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Introduction

The aim of this thesis is to prove the C1,γ-regularity of (Λ, r0)-perimeter minimizers
for all γ ∈ (0, 1/2).

We are discussing a particular instance of the broader issue of regularity of area
minimizing rectiőable currents. The őeld was developed mainly by:

• Ennio De Giorgi with his paper Frontiere orientate di misura minima (1960-
61);

• Frederick Justin Almgren Jr. with his paper Q-valued functions minimizing
Dirichlet’s integral and the regularity of area minimizing rectifiable currents
up to codimension two (1983).

In the presentation of the topics we will follow the structure of the proof as
in the book Sets of Finite Perimeter and Geometric Variational Problems, An
Introduction to Geometric Measure Theory by Francesco Maggi, drawing mostly
from Part III. In the book, the partial regularity theory diverges from De Giorgi’s
original approach, drawing inspiration instead from the contributions of Almgren,
alongside several other inŕuential authors such as Allard, Bombieri, Federer, Schoen,
Simon, and more in the study of area minimizing currents and stationary varifolds.
The resulting proofs only rely on direct comparison arguments and on geometrically
viewable constructions.

Chapter 1 introduces the concept of perimeter, offering an implicit deőnition
independent of boundary considerations. It proceeds to deőne the focal subject
of study: (Λ, r0)-perimeter minimizers. Additionally, a fundamental quantity, the
cylindrical excess

e(E, x, r, v) =
1

rn−1

ˆ

C(x,r,v)∩∂∗E

|νE(y)− v|2
2

Hn−1(y),

is introduced and its essential properties brieŕy discussed, given its pivotal role
across subsequent proofs.

Then, we state and prove the height bound Lemma 1.8, a crucial proposition
enabling us to control the boundary’s height within a cylinder with the cylindrical
excess observed on a larger cylinder raised to the power of 1/2(n− 1) multiplied by
the radius of the cylinder. This proof entails considerable length and necessitates
two intermediary lemmas.
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2 CONTENTS

Then the chapter presents the Lipschitz Lemma 1.9, which ensures the existence
of a Lipschitz function, denoted as u, that covers a signiőcant part of C(x0, r)∩∂E,
showing near-harmonic behavior. The őrst part of the lemma establishes that the
difference between C(x0, r)∩∂E and the set x0+{(z, u(z)) : z ∈ Dr} is limited by a
constant times rn−1 multiplied by en(x0, 9r). The second part demonstrates that the
quantity 1

rn−1

´

Dr
|∇′u|2 is bounded by a constant relative to the excess on a larger

radius cylinder. The chapter concludes stating the reverse Poincaré inequality.
In Chapter 2, two useful lemmas for harmonic functions are veriőed initially.

Subsequently, attention is directed towards another pivotal lemma: the excess impro-
vement by tilting Theorem 2.3. This lemma establishes the existence (given α <
1/72) of v0 ∈ S

n−1 such that e(x0, αr, v0) ≤ C(n)(α2e(x0, r, v) + αΛr).
Chapter 3 culminates with the proof of the C1,γ-regularity Theorem: initially we

employ the excess improvement by tilting Theorem 2.3 to establish the Lemma 3.11
for the regularity theorem. This lemma is then utilized iteratively in conjunction
with the height bound Lemma 1.8 and with the Lipschitz approximation Theorem
1.9 to conclude the regularity theorem.



Chapter 1

Notation and preliminary results

In this chapter we present the key premises to prove the C1,γ-regularity. In the
őrst section we introduce perimeter, (Λ, r0)-perimeter minimizers, the excess and its
properties and the lower density estimate Theorem. In the second section we prove
in detail the height bound Lemma 1.8. In the third section we state without proof
the Lipschitz approximation Lemma 1.9.

1.1 Perimeter and excess

We want to give a deőnition of perimeter and of sets of (locally) őnite perimeter.
The topological boundary of a set is a notoriously bizarre object, that often has a
much more complicated structure than the set itself. For this reason, our deőnition
of "perimeter" is implicit and does not call in the boundary. The idea behind the
deőnition of the perimeter is the divergence theorem on E open set of class C1, so
that:

P (E) = sup

{
ˆ

∂E

T (x) · νE dHn−1 : T ∈ C1
c (R

n;Rn), sup
Rn

|T | ≤ 1

}

= sup

{
ˆ

E

div T (x) dx : T ∈ C1
c (R

n;Rn), sup
Rn

|T | ≤ 1

}

.

Deőnition 1.1 (Sets of locally őnite perimeter). Let E ⊂ R
n be a Lebesgue measurable

set, we say that E is a set of locally finite perimeter in R
n if for every compact set

K ⊂ R
n it holds

sup

{
ˆ

E

div T (x) dx : T ∈ C1
c (R

n;Rn), sptT ⊂ K, sup
Rn

|T | ≤ 1

}

< ∞. (1.1)

If this quantity is bounded independently of K, we call E a set of finite perimeter in
R

n.

Deőnition 1.2 (Gauss-Green measure and its existence). Let E ⊂ R
n be a Lebesgue

measurable set. Then E is a set of locally finite perimeter if and only if there exists

3
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an R
n-valued Radon measure on R

n µE such that
ˆ

E

div T (x) dx =

ˆ

Rn

T · dµE, ∀T ∈ C1
c (R

n;Rn). (1.2)

Moreover, E is set of finite perimeter if and only if |µE|(Rn) < ∞. We call such µE

the Gauss-Green measure of E.

