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Preface

The concept of “geodesic” or, rather, of curve that minimizes the length be-
tween two points in a given metric space is easily perceived by intuition and widely
used also outside mathematical contexts. Due to its relevance (think just of its role
in General Relativity) the topic is broadly studied and subject to intense analysis.
Its mathematical formalizations are performed by means of variational principles
or through differential equations - whose solution is in general rather implicit. In
this thesis, we study such curves in what are called sub-Riemannian manifolds.

The basic idea that leads to the definition of a sub-Riemannian structure is
the following: given a smooth manifold M and a smooth subbundle D of TM -
equivalently called smooth distribution - one is interested in studying curves on M
whose tangent vector is prescribed to lay on D. Such curves are called D-horizontal
or just horizontal when D is understood. For example, given X1, . . . Xm smooth
linearly independent vector fields in Rn, one may want to study curves whose
tangent vector lies in D = spanR{X1, . . . , Xm}. If D is bracket-generating, and G is
a metric on D, (M,D, G) is naturally a length space and it is possible to speak about
length-minimizing curves. The limiting situation when D = TM coincides then
with the Riemannian case. For introductory texts in sub-Riemmanian geometry
together with problems and applications, we refer to [1], [2] and [3].

When formalizing the problem, the required basic regularity of a candidate
length-minimizing horizontal curve γ : [a, b] → M connecting two fixed points is
the Lipschitz regularity (some authors, for example Liu and Sussmann in [4] only
require the absolute continuity of γ but there is no substantial difference in this
choice). Now, one of the fundamental aspects of Riemannian geodesics is that they
turn out to be always C∞-smooth. This follows, for example, because they satisfy
the geodesic differential equation, which is a classical ODE with smooth coefficients
(see [5]) so it is natural to ask whether this is true also in sub-Riemannian manifolds.
The question has turned to be surprisingly difficult to answer - in fact, at the present
time there is no answer at all. On one hand, we do not know of any example of
nonsmooth length-minimizing curve for a sub-Riemmanian manifold, on the other
hand we have no general regularity theorems.

What really makes the difference with the classical Riemannian case is the fact
that, when characterizing length-minimizing horizontal curves as minimizers of a
length functional subject to the necessary constraints, the problem is no longer in
the domain of the classical Calculus of Variations but in the more general setting
of Control Theory. As is well-known (see [6] as a reference text), Euler-Lagrange
equations are replaced by the Pontryagin Maximum Principle, which, as the Euler-
Lagrange equations do, define the class of extremal curves (shortened extremals)
that is, a set of horizontal curves among which it is possible find length-minimizers.
Among these, in many cases it is possible to find a subset of critical extremals,
named abnormal extremals, that can contain curves which are nonsmooth in some
cases (non C∞, non Ck and so on) and length-minimizing in others. We will see
examples of both cases. Abnormal extremals never occur when the sub-Riemannian
manifold is effectively a Riemmanian manifold.
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viii PREFACE

The problem of characterizing the regularity of length-minimizing curves has
led to many studies and research for minimality criteria, we cite again [4] and
also [7] for a survey on regularity results. In this thesis we deal with necessary
conditions that length-minimizing curves must satisfy based on the analysis of the
End-Point Mapping. Loosely speaking, given a reference horizontal curve γ, this
map measures “variations” both in length and in end-point of a curve obtained
by perturbating the tangent vector of γ. Exploiting the fact that, if γ is length-
minimizing, it cannot be open at γ̇, one deduces several necessary conditions for
abnormal length-minimizing curves to satisfy. After examining known results (the
so-called first and second-order conditions) we derive new necessary conditions for
minimality. Our contribution can be considered an introduction to third-order
conditions and it is inspired by the approach to second-order conditions presented
in [8].

In Chapter 1 we give the notion of sub-Riemanninan manifold (M,D, G), a
triple consisting of a smooth manifold M , a m-dimensional smooth distribution D
of TM and of a metric G on D. We strongly emphasize the case when the manifold
is the Euclidean space Rn. In this case, it is possible to think of D as spanned
by m linearly independent vector fields on Rn. Then, we give the definition of D-
horizontal curve. If D is bracket-generating, (M,D, G) is naturally a length space
and we can therefore talk about length-minimizing horizontal curves. We show that
it is possible to characterize such class of curves in terms of minimizers of a control
problem and invoke the Pontryagin Maximum Principle, that leads to the definition
of extremal curve.

Extremals divide between normal and abnormal. We prove that normal ex-
tremals are essentially “Riemanninan geodesics”, in the sense that, due to the fact
that they are characteristic curves of a classical Hamiltonian function, they are all
C∞-smooth and locally length-minimizing.

In Chapter 2 we deal with rank-two distribution on the Eucidean space. We
review some criteria concerning minimality and regularity, we provide examples of
nonsmooth abnormal extremals and we present a class of distributions that admit
a strictly abnormal length-minimizing curve.

In Chapter 3 we introduce the End-Point Mapping F , and we prove two groups
of necessary conditions for length-minimizing curves. The first one is precisely the
thesis of the Maximum Principle, and since it is related with first-order derivatives
of F it assumes the name of first-order conditions. The fundamental tool to deduce
these conditions is the Open Mapping Theorem. In the same spirit, since a second-
order Open Mapping Theorem is available (it is stated in Appendix B and taken
from [8]) it is possible to deduce further necessary conditions based on second-order
derivatives of F , and, from these, a very neat result, called the Goh Condition,
which states that rank-two distributions do not admit strictly abnormal length-
minimizing curves.

Inspired by the above approach, in Chapter 4 we prove a third-order Open
Mapping Theorem useful for our purposes. The basic step consists in dealing with
the finite-dimensional, corank-one case, namely with a map F : RN → Rn with
F (0) = 0 and such that corank dF (0) = dim Coker dF (0) = 1. If suitable conditions
involving the Hessian and the third derivatives of F at 0 are satisfied, then the
map will be open at 0. From this case analogous theorems valid in more general
settings (arbitrary corank and infinite-dimension domain) are easily deduced. We
finally present the effectiveness of this theorem to our situation by proving that a
particular extremal is not length-minimizing.
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More precisely, we consider the family of distributions D = D(m) in R3 spanned
by the vector fields X1 and X2 given by

X1 =
∂

∂x1

X2 = (1− x1)
∂

∂x2
+ xm1

∂

∂x3

for any x in R3, where m is a positive integer greater or equal than 2. It will be
proved that the segment γ long the x2 axis:

γ(t) = (0, t, 0)

is, for any m, a strictly abnormal curve for D(m), but it is not length-minimizing
at 0 when m = 3. Interestingly, the same curve is uniquely length-minimizing at 0
whenever m is even (this result is proved in Chapter 2).

According to our knowledge of the subject, we do not know any alternative
way of proving this result.
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venuto meno in questi anni. Grazie a loro ho potuto dedicarmi allo studio senza
ulteriori pensieri e trovare sempre, al ritorno da Padova, un’atmosfera d’affetto e
amorevoli cure.

Padova, September 2014 Francesco Palmurella





Notation and Conventions

We establish some notation about vector spaces and differential operators that
we will be using in the following chapters.

0.0.1. Duality, Coimage and Cokernel. Given a real vector space V , we
denote the action of covectors over vector with 〈·, ·〉 so that, if v is a vector in V
and ξ a covector in V ∗, the action of ξ over v is denoted by 〈ξ, v〉.

Given a linear mapping between real vector spaces L : X → Y , we recall the
definitions of Cokernel and Coimage:

CokerL =Y/ ImL

CoimL =X/KerL.

As is well-known from elementary linear algebra, there is a canonical isomor-
phism between CokerL and the complementary subspace of ImL in Y and between
CoimL and the complementary subspace of KerL in Y . We shall identify these
isomorphic spaces, so that

X = KerL⊕ CoimL and Y = ImL⊕ CokerL.

The dimension of CokerL is called corank of L.
Finally, when Y = Rn, we have an isomorphism

(ImL)⊥ ' CokerL

given by the standard scalar product, which, in coordinates, consists in the
transposition of a column vector to a row vector and vice-versa.

0.0.2. Derivatives and Differentials. If X and Y are real normed spaces,
F : X → Y is a mapping, p and v are vectors of X, the derivative of F at p along
v, provided it exists, is denoted as usual by ∂F

∂v (p).
If F is differentiable at p, its differantial or total derivative at p is denoted by

dF (p). When evaluating the differential at p on a vector v in X, we write dF (p)[v]
or sometimes 〈dF (p), v〉 in accordance with the notation introduced above. Sim-
ilarly, we denote by d2F (p), d3F (p), . . . the differential of higher order of F at p
provived they exists. When F is of class Cj , for j ≥ 2, djF (p) is a j-linear and sym-
metric operator, so we shorten expression like djF (p)[v, v, . . . , v] with djF (p)[vj ]
or djF (p)[v, v, . . . , v, w] with djF (p)[vj−1, w]. We say that F is “smooth” when
is of class C∞, that is, djF exists for any positive integer j and are continuous
mappings. When X = RN and Y = Rn it is possible to talk about Jacobian matrix
at a point p, which we denote by DF (p).

We denote by HessF (p) the Hessian of F at p, namely the quadratic form
defined for any v in X as

HessF (p)[v] = d2F (p)[v, v].

For more notational conventions about the Hessian see Appendix B.

xi



xii NOTATION AND CONVENTIONS

When F is “time-dependent”, that is, its domain is [a, b] × X for some real
interval [a, b], or it is a curve, we prefer to denote the derivative with repsect to

t ∈ [a, b] with Ḟ , instead of ∂F
∂t .

Finally, a point p is critical for F if dF (p) is not surjective as a linear mapping
from X to Y .

0.0.3. Commutators. Given a smooth n-dimensional manifold M and two
smooth vector fields X and Y , their Commutator, or Lie Bracket, is the vector field
defined by

(0.1) [X,Y ] = XY − Y X.
When M = Rn, or in local coordinates, vector fields can be regarded as func-

tions from Rn to Rn and we have the following formula:

(0.2) [X,Y ](p) = dY (p)[X(p)]− dX(p)[Y (p)]

for any p in Rn or the local chart. To deduce it it is sufficient to compute (0.1)
in coordinates.

0.0.4. Curves on the Cotangent Bundle. Given a curve over the Eu-
clidean space γ : [a, b] → Rn, we denote its components by (γ1(t), . . . , γn(t)). A
curve in the cotangent space along γ, λ : [a, b]→ T ∗Rn is typically identified with
its fibered components, denoted with λ(t) = (λ1(t), . . . , λn(t)). If X is a vector
field on Rn, the action of λ along X is denoted by

〈λ(t), X(γ(t))〉 =

n∑
i=1

λi(t)Xi(γ(t))

in accordance with the above notation.



CHAPTER 1

Sub-Riemannian Geometry and Extremal Curves

We introduce sub-Riemannian manifolds and the notion of extremal curve.
Though most of the concepts in this chapter are suitable for a generic smooth
manifold M , we are interested in a local analysis of these objects and so we will
emphasize the case M = Rn. For a more detailed introduction to sub-Riemannian
geometry together with problems and applications, we refer to [1], [2] and [3].

Definition 1.1. Let m,n be positive integers with m ≤ n and let M be a
smooth manifold of dimension n. A smooth distribution of dimension m, D, is a
m-dimensional smooth subbundle of TM , that is, a map that assigns to each p in
M a dimensional subspace of TpM of dimension m such that, for any point p, it is
possible to find a local basis for D consisting of m smooth vector fields X1, . . . , Xm

that span D in a neighborhood of p.

When M = Rn, it is possbile to choose a global basis and so we may directly
speak of distribution spanned by X1, . . . , Xm.

We define by induction the following subbundles of TM : D1 = D and, if
i ≥ 1, Di+1 is the linear subspace spanned by the commutators (see Notation and
Conventions, 0.0.3) of D and Di. For example, if X1 . . . Xm is a local basis for D,
we have the following local expression for D2:

D2 = spanR{[Xi, Xj ] : 1 ≤ i, j ≤ m}
and for D3:

D3 = spanR{[Xi, [Xj , Xk]] : 1 ≤ i, j, k ≤ m}.
We set for i ≥ 1 Li = D1 + . . . + Di and for p in M , Di(p) and Li(p) the sets

of vectors in TpM belonging to Di and Li respectively.
D is called bracket-generating, or completely non-integrable, if for all p ∈ M

there exists a positive integer k = k(p) such that Lk(p) = TpM . The minimum k
for which Lk(p) = TpM for any p in M is called step of the distribution D.

Definition 1.2. Let I = [a, b] be a connected, compact interval of R. A
Lipschitz-continuous curve γ : I → M is said to be D-horizontal, or simply hor-
izontal when D is understood, if its tangent vector γ̇(t) belongs to D for a.e.
t in I. In local coordinates, this means that we have a m-tuple of functions
h = (h1, . . . , hm) ∈ L∞([a, b],Rm), called control of γ, such that

(1.1) γ̇(t) =

m∑
j=1

hj(t)Xj(γ(t)) for a.e. t ∈ I.

Recall that a metric on a bundle D ⊆ TM is a 2−covariant, strictly positive
and symmetric tensor on D. In other words, it is a differentiable function p 7→
Gp(·, ·) from M to D∗ ⊗D∗ such that Gp(v, w) = Gp(w, v) and Gp(v, v) ≥ 0 for all
v, w ∈ TpM and Gp(v, v) = 0 if and only if v = 0.

1



2 1. SUB-RIEMANNIAN GEOMETRY AND EXTREMAL CURVES

Definition 1.3. A sub-Riemannian manifold is a triple (M,D, G) where M is
a smooth manifold, D is a bracket-generating distribution of TM and G is a metric
on D.

The tensor G induces a norm on D, called sub-Riemannian norm induced by
G, defined for any v ∈ TpM by

||v||G = Gp(v, v)1/2.

Given a D-horizontal curve γ : [a, b] → M , we define for any l ∈ [1,∞] its
sub-Riemannian l-length as

lengthl(γ) =
∥∥∥||γ̇||G∥∥∥

Ll[a,b]
=


(∫ b

a
||γ̇(t)||lGdt

)1/l

if l <∞
esssupt∈[a,b] ||γ̇(t)||G if l =∞.

It is now natural to give the following definition.

Definition 1.4. Given a sub-Riemannian manifold (M,D, G), the sub-Rieman-
nian l-distance on M is defined for every x0, x1 in M as the nonnegative real num-
ber, or possibly +∞, given by

dl(x0, x1) = inf{ lengthl(γ) : γ : [a, b]→M is D-horizontal

and such that γ(a) = x0, γ(b) = x1}.

Similarly, one may define

dAL(x0, x1) = inf{T : γ : [0, T ]→M is D-horizontal,

parametrized by arc-length and

such that γ(a) = x0, γ(b) = x1}.
The following neat theorem holds.

Theorem 1.5. For any points x0, x1 in M and for any l in [1,∞] the equality
dl(x0, x1) = dAL(x0, x1) holds. When the infimum is actually a minimum, it is
achieved by the same, possibly reparametrized, horizontal curve.

Proof. We follow [1]. Given a D-horizontal curve γ : [a, b]→M with γ(a) =
x0 and γ(b) = x1, Hölder inequality yields, for any l, length1(γ) ≤ lengthl(γ) ≤
length∞(γ), so d1(x0, x1) ≤ dl(x0, x1) ≤ d∞(x0, x1).

Next, if γ : [0, T ] → M is parametrized by arc-length, define γ̄ : [0, 1] → M
as γ̄(t) = γ(Tt) for any t ∈ [0, 1]. This curve is D-horizontal and has the same
extremal points of γ. Moreover

|| ˙̄γ||G = T ||γ̇||G = T

so length∞(γ̄) = T . Since γ is arbitrary this yields d∞(x0, x1) ≤ dAL(x0, x1).
Since anyD-horizontal curve can be parametrized by arc-length, the same procedure
implies the converse inequality. Thus d∞(x0, x1) = dAL(x0, x1).

