1. We also quantify
how corrections vary by scaling the error.
In the following, we consider the conjugation map Cp(q) = pqp−1

Lemma 3.3.4. Let G be a Carnot group of step s ≥ 3 and let X1, X2 be vectors spanning
V1. Then for any h ∈ exp(Vs), there exist Y1, Y2, Y3 ∈ Vs−1 such that

Cexp(X1)(ϵ
sY1) · Cexp( 1

2
X2)

(exp(ϵsY2)) · Cexp(X2)(exp(ϵ
sY3)) = δϵ(h)

holds for all ϵ>0

Proof. For a fixed Z ∈ Vs, first look at the equation:

Cexp(X1)(Y1) · Cexp( 1
2
X2)

(exp(Y2)) · Cexp(X2)(exp(Y3)) = exp(Z). (3.2)

In the variables Y1, Y2, Y3 ∈ Vs−1. Since G has step s, each of the conjugations can be
rewritten using the Baker-Campell-Hausdorff formula:

Cexp(X)(exp(Y )) = exp(X) exp(Y ) exp(−X) = exp(Y + [X, Y ]).

From s ≥ 3, we get 2(s − 1) > s and so exp(Vs−1) ⊕ exp(Vs) is abelian, thanks to the
Baker-Campell-Hausdorff formula: exp(X) exp(Y ) = exp(X + Y ). This means that exp
is a group homomorphism from g to G. At the same time, since G is a Carnot group, by
Theorem 2.5.2 exp is injective, so from (3.2) we obtain a linear equation:

Y1 + Y2 + Y3 + [X1, Y1] + [X2,
1

2
Y2 + Y3] = Z. (3.3)

Now we exploit the fact that V1 is spanned by X1 and X2: the point is that, since
Vs = [V1, Vs−1] any Z ∈ Vs can be expressed as:

Z = [X1,W1] + [X2,W2].

With this in mind, our strategy to find solutions for (3.3) is to solve the system:
Y1 + Y2 + Y3 = 0

Y1 = W1

1
2
Y2 +W2 = W3,

whose (only) solution is Y1 = W1, Y2 = −2W1 − 2W2, Y3 = W1 + 2W2.
Now that we ensured the existence of a solution (Y1, Y2, Y3) for any given Z ∈ Vs to (3.2),
suppose we are given some h ∈ exp(Vs). If Z ∈ Vs is such that h = exp(Z), then ∀ϵ > 0
we have δϵ(h) = exp(δϵ(Z)) = exp(ϵsZ). As (3.3) is linear, (ϵsY1, ϵ

sY2, ϵ
sY3) is a solution

for (3.3) when we replace Z with ϵsZ, resulting in the statement of the lemma. □



3.4 Reduction to Carnot groups

We are now ready to prove Theorem 3.1.1.

Recall that the tangent space to a sub-Riemannian manifold (M,∆) at one of its equireg-
ular points is a Carnot group by Theorem 2.5.8. In this case, we are able to perform a
“blow-up" procedure (as described in [18]) and reduce ourselves to considering the same
problem in the tangent space (which is a Carnot group), because “blow-ups" of length
minimizing curves with a corner-type singularity also are length minimizing and with a
corner-type singularity, see [10], p.39. However, if some points of M are singular, then we
first need a desingularization procedure.
Let γ be a curve in M , and suppose that ∆ is generated by the orthonormal vector fields
X1, ..., Xr near γ(0). As shown in [10], p.49, there exist an equiregular sub-Riemannian
manifold N , with an orthonormal frame ξ1, ..., ξr and a map π : N −→ M onto a neigh-
borood of γ(0) such that π∗ξi = Xi for i = 1, ..., r.

Assume that γ is length minimizing, it has a corner-type singularity at 0 and it is con-
tained in π(N). Write γ̇ =

∑r
j=1 ujXj a.e. for suitable functions uj, and let be σ a curve

in N such that σ̇ =
∑r

j=1 ujξj: hence γ = π ◦ σ and the curves σ and γ have the same
length (see [10],p.39-40, [18]). We are now done as:

• Since π does not alter distances, we deduce that σ also has to be a length minimizer.

• Considering that the projection map π is C∞ smooth, and γ = π ◦ σ, since by
assumption γ has a corner-type singularity, then so has σ, which however has values
in an equiregular manifold N .

For this reasons we can reduce to the case of a Carnot group.