We just need to prove that d∞(x0, x1) ≤ d1(x0, x1) to conclude. To this aim,
given an arbitraty D-horizontal curve γ : [a, b]→M with γ(a) = x0 and γ(b) = x1,
we want to construct another D-horizontal curve γ̄ defined in the same interval
and with the same extremal points such that length∞(γ̄) = length1(γ). Passing
to the infimum over all the admissible curves will lead the desired inequality. We
suppose for simplicity that [a, b] = [0, 1], the general case is similar. We also assume
length1(γ) > 0. Let φ : [0, 1]→ [0, 1] be the function defined by

φ(t) =
1

length1(γ)

∫ t

0

||γ̇(t)||Gdt.
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This function is surjective, hence it has a right inverse, namely the function ψ
given by

ψ(s) = inf{t ∈ [0, 1] : φ(t) = s}
which is monotone and hence differentiable almost everywhere. Moreover, as

φ is by construction absolutely continuous it maps sets of measure zero into sets of
measure zero, so, differentiating the identity φ(ψ(s)) = s that holds for every s in

[0, 1], we conclude that 1 = φ̇(ψ(s)) ˙ψ(s) for almost every s. We define γ̄ : [0, 1]→M
as γ̄(s) = γ(ψ(s)). This curve is a riparametrization of γ so it is D-horizontal and
has tha same extremal points of the original curve. We compute its∞-length (keep
in mind that the expressions below are defined almost everywhere):

length∞(γ̄) = esssup
s∈[0,1]

|| ˙̄γ(s)||G = esssup
s∈[0,1]

||ψ̇(s)γ̇(ψ(s))||G

= esssup
s∈[0,1]

(
|ψ̇(s)| ||γ̇(ψ(s))||G

)
= esssup

s∈[0,1]

(
1

|φ̇(ψ(s))|
||γ̇(ψ(s))||G

)
= esssup

s∈[0,1]

(
length1(γ)

||γ̇(ψ(s))||G
||γ̇(ψ(s))||G

)
= length1(γ).

This proves the theorem. �

We shall henceforth indifferently denote by d(·, ·) the various distances and
call it the sub-Riemannian distance on (M,D, G). We recall (see, for example,
Belläıche’s article in [3]) that, since D is bracket-generating, the Chow-Rashevskii
Theorem guarantees that if x0 and x1 belong to the same connected component of
M then the distance between them is always finite, that is, there is always at least
a horizontal curve connecting x0 and x1.

Definition 1.6. Given two points x0, x1 that belong to the same connected
component of M , we call length-minimizing curve from x0 to x1 a Lipschitz curve
γ : [a, b]→M such that γ(a) = x0, γ(b) = x1 and d(x0, x1) = length(γ).

Viceversa, a Lipschitz curve γ : [a, b]→M is said to be locally length-minimizing
if for any c ∈ [a, b] there exists a sufficiently small ε > 0 such that γ restricted to
[c− ε, c+ ε] (or [a, a+ ε] if c = a or [b− ε, b] if c = b) is length-minimizing.

If in addition γ is the unique curve that minimizes the distance between the
points, it will be called uniquely (locally) length-minimizing.

Locally length-minimizing curves are often referred to as “geodesics”, especially
in the classical Riemannian case. The Hopf-Rinow Theorem (see again Belläıche
in [3]) ensures that if (M,d) is a complete metric space (and this is the case when
M = Rn), then there always exists a length-minimizing curve connecting x0 and
x1. We are interested in studying locally length-minimizing curves from a control
theoretic point of view, regarding them as the minimizers of the sub-Riemannian
length functional (see the next section). For a different approach involving the
symplectic formalism, see [4].

1.1. Length-minimizing Curves and Extremals

We now make the following assumptions:

Assumptions 1.7. We suppose that

(1) M = Rn and D is spanned by the vector fields X1, . . . , Xm
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(2) The metric G has been chosen so that these vector fields are orthonormal.

In this way, if γ̇ is in the form (1.1), ||γ̇(t))||G is simply |h| and the l-length of
γ is lengthl(γ) = ||h||Ll[a,b].

Remark 1.8. The first assumption is not restrictive since we are interested in
locally length-minimizing curves: if two points x0, x1 are sufficiently close they are
contained in a domain of a single chart, and vice-versa any curve γ : [a, b] → M
can be restricted to a sufficiently small compact subinterval of [a, b] such that its
image is in a single chart.
The second assumption is classical. However note that, given a distribution D in
Rn endowed with a metric G, it is always possible to find a orthonormal frame of
vector fields using the Gram-Schmidt process. It should be pointed though that
choosing a priori which vector fields are orthonormal may impose some restrictions
on G, resulting in a (small) loss of generality. See also Remark 1.12.

Fix two points x0, x1 in Rn. Finding D-horizontal, length-minimizing curves
from x0 to x1 corresponds to the following minimization problem:

(1.2)

Minimize I(γ, h) =

∫ b

a

|h(t)|ldt

with


γ̇(t) =

∑m
j=1 hj(y)Xj(γ(t))

γ(a) = x0

γ(b) = x1

h(·) ∈ L∞([a, b],Rm).

One may note that the functional does not depend directly on the curve γ and
it is possible to express the constraints exclusively by means of integral conditions
over h. It is however more convenient for us to explicitly focus on the couple
(γ, h), since we are in the hypothesis to apply the Pontryagin Maximum Principle
(Theorem A.3 stated in Appendix A), that we restate here adapted to our setting.

Theorem 1.9 (The PMP in the sub-Riemannian case). If (γ, h) is an optimal
pair (that is, γ minimizes the distance bewteen x0 and x1 and has control h) there
is a Lipschitz dual curve λ : [a, b]→ T ∗Rn associated with γ and a constant λ0 ≥ 0
satisfying:

adjoint equation: for a.e. t ∈ [a, b]

(1.3) λ̇(t) = −
m∑
j=1

hj(t)
〈
dXj(γ(t))T , λ(t)

〉
which in components reads

(1.4) λ̇k(t) = −
m∑
j=1

n∑
i=1

hj(t)λi(t)
∂Xji

∂xk
(γ(t)),

minimization: given the Hamiltonian

H′(t, λ0, λ, x, h) =

m∑
j=1

〈λ, hjXj(x)〉+ λ0|h|

for a.e. t ∈ [a, b] there holds

H′(t, λ0, λ(t), γ(t), h(t)) = min
h∈U
H′(t, λ0, λ(t), γ(t), h).
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For l = 2, taking derivatives with respect to h and evaluating in h∗ leads,
after a renormalization of λ0 so that we may suppose λ0 ∈ {0, 1}, to

(1.5) 〈λ(t), Xj(γ(t))〉+ λ0hj(t) = 0 for j = 1 . . .m

for a.e. t ∈ [a, b].
nontriviality: for any t ∈ [a, b]

(1.6) (λ0, λ(t)) 6= (0, 0).

The transversality condition (A.10), being C = 0, is trivial. In Chapter 3 we
will actually prove this version of the PMP, and we will explicitly construct the
dual curve λ.

Definition 1.10. A (non necessarily length-minimizing) horizontal curve γ :
[a, b]→ M with control h is called extremal if there exists a dual curve associated
with γ, λ : [a, b] → T ∗Rn, satisfying the conditions of the Maximum Principle
(1.3)-(1.6) stated above.
If the constant λ0 can be choosen nonzero (and so λ0 = 1 by the renormalization),
the extremal will be called normal, in the opposite case abnormal. A strictly ab-
normal extremal is an extremal such that no associated dual curve can make it a
normal extremal.

Remark 1.11. In the classic Riemannian case, abnormal extremals do not
occur. In fact, since X1(x), . . . , Xn(x) form a basis of TxRn for every x ∈ Rn,
condition (1.5) with λ0 = 0 would imply λ ≡ 0, which is in contrast with the
nontriviality hypotesis.

Remark 1.12. A close inspection of Theorem A.3 reveals that when γ is an
abnormal extremal, the choice of the metric G on D (that is, of the Lagrangian
L(h) = |h|l) is not relevant. Hence, abnormal extremals are independent of the
metric on D. They are somehow intrinsic to D. Moreover, as we will see in a
moment, normal extremals are “easy” and well understood objects, one is really
interested only in studying abnormal extremals.

Given a curve γ : [a, b] → Rn, we say it is smooth, or Ck, or Lipschitz and so
on if there exists a parametrization of γ such that it is smooth, or Ck, or Lipschitz
and so on as a real function. In other words, we are interested in the regularity of
the support of the curve regardless of its parametrization. For example, the curve
defined t ∈ [−1, 1] as γ(t) = (t, |t|) is Lipschitz but not C1 since it has a corner-
type singularity, and no reparametrization can make it a C1 function, while the
curve defined for t ∈ [0, 1] as γ(t) = (

√
t,
√
t) is smooth, since it is just the (badly)

parametrized segment t 7→ (t, t). We are of course interested in the highest possible
regular parametrizations from the point of view of differentiability; constant-speed
parametrizations such as the arc-length parametrization provide such regularity.

1.1.1. Normal Extremals. The theorems presented in this subsection will
tell us that, concerning regularity and minimality, normal extremals are completely
characterized. The key point is the fact that they are (non-null) characteristic
curves of a “classical” smooth Hamiltonian function. In fact, let us consider a
normal extremal γ : [a, b] → Rn with control h and associated dual curve λ. We
define the following Hamiltonian:

(1.7) H(x, λ) = −1

2

m∑
j=1

〈λ,Xj(x)〉2

whose characteristic curves satisfy
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(1.8)

{
ẋ = ∂H

∂λ = −
∑m
j=1 〈λ,Xj(x)〉Xj(x)

λ̇ = −∂H∂x =
∑m
j=1 〈λ,Xj(x)〉

〈
dXj(x)T , λ

〉
.

Now, being λ0 = 1 in (1.5), 〈λ(t), Xj(γ(t)〉 is equal to −hj(t) and so it is
immediate to note that the couple (γ, λ) solves a.e. the Hamilton-Jacobi equations
for H.

Theorem 1.13. Any normal extremal is smooth.

Proof. Using the notation above, H is a smooth function, and so are its partial
derivatives. From this we deduce that γ̇ and λ̇ are Lipschitz-continuous functions.
But then γ and λ are C1 functions. Taking the derivatives of (1.8) again, for the
same reason we find that γ and λ are C2. The procedure continues. �

Theorem 1.14. Any normal extremal is locally uniquely length-minimizing.

Proof. We follow the outline of [4]. We want to prove that, for any fixed
t0 ∈ [a, b], there exists a sufficiently small ε > 0 such that γ is the unique length-
minimizing curve from γ(t0 − ε) to γ(t0 + ε), or from γ(t0) to γ(t0 + ε) if t0 = a, or
from γ(t0 − ε) to γ(t0) if t0 = b. We deal with the case t0 ∈ (a, b), the remaining
two are similar.

We suppose that γ is parametrized by arc-length so that |h| = 1 (if not, we
just reparametrize it). Since (γ, λ) is a characteristic curve of H, H(γ(t), λ(t)) is
constant. But, by condition (1.5) hj(t) = −〈λ(t), Xj(γ(t))〉 for j = 1, . . . ,m and
so

H(γ(t), λ(t)) ≡ −1/2

for all t in [a, b].
Let x0 = γ(t0) and λ(t0) = λ0. Now comes a central claim:

Claim. There exists an open neighborhood V of x0 in Rn, a 1-form λ = λ(x)
defined on V and a small ε > 0 such that

(1) λ(γ(t)) is the dual curve algong γ, λ(t), for any t in [t0 − ε, t0 + ε]
(2) λ is exact, that is, there is a real valued smooth function f defined on V

such that df = λ
(3) for any x in V

m∑
j=1

〈λ(x), Xj(x)〉2 = 1.

In other words, the dual curve λ along γ extends in a convenient way near x0

(whence the same name). This fact will be sufficient to prove both minimality and
uniqueness.

Proof of the claim. Let S be a smooth bounded hypersuperface in Rn such
that x0 ∈ S and S is orthogonal to λ0, which means that Kerλ0 = Tx0S. Using
a suitable renormalization of the covector field orthogonal to S, we take a nonzero
form defined on S, ξ : S → T ∗Rn such that it is orthogonal to all points of S
(Ker ξ(p) = TpS for all p in S), ξ(x0) = λ0 and H(p, ξ(p)) = −1/2 for all p in S.

Now, for a fixed p ∈ S, consider the characteristic curve (γp, λp) of H through
(p, ξ(p)) at t0, that is, the solution to the Cauchy problem

γ̇p = ∂H
∂λ (γp, λp)

λ̇p = −∂H∂x (γp, λp)

γp(t0) = p

λp(t0) = ξ(p)



1.1. LENGTH-MINIMIZING CURVES AND EXTREMALS 7

Note in particular that (γx0
, λx0

) is the normal extremal (γ, λ). Since S̄ is compact,
there exists a sufficiently small δ > 0 such that, for any p, any (γp, λp) is defined in
(t0−δ, t0+δ). We then define the following flow mapping Φ : (t0−δ, t0+δ)×S → Rn

Φ(t, p) = γp(t).

Now, fix a basis v1, . . . , vn−1 of Tx0S. Being Φ(t0, p) = p for all p in S, it is

∂Φ

∂vi
(t0, x0) = vi i = 1, . . . , n− 1.

Moreover

∂Φ

∂t
(t0, x0) =

d

dt
γx0(t)

∣∣∣∣∣
t=t0

= λ0

and λ0 is orthogonal to Tx0
S.

It follows that the vectors ∂Φ
∂t (t0, x0), ∂Φ

∂v1
(t0, x0), . . . , ∂Φ

∂vn−1
(t0, x0) are linearly inde-

pendent and so det dΦ(t0, x0) is not zero, which means that Φ is a local diffeomor-
phism at (t0, x0). Possibly shrinking δ and S, we deduce that Φ is a diffeomorphism
from U = (t0−δ, t0+δ)×S onto its image V = Φ(U) which is an open neighborhood
of x0. The inverse function Φ−1 : V → U must then be of the form Φ−1 = (f, F ),
where f is a smooth real-valued function such that, for all t in (t0 − δ, t0 + δ) and
p in S

(1.9) f(γp(t)) = t.

Now, any x in V is of the form x = γp(t) for a unique couple (t, p), so we define
the 1-form λ of the claim on V by setting λ(γp(t)) = λp(t).With this definition,
condition (1) of the claim is satisfied.

Condition (2) is then equivalent to

(1.10) λp(t) = df(γp(t))

for all (t, p) in (t0 − δ, t0 + δ) × S. We want to prove this. In the process of
doing so also condition (3) will be proved.

Define the vector field X on V by setting

(1.11) X(γp(t)) = γ̇p(t) =
∂H

∂λ
(γp, λp) =

m∑
j=1

〈λp(t), Xj(γp(t))〉Xj(γp(t)).

The functions defined on V (that extend the control of γ on V ) by

hj(γp(t)) = 〈λp(t), Xj(γp(t))〉
do satisfy

(1.12)

m∑
j=1

hj(γp(t))
2 =

m∑
j=1

〈λp, Xj(γp)〉2 = 1

for any (t, p) ∈ (t0 − δ, t0 + δ) × S, since H is constant along its Hamiltonian
flow and the equality is true when p = x0. This in particular proves condition (3).

We set St = {x ∈ V : f(x) = t}. Note in particular that St0 = S and that, Φ
being a flow, for any t in (t0 − δ, t0 + δ) Φ(t, ·) = Φt is a diffeomorphism from S
onto St. Fix an arbitrary v0 in TpS, and define v(t) = dΦt(p)[v0] ∈ TΦt(p)St. The
function φ defined for t ∈ (t0 − δ, t0 + δ) by
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(1.13) φ(t) = 〈λp(t), v(t)〉
satisfies φ(t0) = 〈λ0(p), v0〉 = 〈ξ(p), v0〉 = 0. Its derivative is

(1.14) φ̇ = 〈λ̇p, v〉+ 〈λp, v̇〉 .
We focus on the first term. Differentiating with respect to xi for i = 1, . . . , n

(1.12) we deduce that, on V

(1.15)

m∑
j=1

hj
∂hj
∂xi

= 0.

We define the Hamiltonian K on V (that is, on T ∗V ) by K(x, λ) = 〈λ,X(x)〉
(recall that X is defined in 1.11) and we note that characteristic curves of H with
range in V are also characteristic curves of K, that is the satisfy the ODE{

γ̇ = ∂K
∂λ (γ, λ)

λ̇ = −∂K∂x (γ, λ).

In fact, the first equation follows immediately from the definition of the vector
field X; as for the second one, we differentiate and use (1.15):

∂K

∂xi
=

m∑
j=1

(
∂hj
∂xi

hj + hj

〈
λ,
∂Xj

∂xi

〉)

=

m∑
j=1

hj
∂Xj

∂xi
=
∂H

∂xi
.

We conclude that λ̇p = −∂K∂x (γp, λp) = −〈λp, DxX(γp)〉 and so the first term
of equation (1.14) becomes

(1.16) 〈λ̇p, v〉 = −〈λp, dxX(γp)[v]〉 .
We study on the second term of (1.14). We compute v̇:

v̇ =
d

dt
dpΦt(p)[v0] = dp

(
d

dt
Φt(p)[v0]

)
= dp(X(Φt(p))[v0]

= dxX(Φt(p))[dpΦt(p)[v0]] = dxX(Φt(p))[v].

Thus, 〈λp, v̇〉 = 〈λp, dxX(Φt(p))[v]〉. Together with (1.16) it leads φ̇ = 0 and
since φ(t0) = 0, φ identically vanishes. By looking at the definition of φ in (1.13),
λp must be orthogonal to v(t) in TΦt(p)St for any choiche of the tangent vector
v0 ∈ TpS. This means that λp is orthogonal to Tγp(t)St, and since df is orthogonal
to the same space, we conclude that there exists a real function β on V such that

df(γp) = β(γp)λp.

To prove that β is identically 1, differentiate with respect to t equation (1.9)
and use relation (1.12) to find

1 = df(γp)[γ̇p] = 〈df(γp), X(γp)〉

=

〈
β(γp)λp,

m∑
j=1

〈λp, Xj(γp)〉Xj(γp)

〉
= β(γp).
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This concludes the proof of condition (3) and of the claim.

Proof of the local minimality. Fix any ε ∈ (0, δ), consider tha restriction of γ
to [t0− ε, t0 + ε] and let γ̄ : [t0− ε, t0 + ε]→ Rn be a competitor for γ, that is, a D-
horizontal curve such that γ̄(t0) = x0, γ̄(t0−ε) = γ(t0−ε) and γ̄(t0 +ε) = γ(t0 +ε).
We may suppose that the support of γ̄ is in V . If h̄ = (h̄1, . . . , h̄m) is the control
of such curve, its length is

length(γ̄) =

∫ t0+ε

t0−ε
|h̄(t)|dt.

By definition of f (see equation (1.9)), and since γ is parametrized by arc-
length, we have that length(γ) = 2ε = f(γ(t0 + ε))− f(γ(t0 − ε)) = f(γ̄(t0 + ε))−
f(γ̄(t0 − ε)). Denoting by Xj(γ̄(t))(f) the action of Xj on f at the point γ̄(t) as a
differential operator, by the Cauchy-Schwartz inequality it follows that

length(γ) =

∫ t0+ε

t0−ε

d

dt
f(γ̄(t))dt

=

∫ t0+ε

t0−ε
df(γ̄(t))[ ˙̄γ(t)]dt =

∫ t0+ε

t0−ε

m∑
j=1

h̄jXj(γ̄(t))(f)dt

≤
∫ t0+ε

t0−ε
|h̄|

 m∑
j=1

(Xj(γ̄(t))(f))2

1/2

dt = length(γ̄)

(1.17)

Where the last equality is just the application of condition (2) of the claim.
This proves the minimality of γ.

Proof of the uniqueness. We finally want to prove that, if length(γ) = length(γ̄)
then the two curves coincide over [t0 − ε, t0 + ε]. Define the 1-form along γ̄ as
λ̄(t) = λ(γ̄(t)). Since both (γ, λ) and (γ̄, λ̄) take the same value on t0 − ε, it is
sufficient to prove that (γ̄, λ̄) is a characteristic curve of the Hamiltonian H defined
in (1.7).

Starting from (1.17), since we assume length(γ) = length(γ̄) the Cauchy-
Schwartz inequality is actually an equality, so there must be a real-valued function
s = s(t) such that

h̄j = sXj(γ̄)(f) = s 〈λ(γ̄), Xj(γ̄)〉 j = 1, . . . ,m

where the last equality follows from (1.10). Since length(γ̄) = length(γ) = 2ε,
it is possible to assume that γ̄ has unitary speed, i.e. |h̄|=1, and so the above
equation together with condition (3) of the claim implies s = 1. This leads to
˙̄γ = ∂H

∂λ (γ̄, λ̄).
As for the dual curve, we compute:
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˙̄λi =
d

dt

∂f

∂xi
(γ̄) =

n∑
k=1

∂2f

xkxi
(γ̄) ˙̄γk

=

m∑
j=1

n∑
k=1

∂2f

xixk

〈
λ̄, Xj

〉
Xjk(γ̄)

=

m∑
j=1

n∑
k=1

∂λ̄k
∂xi

〈
λ̄, Xj

〉
Xjk(γ̄)

=

m∑
j=1

〈
λ̄, Xj

〉〈 ∂λ̄

∂xi
, Xj

〉
(γ̄).

(1.18)

If we differentiate with respect to xi condition (3) of the claim we obtain

m∑
j=1

〈
λ̄, Xj

〉(〈 ∂λ̄

∂xi
, Xj

〉
+

〈
λ̄,
∂Xj

∂xi

〉)
= 0

which, evaluated in γ̄ and combined with (1.18) lead eventually to

λ̄i = −
m∑
j=1

〈
λ̄, Xj(γ̄)

〉〈
λ̄,
∂Xj

∂xi
(γ̄)

〉
= −∂H

∂xi
(γ̄, λ̄)

which proves that (γ̄, λ̄) is a characteristic curve of H, and hence completes the
proof of the theorem. �

1.1.2. Abnormal Extremals. For abnormal extremals the situation is quite
different. First of all, a general regularity result analogous to Theorem 1.13 cannot
hold.

Example 1.15. Let M = R5 and D be the rank-two distribution spanned by

X1(x) =
∂

∂x1

X2(x) =
∂

∂x2
+ x1

∂

∂x3
+ x5

1

∂

∂x4
+ x1x

5
2

∂

∂x5

A straightforward computation proves that it is bracket generating of step 5.
If γ : I → Rn is an D-horizontal curve with control h = (h1, h2), i.e.

γ(t) = h1(t)X1(γ(t)) + h2(t)X2(γ(t)) for a.e t ∈ I

clearly then h1 = γ̇1 and h2 = γ̇2. The remaining components γ3, γ4 and γ5 are
determined by γ1 and γ2. The curve γ : [0, 1]→M defined by{

γ1(t) = t

γ2(t) = t4/3

is an abnormal extremal with dual curve λ(t) = (0, 4
5 t

5, 0, 1
5 ,−1). Since it is

nonsmooth, by Theorem 1.13 γ must be strictly abnormal. On [7], through lengthy
and difficult calculations it is proved that the curve is not length-minimizing at the
singular point t = 0.

Remark 1.16. Many examples of this kind can be obtained using the tech-
niques presented in section 2.2 of the following chapter.
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However, strictly abnormal extremals can be length-minimizing. In Section
2.4 of Chapter 2 we will discuss a detailed example of a strictly abnormal, length-
minimizing smooth curve. The question on whether nonsmooth length-minimizing
curves (thus necessarily abnormal extremals) exist is currently open: at the present
time, no examples of this kind are known but, on the opposite side, authors still have
dot developed a general regularity theory for abnormal length-minimizing curves.





CHAPTER 2

Rank-Two Distributions

In this chapter we deal with rank-two distributions. Our aim is to produce
concrete examples of extremal curves and present some regularity results. Recall
Assumptions 1.7 along with Remarks 1.8 and 1.12.

2.1. Regular Abnormal Extremals

We summarize here the main result obtained by Liu and Sussmann in [4].
Recall formula (0.1) stated in Notation and Conventions and let us consider the
distribution D in Rn spanned by two vector fields X1 and X2 and a Lipschitz D-
horizontal curve γ : [a, b]→ Rn with control h = (h1, h2) as in Definition 1.2. If γ is
an abnormal extremal, then there exists an associated dual curve λ : [a, b]→ T ∗Rn
satisfying, for any t in [a, b]

〈λ(t), X1(γ(t))〉 = 0 j = 1, 2.

Let us differentiate the expression corresponding to j = 1 with respect to t:

0 =
〈
λ̇(t), X1(γ(t))

〉
+ 〈λ(t), dX1(γ(t))[γ̇(t)]〉

=
〈
λ̇(t), X1(γ(t))

〉
+ 〈λ(t), dX1(γ(t))[h1(t)X1(γ(t)) + h2(t)X2(γ(t))]〉

=
〈
λ̇(t), X1(γ(t))

〉
+

h1(t) 〈λ(t), dX1(γ(t))[X1(γ(t))]〉+ h2(t) 〈λ(t), dX1(γ(t))[X2(γ(t))]〉 .

(2.1)

On the other hand, from the adjoint equation (1.3), we deduce

〈
λ̇(t), X1(γ(t))

〉
= −

(
h1(t) 〈λ(t), dX1[X1(γ(t))]〉+

h2(t) 〈λ(t), dX2(γ(t))[X1(γ(t))]〉
)
.

(2.2)

Inserting expression (2.2) in equation (2.1), we get

0 = −h2 〈λ(t), dX2(γ(t))[X1(γ(t))]〉+ h2(t) 〈λ(t), dX1(γ(t))[X2(γ(t))]〉
= h2(t) 〈λ(t),−dX2(γ(t))[X1(γ(t))] + dX1(γ(t))[X2(γ(t))]〉
= −h2(t) 〈λ(t), [X1, X2](γ(t))〉 .

Exactly in the same way, if we differentiate 〈λ(t), X2(γ(t))〉 = 0 we deduce that
h1(t) 〈λ(t), [X1, X2](γ(t))〉 = 0. Since the control h can be choosen to be always
nonzero (for example, parametrizing γ by arc-length) it is necessary that

(2.3) 〈λ(t), [X1, X2](γ(t))〉 = 0

for any t in [a, b]. This condition is called Goh condition and can be extended
to distributions of any rank, see Chapter 3. We can rephrase the above result as

13
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follows: given an abnormal extremal γ : [a, b] → Rn and an associated dual curve
λ : [a, b]→ T ∗Rn, we always have

• λ(t) is orthogonal to D1(γ(t)) = D(γ(t)) for any t by definition of abnor-
mal extremal

• λ(t) is orthogonal to D2(γ(t)) for any t by the Goh condition (2.3).

We hence give the following definition.

Definition 2.1. Let γ : [a, b] → Rn be an abnormal extremal curve with
control h and dual curve λ : [a, b] → T ∗Rn. We say that γ is a regular abnormal
extremal if it is at least C1 and λ(t) is not orthogonal to D3(γ(t)) for any t in [a, b].
This means that we must have

〈λ(t), [X1, [X1, X2]](γ(t))〉 6= 0, or

〈λ(t), [X2, [X1, X2]](γ(t))〉 6= 0

for any t in [a, b].

Theorem 2.2 (Liu and Sussmann). Any regular abnormal extremal is smooth
and locally uniquely length-minimizing.

Since its hypotesis are particularly easy to verify, Theorem 2.2 is very useful.
We will make use of it in the following sections.

2.2. An “aut-aut” Theorem

In this Section we prove a Theorem stated in [7] (Theorem 9 in Section 5) that
characterizes extremals of a rank-two distributions D generated by the vector fields
X1 and X2 given, for any x ∈ Rn, by

X1(x) =
∂

∂x1

X2(x) =
∂

∂x2
+

n∑
i=3

fi(x)
∂

∂xi

(2.4)

where the functions fi(x) = fi(x1, x2) for i = 3, . . . , n are smooth functions
depending only on the first two variables. These distributions arise as a result of
a limiting process (or “blow-up”) that is employed, in proving non-minimality of
extremal curves with corners, see [9].

If γ : I → Rn is a horizontal curve parametrized by arc-length, then there exist
measurable functions u, v such that u2 + v2 = 1 and

γ(t) = u(t)X1(γ(t)) + v(t)X2(γ(t)) for a.e t ∈ I.
Clearly then u = γ̇1 and v = γ̇2. From now on when omit the explicitation of

the t dependence.
If we want the curve to be an extremal, Theorem 1.9 states that we must find a
dual curve λ : I → T ∗Rn such that λ 6= 0 and{

〈λ,X1(γ)〉 = −λ0u

〈λ,X2(γ)〉 = −λ0v
and λ̇k = −

n∑
i=3

λi
∂X1i

∂xk
(γ)u+ λi

∂X2i

∂xk
(γ)v

for k = 1, . . . , n and λ0 ∈ {0, 1}. In our specific case, we must than have

(2.5)

{
λ1 = −λ0u

λ2 +
∑n
i=3 λifi(γ) = −λ0v
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and

(2.6)



λ̇1 = −v
(∑n

i=3 λi
∂fi
∂x1

(γ)
)

λ̇2 = −v
(∑n

i=3 λi
∂fi
∂x2

(γ)
)

λ̇3 = 0
...

λ̇n = 0

These equations clearly imply that λ3, . . . λn are constant numbers and that λ1

and λ2 are entirely determined by these constants and the controls.

Abnomal extremals. We suppose λ0 = 0. Differentiating the second equation
in (2.5) with respect to t we obtain

λ̇2 = −
n∑
i=3

λi

(
∂fi
∂x1

(γ)γ̇1 +
∂fi
∂x2

(γ)γ̇2

)

= −
n∑
i=3

λi

(
∂fi
∂x1

(γ)u+
∂fi
∂x2

(γ)v

)
.

comparing this equation with (2.6), it is necessary that

−u
n∑
i=3

λi
∂fi
∂x1

(γ) = 0.

Now, from (2.5) we also get that λ1 = 0, so

0 = λ̇1 = −v
n∑
i=3

λi
∂fi
∂x1

(γ).

Since (u, v) 6= (0, 0) we conclude that

(2.7)

n∑
i=3

λi
∂fi
∂x1

(γ) = 0 for a.e. t ∈ I.

This is a necessary condition for γ to be an abnormal extremal for D. Viceversa,
choosing constants λ3, . . . λn ∈ R such that (2.7) holds allows us to define a dual
curve λ by choosing λ1 = 0 and λ2 defined by (2.5).

Normal extremals. We now suppose λ0 = 1, that is γ is a normal extremal. We
know from Theorem 1.13 that both γ and λ are smooth. Comparing the equations
for λ1 in (2.5) and (2.6) we get

(2.8) u̇ = v

n∑
i=3

λi
∂fi
∂x1

(γ)

while for λ2 we get

v

n∑
i=3

λi
∂fi
∂x1

(γ) = v̇ +

n∑
i=3

λi

(
∂fi
∂x1

(γ)u+
∂fi
∂x2

(γ)v

)
that is
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(2.9) v̇ = −u
n∑
i=3

λi
∂fi
∂x1

(γ).

Viceversa, if equations (2.8), (2.9) hold, we deduce that λ0 cannot be zero,
hence the extremal must be normal. We have proved:

Theorem 2.3. For a rank-two distribution of the form (2.4), a D-horizontal
curve γ : I → Rn with controls (u, v) = (γ̇1, γ̇2), the following facts hold:

(1) γ is a normal extremal if and only if there exist constants λ3, . . . , λn ∈ R
such that {

u̇ = v
∑n
i=3 λi

∂f
∂x1

(γ)

v̇ = −u
∑n
i=3 λi

∂f
∂x1

(γ)

in particular this means that (γ̈1, γ̈2) ⊥ (γ̇1, γ̇2);
(2) γ is an abnormal extremal if and only if there exist constants λ3, . . . , λn ∈

R such that
n∑
i=3

λi
∂fi
∂x1

(γ) = 0 for a.e t ∈ I.