3.5 The inductive non-minimality argument

As we saw it is sufficient to consider the case of a Carnot group G. We can also assume
that G has rank 2: indeed, any corner is contained in a Carnot subgroup of rank 2, and if
a corner is length minimizing among all the horizontal curves with image in G (with the
same endpoints), then it is among the curves with image in any subgroup of G.

As we anticipated, we prove the result by induction on the step s of G. Lemma 3.3.2 is
the base of the induction.

Let G a Carnot group be a rank-2 Carnot group of step s with a Carnot–Carathéodory dis-
tance coming from a strictly convex norm. Consider the corner from exp(X1) to exp(X2),
for some linearly independent X1, X2 ∈ V1, |X1| = |X2| = 1.
As in Lemma 3.3.3, we take the quotient with respect to the central subgroup exp(Vs),
and we get a new Carnot group of step s − 1, whose first layer is isometric to the first



layer of G. Since the projection of our corner is still a corner, by Lemma 3.3.3 there is an
h ∈ Vs such that:

d(h · exp(X1), exp(X2)) < |X1|+ |X2| = 2.

By Lemma 3.3.4, there exist Y1, Y2, Y3 ∈ Vs−1 satisfying:

(δϵ(h))
−1Cexp(X1)(ϵ

sY1) · Cexp( 1
2
X2
(exp(ϵsY2)) · Cexp(X2)(exp(ϵ

sY3)) = e. (3.4)

Similarly as to what we did proving Lemma 3.3.2, we claim that a set of points g1, ..., g7
is such that both

exp(X2) = exp(X1)g1...g7 (3.5)

and
7∑

j=1

d(e, gj) < 2. (3.6)

If (3.5) and (3.6) hold, the thesis would follow by left invariancy and triangular inequality
as for proving 3.3.2. We fix ϵ > 0, and we choose the following points:

g1 = exp(ϵsY1) = δϵs/(s−1)(exp(Y1)),

g3 = exp(−ϵX1)δϵ(h)
−1 exp(X2),

g5 = exp(ϵsY2) = δϵs/(s−1)(exp(Y2)),

g7 = exp(ϵsY3) = δϵs/(s−1)(exp(Y3)),

g2 = exp((−1− ϵ)X1) = δ1−ϵ(exp(−X1)),

g4 = exp((
1

2
− ϵ)X2) = δ 1

2
−ϵ(X2),

g6 = exp(
1

2
X2) = δ 1

2
(exp(X2)).

The elements indicized by odd numbers correspond to movements in the directions of the
Yi, i = 1, 2, 3, while the other ones are scalings of X1 and X2. We first show (3.5). An
explicit calculation yields:

exp(X1)g1...g7 = exp(X1) exp(ϵ
sY1) exp(−(1− ϵ)X1) exp(−ϵX1)δϵ(h)

−1·
exp(ϵX2) exp((

1
2
− ϵ)X2) exp(ϵ

sY2) exp(
1
2
X2) exp(ϵ

sY3) · [exp(−X2) exp(X2)].

(3.7)

Recalling that h ∈ Z(G) (and so is δϵ(h)), thanks to the Baker-Campell-Hausdorff formula
and the fact that ∀X ∈ g we have [X,X] = 0, we are able to rewrite (3.7) in terms of
conjugations as:

δϵ(h)
−1Cexp(X1)(exp(ϵ

sY1))Cexp( 1
2
X2)

(exp(ϵsY2))Cexp(X2)(ϵ
sY3) exp(X2). (3.8)

Now we exploit how we defined the Yi, i = 1, 2, 3, in the beginning: (3.8) simplifies to
exp(X2) and (3.5) is proved. To prove (3.6), we use the fact that the points gj, j = 1, ..., 7,



are all dilations of some fixed points: we have

d(e, g1) = ϵs/(s−1)d(e, exp(Y1)),

d(e, g2) = 1− ϵ,

d(e, g3) = ϵd(e, exp(−X1)h
−1 exp(X2)) = ϵd(h exp(X1), exp(X2)),

d(e, g4) =
1

2
− ϵ,

d(e, g5) = ϵs/(s−1)d(e, exp(Y2)),

d(e, g6) =
1

2
,

d(e, g7) = ϵs/(s−1)d(e, exp(Y3)).

Summing all the above distances we obtain

7∑
j=1

d(e, gj) = 2− (2−D)ϵ+ o(ϵ), (3.9)

where D = d(h · exp(X1), exp(X2)).

By our choice of h, we have that 2 − D > 0. Hence letting ϵ → 0+ we can make
the quantity in (3.9) strictly less than 2. Formula (3.6) is now proved, and so is Theorem
3.1.1.
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