2.3. An extremal of regularity C1,1/m

We shall now study a specific case of (2.4) that was suggested in [7], namely,
the distribution in R5 given by

X1(x) =
∂

∂x1

X2(x) =
∂

∂x2
+ x1

∂

∂x3
+ x2m

1

∂

∂x4
+ x1x

m
2

∂

∂x5

where m is an integer greater or equal than 2. We are interested in studying
its abnormal nonsmooth minimizers. As we have seen, all the components of the
curve are determined by γ1 and γ2. Due to Theorem 2.3, all abnormal minimizers
satisfy the algebraic condition

λ3 + λ4γ
2m−1
1 + λ5γ

m
2 = 0

for some real constants λ3, λ4 and λ5 that completely determine the associated
dual curve λ. We distinguish cases:

If λ4 = 0: we get λ3 + λ5γ
m
2 = 0, which implies that γ2 is constant and so

γ̇2 = 0 a.e. This means that γ is an integral curve of X1 and so a smooth
curve

If λ5 = 0: we get similarly that γ is an integral curve of X2

If λ3, λ4 and λ5 are not zero: then for any t (γ1(t), γ2(t)) 6= (0, 0). This
is enough to conclude since the curve in the plane t 7→ (γ1(t), γ2(t)) is
implicitly defined by the analytic function f(x, y) = λ3 +λ4x

2m−1 +λ5y
m,

whose differential has matrix

Df(x, y) =

(
(2m− 1)λ4x

2m−2

mλ5y
m−1

)
.

Since it is Df(x, y) 6= 0 for (x, y) 6= (0, 0), the Implicit Function
Theorem allows us to conclude that (γ1(t), γ2(t)) is as analytic, hence
smooth.



2.4. STRICTLY ABNORMAL, NON REGULAR LENGTH-MINIMIZERS 17

The only remaining case is when λ3 = 0, λ4 6= 0 6= λ5. Supposing for simplicity

−λ4/λ5 = 1, we get γ2m−1
1 = γm2 which yields to γ2(t) = γ

2−1/m
1 (t). If we want

the extremal to have a chance of being nonsmooth we must have that, for some t̄,
γ1(t̄) = 0. The possibly singular point of the curve is then the origin. Next, we
note that

[X1, [X1, X2]](x) = (2m− 1)x2m−1
1

∂

∂x4

[X2, [X1, X2]](x) = mxm−1
2

∂

∂x5

so

〈λ(t), [X1, [X1, X2]](γ(t))〉 = λ4(2m− 1)γ1(t)2m−1

〈λ(t), [X2, [X1, X2]](γ(t))〉 = λ5mγ2(t)m−1.

We can apply Theorem 2.2: away from 0, γ is a regular abnormal extremal,
and so uniquely locally length minimizing.

A parametrization of the curve near 0 can be obtained in the following way.
The domain of the curve is I = [0, 1], γ1(t) = t and so γ2(t) = t1−1/m. This curve
has regularity exactly C1,1/m, and is uniquely locally length-minimizing far from 0.
At the present time we do not know if this curve is also minimizing at the singuar
point. For more on this extremal, see also Subsection 3.2.1 of Chapter 3.

Remark 2.4. Elementary modifications of the techniques presented in this and
in the previous sections lead to the construction of Example 1.15.

2.4. Strictly Abnormal, Non Regular Length-Minimizers

In this section we present a family of distributions that admit a strictly anbor-
mal extremals that are not “regular” according to Definition 2.1 at any point and
for which, consequently, Theorem 2.2 does not apply. We also prove that for some
of these distributions they actually are length-minimizing. This is substantially a
generalization of an example presented in Section 2.3 of [4].

Let D = D(m) be the distribution in R3 defined by

X1 =
∂

∂x1

X2 = (1− x1)
∂

∂x2
+ xm1

∂

∂x3

(2.10)

where m is a positive integer. For m = 1, the distribution has step two, so
Goh condition (2.3) implies that there are no abnormal extremals: the (immediate)
proof will be given for general-rank distributions, see Corollary 3.10.

For m ≥ 2, the ditribution has step m+ 1 at the origin, that is, the “critical”
point in R3 is 0, far from which the distribution has step 2. Consequently, abnormal
extremals necessarily pass through the origin and we may look for D-horizontal
curves γ : [0, 1] → R3 such that γ(0) = 0. If h = (h1, h2) is the control, and λ :
[0, 1]→ R3 an associated dual curve, Theorem 1.9 leads to the following equations:
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
γ̇1(t) = h1(t)

γ̇2(t) = h2(t)(1− γ1(t))

γ̇3(t) = h2(t)γ1(t)m

(γ1(0), γ2(0), γ3(0)) = (0, 0, 0)

and



λ1(t) = 0

λ2(t)(1− γ1(t)) + λ3(t)γm1 (t) = 0

λ̇1(t) = −h2(t)(−λ2(t) +mλ3(t)γ1(t)m−1)

λ̇2(t) = 0

λ̇3(t) = 0.

Clearly then λ = (0, λ2, λ3) for some real constants λ2, λ3 non both zero (due
the nontriviality condition). Evaluating in 0 the second equation of the group on
the right we get

λ2(0)(1− γ1(0)) + λ3(0)γm1 (0) = 0

and taking into account that γ1(0) = 0, we conclude that λ2 = 0. But then, the
same equation leads to λ3γ1(t)m = 0, and so being λ3 nonzero, we conclude γ1 = 0.
Necessarily, then, the only possible abnormal extremal is the segment along the x2

axis:

γ(t) = (0, t, 0)

and the control is then h = (0, 1). Abnormality is strict: if γ were normal,
again Theorem 1.9 would lead to the incompatible conditions

λ1(t) = 0

λ2(t) = −1

λ̇1(t) = −λ2(t)

so that no dual curve can be associated to γ to make it a normal extremal.
Since

[Xj , [X1, X2]](γ) ≡ 0 for j = 1, 2 and m > 2

the curve is not a regular abnormal extremal (according to Definition 2.1) when m
is strictly greater than 2.

Now, we prove that when m is even, for 0 < b− a ≤ τ̄ = 2
m+1 the curve

γ : [a, b]→ R3

t 7→ (0, t, 0)

is uniquely locally length-minimizing. Let us suppose that δ : [0, τ ] → R3

is another D-horizontal curve in R3 parametrized by arc-length such that δ(0) =
(0, a, 0) and δ(τ) = (0, b, 0). There exist unique measurable functions u, v with
u2 + v2 = 1 a.e. such that

δ̇(t) = u(t)X1(δ(t)) + v(t)X2(δ(t))

for a.e. t ∈ [0, τ ]. In particular, if δ(t) = (x(t), y(t), z(t)), it must be

ẋ(t) = u(t)

ẏ(t) = (1− x(t))v(t)

ż(t) = x(t)mv(t)

Since

lengthG(γ) = b− a = y(τ)− y(0) =

∫ τ

0

(1− x(s))v(s)ds

our claim is proved through the following lemma.
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Lemma 2.5. Let 0 < τ ≤ τ̄ = 2
m+1 , and let u, v : [0, τ ] → R be measurable

functions with |u(t)|, |v(t)| ≤ 1 for a.e. t ∈ [0, τ ]. Define x : [0, τ ]→ R by

x(t) =

∫ t

0

u(s)ds.

If x(τ) = 0 and
∫ τ

0
x(s)mv(s)ds = 0 then

(2.11)

∫ τ

0

(1− x(s))v(s)ds ≤ τ

and the equality holds if and only of u = 0, v = 1 a.e.

Proof. Set

A =

∫ τ

0

(1− x(s))v(s)ds,

V (t) =

∫ t

0

v(s)ds,

α = τ − V (τ),

β = ||x||∞.

Since |v| ≤ 1,

A ≤
∫ τ

0

v(s)ds+

∣∣∣∣∫ τ

0

x(s)v(s)ds

∣∣∣∣ ≤ V (τ) + βτ

≤ V (τ)− τ + τ + βτ = τ − α+ βτ.

It is then enough to prove that −α + βτ ≤ 0, and this is true if β ≤ α
τ̄ . We

prove this last inequality by showing that

τ̄βm+1 ≤
∫ τ

0

x(s)mds ≤ βmα.

Inequality on the right. Since
∫ τ

0
x(s)mv(s)ds = 0 by hypotesis,∫ τ

0

x(s)mds ≤
∫ τ

0

x(s)m(1− v(s))ds

≤ βm
∫ τ

0

(1− v(s))ds = βm(τ − V (τ)) = βmα.

Inequality on the left. Let a ∈ [0, τ ] such that |x(a)| = β. Since x(0) = 0 = x(τ)
and |ẋ(t)| = |u(t)| ≤ 1 it is a ≥ β and τ − a ≥ β. So the intervals I1 = [a − β, a]
and I2 = [a, a + β] are contained in [0, τ ]. Moreover these conditions also say
that |x| is bounded below by the linear functions φ1 in I1 and φ2 in I2 such that

φ1(a−β) = 0 = φ2(a+β) and φ1(a) = β = φ2(a). Since for j = 1, 2
∫
Ij
φmj = βm+1

m+1

it follows that ∫ τ

0

x(s)mds ≥
∫
I1∪I2

x(s)mds =
2

m+ 1
βm+1

which concludes the proof of the minimality.
We have thus proved (2.11). When the equality holds, A = τ in (2.4), and this

implies −α + βτ ≥ 0. Since we proved that −α + βτ ≤ 0, we have the equality.
In particular, it is β ≥ α

τ̄ which, together with the converse inequality just proved
above, leads β = α

τ̄ . Matching this equality with (2.4), we find that
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∫ τ

0

xm(s)ds = βmα.

This is only possible if and olny if x ≡ β = ||x||∞. Being x(0) = 0, we must
have x ≡ 0 and consequently u = 0 and v = 1 a.e. �

Remark 2.6. When m is odd (and greater or equal than 3), the argument
used in the proof to obtain the inequality on the left is no longer valid. In fact,
we will use the techniques developed in Chapter 4 to prove that γ is actually not a
length-minimizing curve at least when m = 3.



CHAPTER 3

The End-Point Mapping

In this Chapter we introduce the fundamental object of our analysis: the End-
point Mapping, which is intended to somehow measure “variations” along a refer-
ence curve, as we will explain below. We deduce necessary conditions for horizontal
curves to be length-minimizing, namely Theorem 1.9 of Chapter 1 and the so-called
second-order conditions. We always work under Assumptions 1.7.

Let X1, . . . , Xm be a set of vector fields spanning D. Let γ be a reference
D-horizontal curve with control h and extremal points x0 and x1 (for example, an
extremal cruve). For the sake of simplicity we assume that its domain is the interval
[0, 1], so that γ(0) = x0 and γ(1) = x1. We shorten γ̇(t) =

∑m
j=1 hj(t)Xj(γ(t)) by

h(t) ·X(γ(t)) and similar expressions in the same way.

3.1. First-order Conditions

The underlying idea of the below definitions consists in considering perturba-
tions of the reference control h while leaving the initial point x0 fixed.

Definition 3.1. Let V = L2([0, 1],Rm). For any fixed t in [0, 1] the End-Point
Mapping at the time t is the map Et : V → Rn defined by the following Cauchy
problem

(3.1)

{
Ėt(v) = v(t) ·X(Et(v))

E0(v) = x0.

The End-Point Mapping is defined by E = E1.
The Extended End-Point Mapping F : V → R× Rn is defined by

(3.2) F(v) = (L(v), E(v))

where L is the normalized L2-squared norm, L(v) = 1
2 ||v||

2
L2 .

Remark 3.2. As we assume a generic D-horizontal curve to be Lipschitz-
continuous (see Definition 1.2), the domain of F should be V = L∞([0, 1],Rm)
while we took V = L2([0, 1],Rm) which is a bigger space. The reason is that this is
the “natural” domain for F because of the definition of L, but of course we should
include also absolutely continuous D-horizontal curves in our analysis. This would
not be a great effort; however, we point out that, regarding the definitions and the
results presented in the following chapters, either this option or restricting F to
L∞([0, 1],Rm) would be perfectly equivalent alternatives.

The crucial observation is then the following: from the definition of length-
minimizing curve and of E , F cannot be open at h, because otherwise we would
find another control h′ such that E(h′) = E(h) but ||h′||L2 < ||h||L2 and this
would ultimately violate the minimality of γ. We want to investigate this necessary
condition for F . For computational reasons, though, it is more convenient to work
with a modified version of the end-point mapping. We begin with the following:

21
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Definition 3.3. For any fixed t in [0, 1], the flow relative to the control h at
time t is the map Φt : Rn → Rn defined by the following Cauchy problem

(3.3)

{
Φ̇t(x) = h(t) ·X(Φt(x))

Φ0(x) = x.

Note that Φt(x0) = γ(t) for all t. In practice, the construction of Φt is dual to
the one of Et: we are varying the initial point of γ leaving fixed the control h.

Definition 3.4. The Modified End-Point Mapping at the time t is defined by

(3.4) Êt = Φ−1
t ◦ Et.

The Modified End-Point Mapping is then Ê = Ê1 = Φ−1
1 ◦ E and the Modified

Extended End-Point Mapping is the function F̂ : V → R× Rn defined by

(3.5) F̂(v) =
(
L(v), Ê(v)

)
.

Note that, being Φt a diffeomorphism for any t, the critical points (see Notation

and Conventions, 0.0.2) of E (resp. F) are exactly those of Ê (resp. F̂).

Remark 3.5. Note that, for any t in [0, 1], Et(h) ≡ γ(t) and Êt(h) ≡ x0 by

definition of Et and Êt.

We want to further investigate the non-openness of F (equivalently, of F̂) at h.

The Open Mapping Theorem (see Appendix B, Theorem B.2) implies that dF̂(h)
cannot be surjective from V = L2([0, 1],Rm) to Rn+1. We want to compute this
differential. The formula for dL(h) is elementary:

(3.6) dL(h)[v] =

∫ 1

0

(h · v)dt.

We turn to dÊt. Differentiating the identity Et(v) = Φt(Êt(v)) with respect to t
we get (dxΦt denotes the differential of Φt with respect to the space variables only)

Ėt(v) = Φ̇t(Êt(v)) + dxΦt(Êt(v))
[

˙̂Et(v)
]

= h ·X(Φt(Êt(v))) + dxΦt(Êt(v))
[

˙̂Et(v)
]

= h ·X(Et(v)) + dxΦt(Êt(v))
[

˙̂Et(v)
]
.

On the other hand, by definition of Et

Ėt(v) = v ·X(Et(v))

so we get the formula

˙̂Et(v) = dxΦt(Êt(v))−1 [(v − h) ·X(Et(v))] .

By integrating with respect to the time variable from 0 to t and recalling once
more the identity Et(v) = Φt(Êt(v)), we obtain the following integral formula for

Êt(v):

(3.7) Êt(v) = x0 +

∫ t

0

dxΦτ (Êτ (v))−1
[
(v − h) ·X(Φτ (Êτ (v)))

]
dτ.
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Consequently,

∂Êt(h+ sv)

∂s
=
∂

∂s

∫ t

0

dxΦτ (Êτ (h+ sv))−1
[
(sv) ·X(Φτ (Êτ (h+ sv)))

]
dτ

=
∂

∂s

(
s

∫ t

0

dxΦτ (Êτ (h+ sv))−1
[
v ·X(Φτ (Êτ (h+ sv)))

]
dτ

)
=

∫ t

0

dxΦτ (Êτ (h+ sv))−1
[
v ·X(Φτ (Êτ (h+ sv)))

]
dτ

+ s

∫ t

0

∂

∂s

(
dxΦτ (Êτ (h+ sv))−1

[
v ·X(Φτ (Êτ (h+ sv)))

])
dτ.

(3.8)

Since we are interested in evaluating the expression in s = 0, we can (for now)

save the computation of the second term. Now (see Remark 3.5) Êτ (h+ sv)
∣∣
s=0

=

Êτ (h) = x0 and Φτ (Êτ (h + sv))
∣∣
s=0

= Eτ (h) = γ(τ). We have found a formula for

the differential of Ê at h:

(3.9) dÊ(h)[v] =
∂Ê(h+ sv)

∂s

∣∣∣∣∣
s=0

=

∫ 1

0

dxΦτ (x0))−1 [v ·X(γ(τ))] dτ.

Since F̂ is not surjective at h, we can take a nonzero covector in (Im dF̂(h))⊥,
whose coordinates are, say, (λ0, λ(0)) with λ0 ∈ {0, 1}. Then for any v ∈ V =
L2([0, 1],Rm)

(3.10) 0 = 〈(λ0, λ(0)), dF̂(h)[v]〉 = λ0dL(h)[v] + 〈λ(0), dÊ(h)[v]〉.

We have that dL(h)[v] is as in (3.6) and dÊ(h)[v] is as in (3.9), so equation
(3.10) becomes

0 =

∫ 1

0

λ0h · v +
〈
λ(0), dxΦτ (x0)−1[v ·X(γ(τ))]

〉
dτ

=

∫ 1

0

r∑
j=1

vj
(
λ0hj +

〈
λ(0), dxΦτ (x0)−1[Xj(γ(τ))]

〉)
dτ.

Since v is arbitrary, the Fundamental Lemma of Calculus of Variations allows
us to conclude that λ0hj +

〈
λ(0), dxΦt(x0)−1Xj(γ(t))

〉
= 0 a.e. in [0, 1]. Setting

(3.11) λ(t) = dxΦt(x0)−T [λ(0)]

(where (·)−T means inverse of the transpose), we conclude that for any j =
1, . . . ,m and for almost every t in [0, 1]

(3.12) λ0hj + 〈λ(t), Xj(γ(t))〉 = 0.

Note that these equations coincide with equations (1.5) of Theorem 1.9. Note
also that the nontriviality condition 1.6 is satisfied since (λ0, λ(0)) is nonzero and
dxΦt(x0) is a diffeomorphism. We now prove that λ is by all means a dual curve
associated with γ by proving that λ satisfies the adjoint equation (1.3).

Starting from equation (3.11), we differentiate with respect to t the identity

dxΦt(x0)T [λ(t)] = λ(0)
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obtaining

(3.13) 0 =
∂

∂t

(
dxΦt(x0)T [λ(t)]

)
=

∂

∂t

(
dxΦt(x0)T

)
[λ(t)] + dxΦt(x0)T [λ̇(t)].

Now,

∂

∂t
dxΦt(x0) = dx

(
∂

∂t
Φt(x0)

)
= dx(h(t) ·X(Φt(x0)))

= h(t) · dx(X(Φt(x0))) = h(t) · dx(X(y))
∣∣∣
y=Φt(x0)

◦ dx(Φt(x0))

= h(t) · dX(γ(t)) ◦ dxΦt(x0)

Inserting this result in (3.13), and recalling that dxΦt(x0) is invertible since the
flow relative to h is a diffeomorphism, we obtain

0 = h(t) · (dX(γ(t)) ◦ dxΦt(x0))T [λ(t)] + dxΦt(x0)T [λ̇(t)]

= h(t) · dxΦt(x0)T [dX(γ(t))T [λ(t)]] + dxΦt(x0)T [λ̇(t)]

= h(t) · dX(γ(t))T [λ(t)] + λ̇(t)

=

m∑
j=1

hj(t)dXj(γ(t))T [λ(t)] + λ̇(t)

=

m∑
j=1

hj(t)
〈
dXj(γ(t))T , λ(t)

〉
+ λ̇(t)

that is exactly the adjoint equation (1.3).
Recall that (Definition 1.10) extremals were defined as D-horizontal curves

such that there exists an associated dual curve so that the thesis of the Maximum
Principle holds. The above computations allow us to characterize them in terms of
end-point mappings:

Theorem 3.6. Given a distribution D on Rn generated by the vector fields
X1, . . . Xm, fix two point x0 and x1 in Rn and consider the horizontal curves γ :
[0, 1]→ Rn such that γ(0) = x0 and γ(1) = x1. Then, among these curves

(1) extremal curves are exactly the critical points of the extended end-pont

mapping F (equivalently, of F̂)
(2) abnormal extremals are exactly the critical points of the end-point map-

ping E (equivalently, of Ê).

Proof. If dF is not surjective at the control h of γ, the above discussion leads
through the construction of a dual curve λ associated with γ. Viceversa, if λ(t) is
a dual curve, it is possible to proceed backward from equation (3.12) to equation
(3.10) and, due to the nontriviality condition (1.6), deduce that dF is not surjective
at h. This proves (1).

As for (2), being λ0 = 0 in (3.12) and (3.10), the non-surjectivity of F at h is
equivalent to the non-sujectivity of E at h. �

Remark 3.7. Note that for both E and F (equivalently, Ê and F̂), their range
is a finite-dimensional vector space, while their domain is L2([0, 1],Rm) which is
infinite-dimensional. This implies that, independently on h, their coimages (see No-
tation and Conventions, 0.0.1) Coim dE(h) and Coim dF(h) are finite-dimensional
subspaces of V . We will make use of this fact later on.
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The results obtained in this subsections involve first derivatives of the end-
point mapping, and are consequently called first-order conditions. In the following
section, we deal with second-order conditions by working on second order derivatives
of E .

3.2. Second-Order Conditions

Since we know a second-order Open Mapping Theorem (see Appendix B, the
result is proved in [8]) it is possible deduce further necessary conditions (or, equiv-
alently sufficient conditions for nonminimiality) for a length-minimizing curve with

control h based on second-order derivatives of of Ê . The immediate adaptation of
Theorem B.4 to our context is then:

. Let γ : [0, 1] → Rn be a D-horizontal curve with extremal points x0 and x1

and control h. If dÊ(h) has corank r and the restricted Hessian HÊ(h) has index
greater or equal than r at h:

indHÊ(h) ≥ r

then Ê is open at h, and thus γ is not a length-minimizing curve.

We want to perform some computations of the second derivative of Ê in order
to get some more handful formulas for the Hessian of Ê at h. First of all, we
compute second-order directional derivatives of Ê at h along a control v resuming
from formula (3.8).

In what follows, v is a control in V = L2([0, 1],Rm). Define the following
time-dependent vector field Ψt,v : Rn → Rn by setting, for any t in [0, 1]

(3.14) Ψt,v(x) = dxΦt(x)−1[v(t) ·X(Φt(x))].

In this way, (3.8) becomes easier to write:

∂Êt(h+ sv)

∂s
=

∫ t

0

Ψτ,v(Êτ (h+ sv))dτ + s

∫ t

0

∂

∂s
(Ψτ,v(Êτ (h+ sv)))dτ

and then

(3.15)
∂2Êt(h+ sv)

∂s2
= 2

∫ t

0

∂

∂s
Ψτ,v(Êτ (h+sv))dτ+s

∫ t

0

∂2

∂s2
(Ψτ,v(Êτ (h+sv)))dτ.

Again, the fact that we will evaluate the expression in s = 0 allows us to focus
only on the first term. Now, the chain rule yields

∂

∂s
Ψt,v(Êt(h+ sv)) = dxΨt,v(Êt(h+ sv))

[
∂

∂s
Êt(h+ sv)

]
so

∂

∂s
Ψt,v(Êt(h+ sv))

∣∣∣∣∣
s=0

= dxΨt,v(x0)

[
∂

∂s
Êt(h+ sv)

∣∣∣∣∣
s=0

]

= dxΨt,v(x0)

[∫ t

0

Ψτ,v(x0)dτ

]
.

Consequently, (3.15) evalutaed in s = 0 becomes
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∂2Êt(h+ sv)

∂s2

∣∣∣∣∣
s=0

= 2

∫ t

0

∂

∂s
Ψτ,v(Êτ (h+ sv))

∣∣∣∣∣
s=0

dτ

= 2

∫ t

0

∫ τ1

0

dxΨτ1,v(x0)[Ψτ2,v(x0)]dτ2dτ1.

(3.16)

This formula for the second directional derivative of Êt at h along v holds de
facto for general controls h and v. Theorem B.4 tells us to look at the restricted
Hessian oh Ê : we consequently assume that v ∈ Ker dÊ(h) = Ker dE(h), which
means by equation (3.9) that ∫ 1

0

Ψτ,v(x0)dτ = 0.

This assumption allows us to make a very clever computation over equation
(3.16) when t = 1:

∂2Ê(h+ sv)

∂s2

∣∣∣∣∣
s=0

= 2

∫ 1

0

∫ τ1

0

dxΨτ1,v(x0)[Ψτ2,v(x0)]dτ2dτ1

= −2

∫ 1

0

∫ 1

τ1

dxΨτ1,v(x0)[Ψτ2,v(x0)]dτ2dτ1

= −2

∫ 1

0

∫ τ2

0

dxΨτ1,v(x0)[Ψτ2,v(x0)]dτ1dτ2

(3.17)

where in the last step we changed the order of integration. Now, renaming the
variables, we deduce that (recall the formula for the commutator (0.2) in Notation
and Conventions)

∂2Ê(h+ sv)

∂s2

∣∣∣∣∣
s=0

=

∫ 1

0

∫ τ1

0

dxΨτ1,v(x0)[Ψτ2,v(x0)]− dxΨτ2,v(x0)[Ψτ1,v(x0)]dτ2dτ1

=

∫ 1

0

∫ τ1

0

[Ψτ2,v,Ψτ1,v](x0)dτ2dτ1.

We have proved the following formula for the Hessian of Ê at h:

(3.18) Hess Ê(h)[v] =

∫ 1

0

∫ τ1

0

[Ψτ2,v,Ψτ1,v](x0)dτ2dτ1.

for any v in Ker dÊ(h).

Remark 3.8. Note that, aside from the computation of the integral, formula
(3.18) can be computed explicitly if we are able to compute the flow relative to
h, Φt (see Definition 3.3), because in that case Ψt,v, defined through (3.14), can
be explicitely written. However, even for corank-one extremals, it may be difficult
to determine the index of HÊ(h) as the case presented in the following subsection
demonstrates.

3.2.1. Hessian for a C1,1/2 abnormal extremal. We compute Hess Ê(h)
and HÊ(h) for the extremal introduced in Section 2.3 when m = 2 dividing our
computations in steps. Recall that the curve is defined by its two first components
(γ1(t), γ2(t)) = (t, t3/2), has control h = (1, 3

2 t
1/2) and passes through 0 at t = 0.

Step 1: computation of the flow Φt,v. We compute the flow relative to h at the
time t, Φt = (Φ1

t , . . . ,Φ
5
t ) which is the solution to the Cauchy problem
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{
Φ̇t(x) = h1X1(Φt(x)) + h2X2(Φt(x))

Φ0(x) = x

that is 

Φ̇1
t (x) = 1

Φ̇2
t (x) = 3

2 t
1/2

Φ̇3
t (x) = 3

2 t
1/2Φ1

t (x)

Φ̇4
t (x) = 3

2 t
1/2(Φ1

t (x))4

Φ̇5
t (x) = 3

2 t
1/2Φ1

t (x)(Φ1
t (x))2

(Φ1
0(x), . . . ,Φ5

0(x)) = (x1, . . . , x5).

The integration of this system is elementary and leads to

Φt(x) =


t+ x1

t3/2 + x2
3
5 t

5/2 + t3/2x1 + x3
3
11 t

11/2 + 4
3 t

9/2x1 + 18
7 t

7/2x2
1 + 12

5 t
5/2x3

1 + t3/2x4
1 + x4

3
11 t

11/2 + 1
3 t

9/2x1 + 3
4 t

4x2 + +t3x1x2 + 3
5 t

5/2x2
2 + t3/2x1x

2
2 + x5

 .

Step 2: computation of Ψt,v and of dÊ(h). We compute the vector field Ψt,v

defined through formula (3.14). The Jacobian matrix with respect to the space
variable of Φt is

DxΦt(x) =
1 0 0 0 0
0 1 0 0 0
t3/2 0 1 0 0

4
3 t

9/2 + 36
7 x1t

7/2 + 36
5 x

2
1t

5/2 + 4x3
1t

3/2 0 0 1 0
1
3 t

9/2 + x2t
3 + x2

2t
3/2 3

4 t
4 + x1t

3 + 6
5x2t

5/2 + 2x1x2t
3/2 0 0 1


and so the vector field is

Ψt,v(x) = DxΦt(x)−1[v(t) ·X(Φt(x))] =
v1(t)
v2(t)

v2(t)(t+ x1)− t3/2v1(t)
v2(t)(t+ x1)4 − 4

105 t
3/2v1(t)

(
35t3 + 135t2x1 + 189tx2

1 + 105x3
1

)
−t3/2v1(t)x2

2 − 1
3 t

9/2v1(t) + 4
5 t

5/2v2(t)x2 + 1
4 t

4v2(t)− t3v1(t)x2 + tv2(t)x2
2 + v2(t)x1x

2
2

 .

The initial point is x0 = 0, so

(3.19) Ψt,v(0) =


v1(t)
v2(t)

tv2(t)− t3/2v1(t)
t4v2(t)− 4

3 t
9/2v1(t)

1
4 t

4v2(t)− 1
3 t

9/2v1(t)

 .

Being dÊ(h)[v] =
∫ 1

0
Ψτ,v(0)dτ , it is clear that Coker dÊ(h) ' (Im dÊ(h))⊥ =

spanR{λ} with λ = (0, 0, 0, 1,−4), in particular the corank of this extremal is one.



28 3. THE END-POINT MAPPING

Moreover, v is in Ker dÊ(h) if and only if it satisfies the following integral conditions:

(3.20)



∫ 1

0
v1(τ)dτ = 0∫ 1

0
v2(τ)dτ = 0∫ 1

0
(τv2(τ)− τ3/2v1(τ)dτ) = 0∫ 1

0
(τ4v2(τ)− 4

3τ
9/2v1(τ))dτ = 0∫ 1

0
( 1

4τ
4v2(τ)− 1

3τ
9/2v1(τ))dτ = 0.

Step 3: Computation of the Hessian. The formula for Hess Ê(h) is (3.18) for

any v in Ker dÊ(h). Recalling formula (0.2) for the commutator the term inside the
integral is:

[Ψτ2,v,Ψτ1,v](0) = DxΨτ1,v(0)[Ψτ2,v(0)]−DxΨτ2,v(0)[Ψτ1,v(0)] =
0
0

v1(τ2)v2(τ1)− v1(τ1)v2(τ2)

− 4
7 (−7τ3

1 v1(τ2)v2(τ1) + v1(τ1)(9(τ
7/2
1 − τ7/2

2 )v1(τ2) + 7τ3
2 v2(τ2)))

τ3
2 v1(τ2)v2(τ1)− 1

5 (5τ1v1(τ1) + 4(−τ5/2
1 + τ

5/2
2 )v2(τ1))v2(τ2)

 .

Hess Ê(h) is then just the double integral in τ1 and τ2 of the above vector-valued
function.

We turn to the restricted Hessian HÊ(h).

HÊ(h)[v] =
〈
λ,Hess Ê(h)[v]

〉
=∫ 1

0

∫ τ1

0

4

5
v2(τ1)(5(τ3

1 − τ3
2 )v1(τ2) + 4(−τ5/2

1 + τ
5/2
2 )v2(τ2)

+
4

7
v1(τ1)(9(−τ7/2

1 + τ
7/2
2 )v1(τ2) + 7(τ3

1 − τ3
2 )v2(τ2))dτ2dτ1

=

∫ 1

0

∫ τ1

0

(
v1(τ2)
v2(τ2)

)
·

(
36(−τ7/2

1 + τ
7/2
2 ) 4(τ3

1 − τ3
2 )

4(τ3
1 − τ3

2 ) +16(−τ5/2
1 + τ

5/2
2 )

)(
v1(τ1)
v2(τ1)

)
dτ2dτ1.

The last line is intended to to emphasize the fact that the map is indeed qua-
dratic in the argument v. However, since v must satisfy also conditions (3.20), it is
difficult to establish if it is definite, semidefinite or indefinite.

3.2.2. Goh Condition. Although determining directly the index of HE(h)
can be in general a difficult task, thanks to formula (3.18) it is possible to deduce
a very clever consequence of Theorem B.4, known as the Goh condition.

Theorem 3.9 (The Goh Condition). Let γ : [0, 1]→ Rn be an abnormal length-
minimizing curve with control h for the distribution D in Rn spanned by the vector
fields X1, . . . Xm and let r be the corank of dÊ(h). Then there exists a dual curve
λ : [0, 1]→ T ∗Rn associated with γ such that for all i, j in {1, . . . ,m}

(3.21) 〈λ(t), [Xi, Xj ](γ(t))〉 = 0

for any t ∈ [0, 1].

Proof. Theorem B.4 implies that, as Ê is not open at h, the index of HÊ must

be less than r, so there must be a nonzero covector λ(0) in (Im Ê(h))⊥ such that

ind
(〈
λ(0),Hess Ê(h)

∣∣
Ker dÊ(h)

〉)
< r.
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Let λ be the dual curve defined through (3.11). Assume by contradiction that
(3.21) is false: we find a t0 in [0, 1] and i, j in {1, . . . ,m} such that

(3.22) 〈λ(t0), [Xi, Xj ](γ(t0))〉 6= 0.

We prove that if this condition holds then ind(〈λ(0),Hess Ê(h)
∣∣
Ker dÊ(h)

〉) is

greater or equal than r. We pick a nonconstant control v in L2([0, 1],Rm) of the
following form:

(3.23) v(t) = vi(t)ei + vj(t)ej

where ei, ej are the i-th and j-th vector of the canonical basis of Rm and vi, vj
are real functions in L2([0, 1]) to be specified later. We localize it in t0 by setting,
for small ε > 0

(3.24) vε(t) = v

(
t− t0
ε

)

extending it by 0 when the member on the right of (3.24) is not defined. Note
that vε is supported in [t0, t0 + ε] and since v is nonconstant, the infinite family

{vε}ε>0 is linearly independent. For this reason, as Ker dÊ(h) has finite comple-
mentary subspace in L2([0, 1],Rm) (see Remark 3.7) there are infinite values of ε

arbitrarily close to 0 such that vε is in Ker dÊ(h). We compute Hess Ê(h) along one
of these controls. By a change of variables we obtain

Hess Ê(h)[vε] =

∫ 1

0

∫ τ1

0

[Ψτ2,vε ,Ψτ1,vε ](x0)dτ2dτ1

=

∫ t0+ε

t0

∫ τ1

t0

[Ψτ2,vε ,Ψτ1,vε ](x0)dτ2dτ1

= ε2
∫ 1

0

∫ τ1

0

[Ψt0+ετ2,v(τ2),Ψt0+ετ1,v(τ1)](x0)dτ2dτ1

where Ψt0+ετ,v(t) = dxΦt0+εt(x0)−1[v(t) · X(Ψt0+εt(x0))] - note the different
dependence on the time variable comparing it with the definition of Ψt,v given in
equation (3.14).

Now, if {εk}k is any sequence converging to zero such that vεk is in Ker dÊ(h)
for any k, we compute the limit:

lim
k→∞

Ψt0+εkt,v(t)(x0) = lim
k→∞

dxΦt0+εkt(x0)−1[v(t) ·X(Ψt0+εkt(x0))]

= dxΦt0(x0)−1[v(t) ·X(Φt0(x0))]

so, passing to the limit under the integral sign
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lim
k→∞

Hess Ê(h)[vεk ]

εk2
=

=

∫ 1

0

∫ τ1

0

[dxΦ−1
t0 [v(τ2) ·X(Φt0)], dxΦ−1

t0 [v(τ1) ·X(Φt0)]](x0)dτ2dτ1

=

∫ 1

0

∫ τ1

0

dxΦ−1
t0 (x0)[[v(τ2) ·X, v(τ1) ·X]](Φt0(x0))dτ2dτ1

= dxΦ−1
t0 (x0)

[∫ 1

0

∫ τ1

0

[v(τ2) ·X, v(τ1) ·X](Φt0(x0))dτ2dτ1

]
.

Recalling the form of v in (3.23),

[v(τ2) ·X, v(τ1) ·X](Φt0(x0)) =

=[(vi(τ2)ei + vj(τ2)ej) ·X, (vi(τ1)ei + vj(τ1)ej) ·X](Φt0(x0))

=vi(τ2)vj(τ1)[Xi, Xj ](Φt0(x0)) + vj(τ2)vi(τ1)[Xj , Xi](Φt0(x0))

= (vi(τ2)vj(τ1)− vj(τ2)vi(τ1)) [Xi, Xj ](Φt0(x0))

so

lim
k→∞

Hess Ê(h)[vεk ]

εk2
=

= dxΦ−1
t0 (x0)

[∫ 1

0

∫ τ1

0

(vi(τ2)vj(τ1)− vj(τ2)vi(τ1)) [Xi, Xj ](Φt0(x0))dτ2dτ1

]
= dxΦ−1

t0 (x0)[[Xi, Xj ](Φt0(x0))]

∫ 1

0

∫ τ1

0

(vi(τ2)vj(τ1)− vj(τ2)vi(τ1)) dτ2dτ1.

By the definition of the dual curve λ in equation (3.11) we have

〈
λ(0), dxΦ−1

t0 (x0)[[Xi, Xj ](Φt0(x0))]
〉

= 〈λ(t0), [Xi, Xj ](γ(t0))〉
we infer from the above computation that

lim
k→∞

1

εk2

〈
λ,Hess Ê(h)[vεk ]

〉
=

〈λ(t0), [Xi, Xj ](γ(t0))〉
∫ 1

0

∫ τ1

0

(vi(τ2)vj(τ1)− vj(τ2)vi(τ1)) dτ2dτ1.

Now comes the clever choice of the control v. First of all, recall that we are
assuming that (3.22) holds true - for example, 〈λ(t0), [Xi, Xj ](γ(t0))〉 > 0. Take
any nonzero sequence {ah}h in l2(R) and set, for t in [0, 1]

(3.25) vi(t) =

∞∑
h=1

ah sin(2πht), vj(t) =

∞∑
h=1

ah cos(2πht).

The control v = viei + vjej is in L2([0, 1],Rm) and since

∫ 1

0

∫ τ1

0

(vi(τ2)vj(τ1)− vj(τ2)vi(τ1)) dτ2dτ1 =
1

2π

∞∑
h=1

a2
h

h

we conclude that
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lim
k→∞

1

εk2
〈λ,Hess Ê(h)[vεk ]〉 = 〈λ(t0), [Xi, Xj ](γ(t0))〉 1

2π

∞∑
h=1

a2
h

h
> 0.

Due to the continuous dependence on ε of Hess Ê(h)[vε] there must be a suf-

ficiently large k (possibly depending on {ah}h) for which 〈λ,Hess Ê(h)[vεk ]〉 > 0.
Take now r linearly independent sequences {a1

h}h, . . . , {arh}h in l2(R) and construct
r controls v1, . . . , vr through (3.25): for a sufficiently small k such that

• 〈λ,Hess Ê(h)[vεkp ]〉 > 0 for p = 1, . . . , r

• vεkp all belong to Ker dÊ(h) for p = 1, . . . r

we deduce that there exists a r-dimensional subspace of Ker dÊ(h) in which

Hess Ê(h) is positive definite. Exactly by the same argument applied to the control
v defined through

vi(t) =

∞∑
h=1

ah sin(2πht), vj(t) = −
∞∑
h=1

ah cos(2πht).

we deduce that there exists a r-dimensional subspace of Ker dÊ(h) in which

Hess Ê(h) is negative definite. But then ind
(
〈λ,Hess Ê(h)

∣∣
Ker dÊ(h)

〉
)

is greater or

equal than r. We have reached the claimed consequence of hypotesis (3.22). This

gives rise to a contradition, since Theorem B.4 implies that Ê is open and γ is
length-minimizing.

�

As an immediate consequence we have:

Corollary 3.10. Any distribution D in Rn of step 2 has no abnormal length-
minimizing curves.

Proof. In fact, if D is spanned by the vector fields X1, . . . , Xm and γ : [0, 1]→
Rn were an abnormal extremal with associated dual curve λ : [0, 1] → T ∗Rn, the
minimization condition (1.5) together with the above Goh condition (3.21) would
imply {

〈λ(t), Xj(γ(t))〉 = 0 for j = 1, . . . ,m

〈λ(t), [Xi, Xj ](γ(t))〉 = 0 for i, j = 1, . . . ,m

but since D is of rank 2, the spanning vector fields and their commutator of
degree 1 form a basis of TxRn for any x in Rn, so this would imply λ(t) = 0 for any
t in [0, 1]. This would contradict the nontriviality condition (1.6).

�





CHAPTER 4

A Third-Order Open Mapping Theorem

In the previous Chapter, we have seen that necessary conditions involving the
End-Point Mapping are based on open mapping theorems. Guided by this outline,
we now prove a third-order Open Mapping Theorem, that has anyway its own in-
terest. We finally prove its relevance to our situation by proving the nonminimality
of an abnormal extremal presented in Section 2.4 of Chapter 2.

4.1. A Third-Order Open Mapping Theorem

The fundamental step in proving the third-order Open Mapping Theorem we
are interested in is the following Euclidean, corank-one case. The notion of re-
stricted Hessian and of index of a quadratic form are specified on Appendix B.

Theorem 4.1. Let n,N be positive integers with N ≥ n, and let F : RN → Rn
be a smooth map with F (0) = 0. Suppose that dF (0) has corank 1, that the restricted
Hessian of F at 0

HF (0) : Ker dF (0)→ Coker dF (0)

is semidefinite and that the isotropic space of HF at 0

IsoHF (0) = {w ∈ Ker dF (0) : HF (0)[w] = 0}
is nontrivial. If there exists a nonzero vector v in IsoHF (0) such that the

projection over Coker dF (0) of the third-order derivative of F along v:

πCoker dF (0)

(
∂3F

∂v3
(0)

)
= lim
t→0

πCoker dF (0)

(
F (tv)− F (0)

t3

)
is nonzero, then F is open at 0.

Proof. The underlying idea of this proof consists in composing F with a
suitable “perturbation map” and prove the openness of this composition. This
approach was inspired by the proof of Theorem 20.3 in [8].

Let ε > 0 be a real parameter, x0 and x1 two vectors in RN to be chosen later.
We define the map φε from Coim dF (0)⊕ spanR{v} to RN by setting

(4.1) φε(x, y) =
ε3y3

3!
v +

ε6y6

6!
x0 +

ε9y9

9!
x1 +

ε9

9!
x

for any (x, y) ∈ Coim dF (0) ⊕ spanR{v}. Note that φ is smooth in x, y and ε
and φε(0) = 0. Consider now the composition of F with φε:

(4.2) Φε(x, y) = F (φε(x, y))

proving that Φε is open at 0 (for some nonzero fixed ε > 0) would guarantee
that F is a fortiori open at 0. We will achieve this goal basically by computing
enough derivatives of Φε with respect to ε and studying its Taylor expansion. In
the following computations,we omit the ε-dependence of φε and we simply write

33



34 4. A THIRD-ORDER OPEN MAPPING THEOREM

φ. We denote the derivatives with respect to ε of φ and Φ by φ′, φ′′, . . . , φ(j) and

Φ′ε,Φ
′′
ε , . . . ,Φ

(j)
ε respectively.

We are going to differentiate Φε nine times. We first group the derivatives of φ
in a table for future use.

derivative of φ w.r.t. ε eval. in ε = 0 behavior as ε→ 0

φ′ = ε2

2! y
3v + ε5

5! y
6x0 + ε8

8! y
9x1 + ε8

8!x 0 O(ε2)

φ′′ = εy3v + ε4

4! y
6x0 + ε7

7! y
9x1 + ε7

7!x 0 O(ε1)

φ′′′ = y3v + ε3

3! y
6x0 + ε6

6! y
9x1 + ε6

6!x y3v nonvanishing

φ(4) = ε2

2! y
6x0 + ε5

5! y
9x1 + ε5

5!x 0 O(ε2)

φ(5) = εy6x0 + ε4

4! y
9x1 + ε4

4!x 0 O(ε1)

φ(6) = y6x0 + ε3

3! y
9x1 + ε3

3!x y6x0 nonvanishing

φ(7) = ε2

2! y
9x1 + ε2

2!x 0 O(ε2)
φ(8) = εy9x1 + εx 0 O(ε1)
φ(9) = y9x1 + x y9x1 + x nonvanishing

We start differentiating Φε with respect to ε. The first-order derivative is:

Φ′ε =
d

dε
F (φ(x, y)) = dF (φ)[φ′]

The second-order derivative is:

Φ′′ε = d2F (φ)[φ′, φ′] + dF (φ)[φ′′]

= d2F [φ′2] + dF [φ′′].

The third-order derivative is (for brevity, we omit the point at which the djF
are evaluated):

Φ′′′ε = d3F [φ′3] + d2F [2φ′, φ′′] + d2F ′′[φ′, φ′′] + dF [φ′′′]

= d3F [φ′3] + 3d2F [φ′, φ′′] + dF [φ′′′].

Looking at the table, Φ′ε is O(ε2) and Φ′′ε is O(ε) so

Φ′ε

∣∣∣
ε=0

= Φ′′ε

∣∣∣
ε=0

= 0.

Moreover, evaluated in ε = 0 (4.1) reduces to

Φ′′′ε

∣∣∣
ε=0

= dF (0)[y3v] = y3dF (0)[v] = 0

since v ∈ Ker dF (0) by hypothesis.
Let us proceed computing higher-order derivatives. The fourth-order derivative

with respect to ε is

Φ(4)
ε =d4F [φ′4] + d3F [3φ′2, φ′′] + 3d3F [φ′2, φ′′] + 3d2F [φ′′2]

+ 3d2F [φ′, φ′′′] + d2F [φ′, φ′′′] + dF [φ(4)]

=d4F [φ′4] + 6d3F [φ′2, φ′′] + 4d2F [φ′, φ′′′]

+ 3d2F [φ′′2] + dF [φ(4)].

The fifth-order derivative is
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Φ(5)
ε =d5F [φ′5] + 10d4F [φ′3, φ′′] + 15d3F [φ′, φ′′2]

+ 10d3F [φ′2, φ′′′] + 5d2F [φ′, φ(4)] + 10d2F [φ′′, φ′′′]

+ dF [φ(5)]

=15d3F [φ′, φ′′2] + 10d3F [φ′2, φ′′′] + 5d2F [φ′, φ(4)]

+ 10d2F [φ′′, φ′′′] + dF [φ(5)] +O(ε5).

The sixth-order derivative is

Φ(6)
ε =15d4F [φ′2, φ′′2] + 15d3F [φ′′3] + 15d3F [φ′, 2φ′′, φ′′′]

+ 10d4F [φ′3, φ′′′] + 10d3F [2φ′, φ′′, φ′′′] + 10d3F [2φ′2, φ(4)]

+ 5d3F [φ′2, φ(4)] + 5d2F [φ′′, φ(4)] + 5d2F [φ′, φ(5)]

+ 10d3F [φ′, φ′′, φ′′′] + 10d2F [φ′′′2] + 10d2F [φ′′, φ(4)]

+ d2F [φ′, φ(5)] + dF [φ(6)] +O(ε4)

=15d3F [φ′′′3] + 60d3F [φ′, φ′′, φ′′′] + 6d2F [φ′, φ(5)]

+ 15d2F [φ′′, φ(4)] + 10d2F [φ′′′2] + dF [φ(6)] +O(ε4).

As before, Φ
(4)
ε is O(ε2) and Φ

(5)
ε is O(ε) so they vanish when evaluated at

ε = 0, while when evaluating Φ
(6)
ε at ε = 0 we are left with

Φ(6)
ε

∣∣∣
ε=0

=10d2F (0)[y3v, y3v] + dF (0)[y6x0]

=10 HessF [y3v] + dF (0)[y6x0]

=y6
(

10 HessF (0)[v] + dF (0)[x0]
)
.

since by hypotesis v ∈ IsoHF (0), HessF (0)[v] is in Im dF (0), we choose x0

in the definition of φε (4.1) so that 10 HessF (0)[v] + dF (0)[x0] = 0. In this way

Φ
(6)
ε

∣∣∣
ε=0

= 0.

The seventh-order derivative of Φε with respect to ε is

Φ(7)
ε =15d4F [φ′, φ′′3] + 15d3F [3φ′′2, φ′′′] + 60d4F [φ′2, φ′′, φ′′′]

+ 60d3F [φ′′2, φ′′′] + 60d3F [φ′, φ′′′2] + 60d3F [φ′, φ′′, φ(4)]

+ 6d3F [φ′2, φ(5)] + 6d2F [φ′′, φ(5)] + 6d2F [φ′, φ(6)]

+ 15d3F [φ′, φ′′, φ(4)] + 15d2F [φ′′′, φ(4)] + 15d2F [φ′′, φ(5)]

+ 10d3F [φ′, φ′′′2] + 10d2F [2φ′′′, φ(4)] + d2F [φ′, φ(6)]

+ dF [φ(7)] +O(ε3)

=105d3F [φ′′2, φ′′′] + 70d3[φ′, φ′′′2] + 21d2F [φ′′, φ(5)]

+ 7d2F [φ′, φ(6)] + 35d2F [φ′′′, φ(4)] + dF [φ(7)] +O(ε3).

(4.3)

At this point it is clear that Φ
(7)
ε is O(ε2) and Φ

(8)
ε is O(ε), so it will be

Φ
(7)
ε

∣∣∣
ε=0

= Φ
(8)
ε

∣∣∣
ε=0

= 0. In order to compute Φ
(9)
ε , we differentiate twice the

right-hand side of (4.3) keeping in mind that we are interested in an expression
modulo O(ε). In particular, we not interested in terms whose arguments involve
different elements than φ′′′, φ(6) and φ(9). We get
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Φ(9)
ε =105d3F [2φ′′′3] + 70d3F [φ′′′3] + 35d2F [φ′′′, φ(6)]

+ 42d2F [φ′′′, φ(6)] + 7d2F [φ′′′, φ(6)] + dF [φ(9)] +O(ε)

=280d3F [φ′′′3] + 84d2F [φ′′′, φ(6)] + dF [φ(9)] +O(ε)

and so

Φ(9)
ε

∣∣∣∣∣
ε=0

=280d3F [(y3v)] + 84d2F [y3v, y6x0] + dF [y9x1 + x]

=y9
(

280d3F (0)[v3] + 84d2F (0)[v, x0] + dF (0)[x1]
)

+ dF (0)[x].

We decompose as a direct sum

d3F (0)[v3] = πCoker dF (0)(d
3F (0)[v3]) + πIm dF (0)(d

3F (0)[v3])

and claim that it is possible to find a vector x1 in RN such that

πIm dF (0)(d
3F (0)[v3]) + 84d2F (0)[v, x0] + dF (0)[x1] = 0.

In fact, this is equivalent to prove that d2F (0)[v, x0] is in Im dF (0).
We point out the following fact: given a real-valued, positive-semidefinite bi-

linear operator B[·, ·], and a vector u such that B[u, u] = 0, it follows that B[u, ·]
is zero as a linear operator. This can be seen, for example, by diagonalizing the
matrix asssociated with B and writing u as a linear combination of the associated
eigenvectors.

Since by hypotesis HF (0) is positive-semidefinite and v ∈ IsoHF (0) we can
apply this fact to πCoker dF (0)d

2F (0)[·, ·]: we conclude that πCoker dF (0)d
2F (0)[v, ·]

is zero as a linear operator, so, in particular πCoker dF (0)d
2F (0)[v, x0] is zero, and

this means exactly that d2F (0)[v, x0] is Im dF (0).
Now, x1 is fixed and φε completely determined. The computations made above

and the choices of x0 and x1 in the definition of φ (4.1) allowed us to conclude
that the derivatives with respect to ε of Φε from first to eigth order vanish. As a
consequence of the Taylor formula, we can write

(4.4) Φε(x, y) =
ε9

9!
Φ(9)
ε (x, y)

∣∣∣
ε=0

+Rε(x, y).

where the reminder Rε(x, y) is O(ε10) as ε goes to 0.
So

1

ε9
Φε(x, y) =

1

9!

(
280y9πCoker dF (0)

(
∂3F

∂v3
(0)

)
+ dF (0)[x]

)
+

1

ε9
Rε(x, y).

We now set

Ψε(x, y) =
1

ε9
Φε(x, y

1/9).

Since Ψε is obtained composing 1
ε9 Φε with a homeorphism, proving that Ψε is

open at 0 will also prove that Φε is open at 0.

Claim. Rε(x, y
1/9) is o(|x|+ |y|) as (x, y)→ 0, equivalently

(4.5) lim
(x,y)→0

Rε(x, y)

|x|+ |y|9
= 0.
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If this claim holds true, we would have, as (x, y)→ 0,

Ψε(x, y) = AdF (0)[x] +ByπCoker dF (0)

(
∂3F

∂v3
(0)

)
+Rε(x, y

1/9).

with A = 1/9!, B = 280/9! and Rε(x, y
1/9) that is o(|x| + |y|). In particular,

dΨε exists and has full rank. Thus, after a linear change of coordinates we are
reduced to prove that

Ψε(x, y) = (x, y) +Rε(x, y
1/9)

is open at 0. Now, the openness at 0 can be characterized by the fact that that
we can find a sufficiently small δ0 > 0 such that, for any 0 < δ < δ0, Ψε(BRn(0, δ])
contains an ball centered at 0 of some radius, say η = η(δ). This can be seen using
the classical Brouwer’s Fixed Point Theorem (see e.g. Theorem 6.1 in Chapter Two
of [10]) in the following way:

• choose δ0 such that |Rε(x, y1/9)| ≤ δ
2 (|x|+ |y|) for |x|+ |y| ≤ δ0, which is

possible due to the Claim
• set η = δ/2
• fix an arbitrary ξ in BRn(0, δ] and define the map

χ(x, y) = −Ψε(x, y) + ξ + (x, y).

The problem becomes equivalent to verify that χ has a fixed point in BRn(0, δ],
a condition that is ensured by Browuer’s Theorem if prove that χ maps BRn(0, δ]
into itself. Our choices of δ0 and η allow us to do so since

|χ(x, y)| =| −Ψε(x, y) + ξ + (x, y)|

=|Rε(x, y1/9) + ξ|

≤|Rε(x, y1/9)|+ |ξ| ≤ δ/2 + δ/2 = δ.

We are just left to prove the Claim (4.5). By definition of Rε(x, y) it is

(4.6) Rε(x, y) = Φε(x, y)− 280ε9

9!
πCoker dF (0)

(
∂3F

∂v3
(0)

)
− 1

9!
dF (0)[x].

Exactly as before we have

∂φ

∂∂y

∣∣∣∣∣
y=0

= 0,
∂2φ

∂y2

∣∣∣∣∣
y=0

= 0,
∂3φ

∂y3

∣∣∣∣∣
y=0

= ε3v,

∂4φ

∂y4

∣∣∣∣∣
y=0

= 0,
∂5φ

∂y5

∣∣∣∣∣
y=0

= 0,
∂6φ

∂y6

∣∣∣∣∣
y=0

= ε6x0,

∂7φ

∂y7

∣∣∣∣∣
y=0

= 0,
∂8φ

∂y8

∣∣∣∣∣
y=0

= 0,
∂9φ

∂y9

∣∣∣∣∣
y=0

= ε9x1.

Again, the same computations made above lead to

(4.7)
∂kΦε
∂yk

(0) = 0 for j = 1, ..., 8

and

(4.8)
∂9Φε
∂y9

(0) = 280ε9πCoker dF (0)

(
∂3F

∂v3
(0)

)
.

On the other hand,by the chain rule
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(4.9) DxΦε(x, y)
∣∣∣
(x,y)=0

=
ε9

9!
DxF (0).

Relations (4.7)-(4.9) force the Taylor formula for Φε at 0 to be

(4.10) Φε(x, y) = dxF (0)[x] +O(|x||y|) +
y9

9!

∂9Φε
∂y9

(0) + o(|x|+ |y|9)

where the big-oh O(|x||y|) sums up the mixed terms in x and y until the ninth-
order. But as O(|x||y|) is o(|x|+|y|9), Formula (4.10) compared with (4.6) allows us
to conclude that Rε(x, y) is o(|x|+ |y9) as (x, y)→ 0, which is exactly the limiting
relation (4.5). The claim is proved, and so is the Theorem. �

Remark 4.2. Let us point out a fact that we will use in a moment. What we
have proved in Theorem 4.1 is that, having set V = spanR{v}, the (restriction of
the) map F :

Coim dF (0)⊕ V F−→ Rn = Im dF (0)⊕ spanR{π
(
∂3F

v3
(0)

)
}

is open in a neighborhood of (0, 0). As V is contained in Ker dF (0) (since
v is an isotropic vector for the restricted Hessian), it is necessarily mapped into

Coker dF (0), which is spanned by πCoker dF (0)

(
∂3F
v3 (0)

)
.

By the first-order Open Mapping Theorem, we know that the restriction of F
to Coim dF (0)

Coim dF (0)
F−→ Im dF (0)

is open at 0. The key point was to prove that also the restriction of F to V

V
F−→ spanR{π

(
∂3F

v3
(0)

)
}

is open at 0.

The generalization to the arbitrary corank case is now straightforward.

Theorem 4.3. Let n,N be positive integers with N ≥ n, and let F : RN → Rn
be a smooth map with F (0) = 0 and let r be the corank of dF (0). Suppose that the
restricted Hessian of F at 0

HF (0) : Ker dF (0)→ Coker dF (0)

is semidefinite and that the isotropic space of HF at 0

IsoHF (0) = {w ∈ Ker dF (0) : HF (0)[w] = 0}

is nontrivial. If there exist r vectors v1, . . . , vr in IsoHF (0) such that the pro-
jected third-order derivatives of F over Coker dF (0) along each vj

πCoker dF (0)

(
∂3F

v3
1

(0)

)
, πCoker dF (0)

(
∂3F

v3
2

(0)

)
, . . . , πCoker dF (0)

(
∂3F

v3
r

(0)

)
are linearly independent vectors, then F is open at 0.
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Proof. We proceed by finite induction over r.
The case r = 1 is Theorem 4.1. If the thesis holds true for r − 1, we set, for

j = 1, . . . , r, Vj = spanR{vj}, Wj = spanR{πCoker dF (0)

(
∂3F
v3j

(0)
)
} and we consider

Coim dF (0)⊕ V1 ⊕ · · · ⊕ Vr
F−→ Im dF (0)⊕W1 ⊕ · · · ⊕Wr.

By inductive hypotesis F is open at 0 from Coim dF (0) ⊕ V1 ⊕ · · · ⊕ Vr−1 to
(necessarily) Im dF (0) ⊕W1 ⊕ · · · ⊕Wr−1, since each Vj is mapped into Wj , see
Remark 4.2. But then we are as in the case of corank 1 and, applying Theorem 4.1
again we conclude that F is open at 0. �

Remark 4.4. If r vectors v1, . . . , vm as in the above Theorem exist, they need

to be linearly independent since the map v 7→ πCoker dF (0)

(
∂3F
v3 (0)

)
is smooth. This

implies that a necessary condition for the openness of F at 0 is that IsoHF (0) must
have dimension at least r as a vector space.

The Theorem we are looking for now descends easily from Theorem 4.3.

Theorem 4.5 (A Third-Order Open Mapping Theorem). Let X be a Banach
space, x0 a point in X, Y ≈ Rn be a finite dimensional normed space of dimension
n and let F : X → Y be a smooth map. Suppose that dF (x0) has corank r, that the
restricted Hessian of F at x0

HF (0) : Ker dF (x0)→ Coker dF (x0)

is semidefinite and that the isotropic space of HF at x0

IsoHF (x0) = {w ∈ Ker dF (x0) : HF (x0)[w] = 0}
is nontrivial. If there exist r vectors v1, . . . , vr in IsoHF (x0) such that the

projected third-order derivatives of F over Coker dF (x0) along each vj

πCoker dF (x0)

(
∂3F

v3
1

(x0)

)
, πCoker dF (x0)

(
∂3F

v3
2

(x0)

)
, . . . , πCoker dF (x0)

(
∂3F

v3
r

(x0)

)
are linearly independent vectors, then F is open at x0.

Proof. We suppose x0 = 0. If this is not the case, we just compose F with a
translation that, being a homeomorphism, does not affect the openness of F at x0.

Set, for j = 1, . . . , r, Vj = spanR{vj} and consider the restriction of F

Coim dF (0)⊕ V1 ⊕ · · · ⊕ Vr
F−→ Im dF (0)⊕W1 ⊕ · · · ⊕Wr.

It is sufficient to prove that this restriction is open at 0 (the zero vector in the
finite dimensional space) because then a fortiori F will be open at 0 in X. Since
the range space is finite dimensional, Coim dF (0) is finite dimensional, and so one
may suppose that X itself is finite dimensional. But then the result is proved by
Theorem 4.3. �

4.2. Third-Order Derivatives of the End-Point Mapping

Theorem 4.5 fully applies to our situation and provides necessary conditions for
length-minimizing curves to satisfy, or equivalently sufficient conditions for a curve
to be nonminimizing. Namely (we use the notation and definitions introduced in
Sections 3.1 and 3.2 of Chapter 3):
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. Let γ : [0, 1]→ Rn be a D-horizontal curve with extremal points x0 and x1 and

control h. If dÊ(h) has corank r and the restricted Hessian HÊ(h) is semidefinite,
if we can find r vectors v1, . . . , vr in IsoHÊ(h) such that

πCoker dÊ(h)

(
∂3Ê
v3

1

(h)

)
, πCoker dÊ(h)

(
∂3Ê
v3

2

(h)

)
, . . . , πCoker dÊ(h)

(
∂3Ê
v3
r

(h)

)

are linearly independent, then Ê is open at h, and thus γ is not a length-minimizing
curve.

We want to demonstrate the applicability of our result by proving the nonmin-
imality of the abnormal extremal γ, discussed in Section 2.4, Chapter 2 when m is
3. Recall that since γ is not a regular abnormal extremal, according to Definition
2.1.

First of all, we deduce handful formula for the third-order derivative of Ê at h.
We resume from (3.15). Differentiating with respect to s once more, we obtain

∂3

∂s3
Êt(h+ sv) = 3

∫ t

0

∂2

∂s2
Ψτ,v(Êτ (h+ sv))dτ + s

∫ t

0

∂3

∂s3
Ψτ,v(Êτ (h+ sv))dτ

so

∂3

∂s3
Ê(h+ sv)

∣∣∣∣∣
s=0

= 3

∫ 1

0

∂2

∂s2
Ψτ,v(Êτ (h+ sv))

∣∣∣∣∣
s=0

dτ =

3

∫ 1

0

d2
xΨτ,v(x0)

( ∂

∂s
Êτ (h+ sv)

∣∣∣∣∣
s=0

)2
+ dxΨτ,v(x0)

[
∂2

∂s2
Êτ (h+ sv)

∣∣∣∣∣
s=0

]
dτ.

We are interested in the case v ∈ IsoHÊ(h), in particular v is in Ker dÊ(h), so
condition (3.17) holds. As a consequence, we can perform the following computation
on the first term:

∫ 1

0

d2
xΨτ1,v(x0)

[
∂

∂s
Êτ1(h+ sv)

∣∣∣∣∣
s=0

,
∂

∂s
Êτ1(h+ sv)

∣∣∣∣∣
s=0

]
dτ1 =

∫ 1

0

d2
xΨτ1,v(x0)

[∫ τ1

0

Ψτ2,v(x0)dτ2,

∫ τ1

0

Ψτ3,v(x0)dτ3

]
dτ1 =

−
∫ 1

0

d2
xΨτ1,v(x0)

[∫ 1

τ1

Ψτ2,v(x0)dτ2,

∫ τ1

0

Ψτ3,v(x0)dτ3

]
dτ1 =

−
∫ 1

0

∫ 1

τ1

d2
xΨτ1,v(x0)

[
Ψτ2,v(x0),

∫ τ1

0

Ψτ3,v(x0)dτ3

]
dτ2dτ1 =

−
∫ 1

0

∫ τ

0

d2
xΨτ1,v(x0)

[
Ψτ2,v(x0),

∫ τ1

0

Ψτ3,v(x0)dτ3

]
dτ1dτ2 =

rename the variables t and τ to obtain

−
∫ 1

0

∫ τ1

0

∫ τ2

0

d2
xΨτ2,v(x0) [Ψτ1,v(x0),Ψτ3,v(x0)] dτ3dτ2dτ1.

As for the second term, we just use (3.16):
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∫ 1

0

dxΨt,v(x0)

[
∂2

∂s2
Êt(h+ sv)

∣∣∣∣∣
s=0

]
dt =

∫ 1

0

dxΨt,v(x0)

[
2

∫ t

0

∫ τ

0

dxΨτ,v(x0)[Ψσ,v(x0)]dσdτ

]
dt

2

∫ 1

0

∫ τ1

0

∫ τ2

0

dxΨτ1,v(x0)[dxΨτ2,v(x0)[Ψτ3,v(x0)]]dτ3dτ2dτ1.

So, for any v in Ker dÊ(h) we have

∂3Ê
∂v3

(h) = 3

∫ 1

0

∫ τ1

0

∫ τ2

0

− d2
xΨτ2,v(x0) [Ψτ1,v(x0),Ψτ3,v(x0)]

+ 2dxΨτ1,v(x0)[dxΨτ2,v(x0)[Ψτ3,v(x0)]]dτ3dτ2dτ1.

We turn to our specific extremal. Recall that the curve is γ(t) = (0, t, 0) with
control h = (0, 1) for the distribution spanned in R3 by the vector fields defined by
(2.10). We follow the scheme outlined in Subsection 3.2.1 of Chapter 3.

Step 1: computation of the flow Φt,v. We compute the vector field Φt =
(Φ1

t ,Φ
2
t ,Φ

3
t ) solution of the Cauchy problem{

Φ̇t(x) = h1X1(Φt(x)) + h2X2(Φt(x))

Φ0(x) = x

that is 
Φ̇1
t (x) = 0

Φ̇2
t (x) = 1− Φ1

t

Φ̇3
t (x) = (Φ1

t (x))3

(Φ1
0(x),Φ2

0(x),Φ3
0(x)) = (x1, x2, x3).

The integration of this system is elementary and the solution is

Φt(x) = (x1, x2 + t(1− x1), x3 + tx3
1).

Step 2: computation of Ψt,v and dÊ(h). We compute Ψt,v defined in formula
(3.14). The Jacobian matrix with respect to the space variable of Φt is

(4.11) DxΦt(x) =

 1 0 0
−t 1 0

3tx2
1 0 1


whose inverse is

DxΦt(x)−1 =

 1 0 0
t 1 0

−3tx2
1 0 1


so

Ψt,v(x) = DxΦt(x)−1[v(t) ·X(Φt(x))]

=

 1 0 0
t 1 0

−3tx2
1 0 1

 v1(t)
v2(t)(1− x1)
v2(t)(x3

1)

 =

 v1(t)
tv1(t) + v2(t)(1− x1)
−3tv1(t)x2

1 + v2(t)x3
1

 .
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The initial point is x0 = 0, so

(4.12) dÊ(h)[v] =

∫ 1

0

Ψτ,v(0)dτ =

(∫ 1

0

v1(τ)dτ,

∫ 1

0

τv1(τ) + v2(τ)dτ, 0

)
.

From this expression it is clear that Coker dÊ(h) ' (Im dÊ(h))⊥ = spanR{λ}
with λ = (0, 0, 1), in particular the corank of this extremal is one.

Step 3: Computation of the restricted Hessian HÊ(h). We want to determine

the restricted hessian of Ê at h given by

HÊ(h)[v] =
〈
λ,Hess Ê(h)[v]

〉
for v in Ker dÊ(h). The formula for Hess Ê(h) is (3.18). Recalling formula (0.2)

for the commutator, we compute

DxΨτ1,v(0)[Ψτ2,v(0)] =

 0 0 0
−v2(τ1) 0 0

0 0 0

 v1(τ2)
τ2v1(τ2) + v2(τ2)

0

 =

 0
−v2(τ1)v1(τ2)

0

 .

A similar result is obtained for DxΨτ2,v(0)[Ψτ1,v(0)] exchanging the roles of τ2
and τ1. In any case, it is clear that the x3 component of the Hessian is zero, and

thus HÊ(h)[v] =
〈
λ,Hess Ê(h)[v]

〉
= 0. In particular this trivial restricted Hessian

is semidefinite.

Step 4: third-order derivatives of Ê at h. We compute now the third-order
derivatives of Ê at h using (4.2). Looking at the Jacobian matrix of Ψt,v (4.11), it
is clear that

∂2Ψk
t,v

∂xixj
(0) = −6tv1(t) when k = 3 and i, j = 1

and zero for any other i, j, k. Moreover, the second term in the integral (4.2)
has, as before, no x3 component, so we conclude that

πCoker dÊ(h)

(
d3Ê(h)[v3]

)
=

∫ 1

0

∫ τ1

0

∫ τ2

0

∂2Ψ3
τ2,v

∂x2
1

(0)Ψ1
τ1,v(0)Ψ1

τ3,v(0)dτ3dτ2dτ1

=

∫ 1

0

∫ τ1

0

∫ τ2

0

(−6τ2v1(τ2)v1(τ1)v1(τ3)) dτ3dτ2dτ1.

To conclude, we just need to find a control v = (v1, v2) in Ker dÊ(h) (i.e. such
that (4.12) vanishes) such that this last expression is not zero. For example, we
may take v1(t) = sin(2πt) or v2(t) = sgn(t) and v2(t) = −tv1(t).

We have proven through Theorem 4.5 that Ê is open at h, and consequently
that the abnormal extremal γ found in Section 2.4 is not length-minimizing for the
distribution when m = 3.

Remark 4.6. According to our knowledge on the subject, we do not know any
alternative way of proving this result. We also point out that, when the integer m
in the definition of D is greater than 3 and odd, the third-order derivatives of Ê
at h vanish, as can be easily deduced, and we cannot draw any conclusion using
Theorem 4.5.



APPENDIX A

Statement of the Pontryagin Maximum Principle

In this appendix we state precisely the Pontryagin Maximum Principle (PMP)
along with the necessary definitions. A reference book is, for example, [6].

A.0.1. The minimization problem. Approximating cones. We start
with the following minimization problem:

(A.1)

Minimize I(x, h) = g(x(b)) +

∫ b

a

L(t, x(t), u(t))dt

with


ẋ(t) = f(t, x(t), u(t))

x(a) = x̄

x(b) ∈ S
h(·) ∈ U

where:

• S is a subset of Rn, called target
• U is a family of curves, called controls from [a, b] to a set U , the set of

control values, that can be of many kinds, e.g. a subset of Rn, {−1, 1} or
a subset of some infinite dimensional vector space

• f : [a, b]× Rn × U → Rn, g : Rn → Rn and L : [a, b]× Rn × U → Rn are
maps called, respectively, the dynamics and the Lagrangian of the system

The associated Hamiltonian is H : [a, b]× (Rn+1)∗ × Rn × U → R defined by

(A.2) H(t, λ0, λ, x, u) = 〈λ, f(t, x, u)〉 − λ0L(t, x, u).

We are then given a reference control u∗ and the following further conditions:

• U is a needle variational neighborhood of u∗, in the following sense: given
any elements u1, . . . , uk of U , there exists a sufficiently small α > 0 such
that, if I1, . . . , Ik are pairwise disjoint closed subintervals of [a, b] with∑k
i=1 |Ik| < α, then

(A.3) u∗ +

k∑
i=1

χIi(ui − u∗) ∈ U

• for any control u(·) which is constant or equal to u∗(·) the vector field
G : A = [a, b]× Rn → Rn+1 given by

(A.4) G(t, x) = (L(t, x, u(t)), f(t, x, u(t)))

satisfies the C1-Caratheodory conditions:
(A1): for any x ∈ Rn such that the x-section Ax = {t ∈ [a, b] : (t, x) ∈
A} is not empty, the x-section of G, t 7→ G(t, x) is measurable; the
same, symmetric condition must hold also when taking the t-sections
for any t in [a, b]
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44 A. STATEMENT OF THE PONTRYAGIN MAXIMUM PRINCIPLE

(A2): for any compact set Q in A, there exists L1 maps φQ, ψQ : R→
[0,+∞[ such that for any (t, x), (t, y) in Q

(A.5)

{
|G(t, x)| ≤ φQ(t)

|G(t, x)−G(t, y)| ≤ ψQ(t)|x− y|

Definition A.1. An optimal pair is a couple (x∗, u∗) consisting of an admis-
sible curve x∗ and a control u∗ ∈ U that attains the minimum in (A.1), that is
I(x∗, u∗) ≤ I(x, u) for any other admissible curve x and control u ∈ U .

Let X be a real vector space. A subset C ∈ X is called cone if it is closed
under multiplication by nonnegative scalars, that is, if v ∈ C and α ∈ [0,+∞[ then
αx ∈ C.
Given a cone C its polar cone C⊥ ⊆ X∗ is defined by

(A.6) C⊥ = {p ∈ X∗ : 〈p, v〉 ≥ 0 ∀v ∈ C}
We will now deal with convex cones.

Definition A.2. Let S be any subset of Rn and s ∈ S. A convex cone K ∈ Rn
is called a (Boltyanskii) approximating cone to S at s if for some integer ν there
exists a convex come C ⊆ Rν , an open neighborhood of 0 in Rν and a continuous
map F : V ∩C → S such that F (0) = s, F admits directional derivatives in 0 along
the vectors of C and {∂vF (0) : v ∈ C} = K.

For example, if S is a smooth manifold in Rn, any convex cone contained in
TsS is an approximating cone for S at s. We also note that in the trivial case
S = {s} the only possible approximating cone is the null space {0}. We will be
dealing with this situation in the future.

A.0.2. Statement of the theorem. We are now ready to state the Maxi-
mum Principle.

Theorem A.3 (The Pontriagyn Maximum Principle). Let (x∗, u∗) be an op-
timal pair and let C be and approximating cone to S in x∗(b). There exists an
absolutely continuous dual curve λ : [a, b]→ T ∗Rn along x∗ and a constant λ0 ≥ 0
such that

adjoint equation: for all t ∈ [a, b]

(A.7) λ̇(t) = −
( 〈
dxf(t, x∗(t), u∗(t))

T , λ(t)
〉
− λ0dxL(t, x∗(t), u∗(t))

)
maximization: for a.e. t ∈ [a, b]

(A.8) H(t, λ0, λ(t), x∗(t), u∗(t)) = max
u∈U
H(t, λ0, λ(t), x∗(t), u)

nontriviality: for all t ∈ [a, b]

(A.9) (λ0, λ(t)) 6= (0, 0)

transversality: if C⊥ denotes the polar cone of C (see eq. (A.6))

(A.10) λ(b) + λ0dg(x(b)) ∈ C⊥.

The curve λ is called dual curve associated with γ. If we replace H with H′ :
[a, b]× (Rn+1)∗ × Rn × U → R defined by

(A.11) H(′t, λ0, λ, x, u) = 〈λ, f(t, x, u)〉+ λ0L(t, x, u),

the maximization condition (A.8) can be proven to be equivalent to the following:

minimization: for a.e. t ∈ [a.b]

(A.12) H′(t, λ0, λ(t), x∗(t), u∗(t)) = min
u∈U
H′(t, λ0, λ(t), x∗(t), u).



APPENDIX B

Open Mapping Theorems

In this Appendix we state two Theorem, along with the necesasry notation
and references, that present sufficient conditions for a smooth mapping to be open.
We do not state them in a full generality, rather, in a formulation adapted to our
contest.

Recall that a map between topological spaces F : X → Y is called open if it
maps open sets into open sets. If x ∈ X, F is said to be open at x is there exist
an open neighborhood U of x in X such that F

∣∣
U

is open. The classical theorem
is the following.

Theorem B.1 (The Open Mapping Theorem). Let X and Y be Banach spaces
and let L : X → Y be a linear and continuous map. Then, if it is surjective, it is
an open mapping.

A proof can be found in many textbooks of Functional Analysis, see for example
Theorem 5.10, Chapter 5 of [11]. We are interested in the case when Y is finite
dimensional, in what follows we state theorems under this assumption.

Theorem B.2. Let X and Y be normed spaces, Y be finite dimensional, and
let Ω be an open subset of X. Let x be in Ω and F : Ω→ Y be smooth map. If its
differential at x, dF (x) : X → Y , is surjective, than F is open at x.

The proof is a direct consequence of Theorem B.1 and of the Inverse Function
Theorem.

B.1. Second-order conditions

We first recall some definitions about quadratic form over vector spaces.
Given two real vector spaces V and W , a symmetric bilinear map from V

to W is a map B : V × V → W such that it is linear in each argument and
B(v, v′) = B(v′, v) for any v, v′ in V . The quadratic form associated with B is
the map QB : V → W defined by QB(v) = B(v, v) for any v ∈ V . Viceversa a
quadratic form Q completely determines the bilinear symmetric form to which it is
associated by the formula B(v, v′) = 1

2 (Q(v + v′)−Q(v)−Q(v′)).
A real quadtratic form Q : V → R is said to be positive semidefinite if Q(v, v) ≥

0 for any v ∈ V , and positive definite if Q(v, v) > 0 for any v in V \ {0}. When
a quadratic form is positive semidefinite (resp. positive definite) one often writes
Q ≥ 0 (resp. Q > 0).

Definition B.3. Given a quadratic form Q : V →W and a covector λ ∈W ∗,
the λ-index of Q is the (possibly infinite) nonnegative integer indλQ defined by

(B.1) indλQ = max{dimU : U is a subspace of V so that λ ◦Q > 0 on U}.
The index of Q is the (possibly infinite) nonnegative integer indQ defined by

(B.2) indQ = min{indλQ : λ ∈W ∗ \ {0}}.
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The fundamental example is when V = Rn and W = R. In this situation any
nonzero covector λ consists of a multiplication by a nonzero real number. So, if
Q is a quadratic form with eigenvalues µ1, . . . µn, its index is the maximum k ∈ N
such that there exist k positive eigenvalues and k negative eigenvalues between
µ1, . . . µn.

Now recall also the definitions of Cokernel and Hessian matrix given in Notation
and Conventions 0.0.1 and 0.0.2. Given two normed spaces X and Y , an open set
Ω in X, a point x in Ω and a C2 map F : Ω → Y , the restricted Hessian of F at
the point x is the quadratic form obtained first by restricting it to Ker dF (x), then
projecting it to Coker dF (x). In other words, if

• ·
∣∣
Ker dF (x)

is the restriction from X to Ker dF (x)

• πCoker dF (x) is the canonical projection from Y to Coker dF (x)

(B.3) HF (x) : Ker dF (x)→ Coker dF (x)

is defined to be HF (x) = πCoker dF (x)

(
HessF (x)

∣∣
Ker dF (x)

)
.

Theorem B.4 (A Second-Order Open Mapping Theorem). Let X and Y be
Banach spaces, Y be finite dimensional, and let Ω be an open subset of X. Let x
be in Ω and F : Ω→ Y be a smooth map. Let r = corank dF (x). If indHF (x) ≥ r,
then F is open at x.

This theorem is a particular case of Theorem 20.6 in Chapter 20 of [8], and a
proof can be found therein.
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