Proof. See [MAG], Proposition 12.1, pp.122-123.

Deőnition 1.3 (Perimeter). Given a set E ⊂ R
n of locally finite perimeter we

define the relative perimeter of E in F ⊂ R
n, and the perimeter of E, as

P (E;F ) = |µE|(F ), P (E) = |µE|(Rn). (1.3)

We will usually work with reduced boundaries, as they encapsulate more efficiently
the structure of the set underneath.

Deőnition 1.4 (Reduced boundary). Given a set E ⊂ R
n of locally finite perimeter

the reduced boundary ∂∗E is the set of those x ∈ sptµE such that: limr→0+
µE(B(x,r))
|µE |(B(x,r))

exists and belongs to Sn−1.

Deőnition 1.5 (Measure-theoretic outer unit normal). Given a set E ⊂ R
n of

locally finite perimeter we may define νE : ∂∗E → S
n−1 by setting:

νE(x) = lim
r→0+

µE(B(x, r))

|µE|(B(x, r))
, x ∈ ∂∗E.

Now we introduce local perimeter minimizers.

Deőnition 1.6 (Local perimeter minimizer). Given an open set A and a set of
locally finite perimeter E ⊂ R

n, we say that E is a local perimeter minimizer at
scale r0 in A if whenever x ∈ A and E∆F ⊂⊂ B(x, r0) ∩ A,

P (E;A) ≤ P (F ;A).

Finally we introduce (Λ, r0)-perimeter minimizers: sets such that the volume
change produced by any variation F of E that is compactly supported in a ball of
radius r0 is controlled by Λ multiplied by the volume of the symmetric difference
between E and F .

Deőnition 1.7 ((Λ, r0)-perimeter minimizer). Given an open set A and a set of
locally finite perimeter E ⊂ R

n, n ≥ 2, we say that E is a (Λ, r0)-perimeter
minimizer in A if there exist two constants Λ and r0 with 0 ≤ Λ < ∞ and r0 > 0
such that

P (E;B(x, r)) ≤ P (F ;B(x, r)) + Λ|E∆F |,
whenever E∆F ⊂⊂ B(x, r) ∩ A and r < r0.

Observe that:
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• if E is a (Λ, r0)-perimeter minimizer with Λ = 0 then E is trivially a local
perimeter minimizer at scale r ∀r < r0.

• if E is a (Λ, r0)-perimeter minimizer up to modiőcation on sets of measure
zero we have

sptµE = ∂∗E = ∂E.

Proof. E is a local perimeter minimizer for the previous observation and the
condition holds because of [MAG], Remark 15.3, pp.167-168.

Let C(x, r, v) be cylinder of axis passing through x parallel to v and radius r,
and νE(y) is the vector normal to ∂E at y.

Deőnition 1.8 (Cylindrical and spherical excess). Let E ⊂ R
n be a set of locally

finite perimeter. The cylindrical excess of E at the point x ∈ ∂E, at scale r > 0,
and with respect to the direction v ∈ S

n−1 , is defined as

e(E, x, r, v) =
1

rn−1

ˆ

C(x,r,v)∩∂∗E

|νE(y)− v|2
2

dHn−1(y)

=
1

rn−1

ˆ

C(x,r,v)∩∂∗E

(1− (νE(y) · v))dHn−1.

(1.4)

The spherical excess of E at the point x ∈ ∂E and the scale r > 0 is similarly
defined as

e(E, x, r) = min
v∈Sn−1

1

rn−1

ˆ

B(x,r)∩∂∗E

|νE(y)− v|2
2

dHn−1(y).
(1.5)

The cylindrical excess measures the discrepancy between the actual perimeter
of E and the perimeter of the hyperplane passing through x and orthogonal to v
and the spherical excess works in a similar way. Now we prove three fundamental
properties of excess:

• when a set is scaled by a factor r and translated, the excess remains unchanged;

• the excess of a set at a smaller scale s is bounded by the excess at a larger

scale r scaled by a factor of
(

r
s

)n−1
;

• the excess in a direction v can be bounded by a constant times the excess at
a larger scale

√
2r in a direction v0 plus the squared difference between v and

v0.

Proposition 1.1 (Scaling of the excess). Let E ⊂ R
n be a set of locally finite

perimeter, x ∈ ∂E, r > 0, v ∈ S
n−1, then (with Ex,r =

E−x
r

)

e(E, x, r, v) = e(Ex,r, 0, 1, v),

e(E, x, r) = e(Ex,r, 0, 1).
(1.6)
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Proof. We observe that for the őrst formula we have

e(E, x, r, v) =
1

rn−1

ˆ

B(x,r)∩∂∗E

(1− v · νE)dHn−1(y)

=
|µE|(C(x, r, v))− v · µE(C(x, r, v)

rn−1
.

So it is clear that (see [MAG], Lemma 15.11, p.171 for further details)

e(E, x, r, v) = |µEx,r|(C(0, 1, v))− v · µEx,r(C(0, 1, v) = e(Ex,r, 0, 1, v).

Similarly for the spherical excess we have

e(E, x, r) = min
v∈Sn−1

|µE|(C(x, r, v))− v · µE(C(x, r, v)

rn−1

= min
v∈Sn−1

|µE|(C(x, r, v))− |µE(C(x, r, v)|
rn−1

.

and we conclude.

Proposition 1.2 (Excess at different scales). Let E ⊂ R
n be a set of locally

finite perimeter, x ∈ ∂E, r > s > 0, v ∈ S
n−1, then

e(E, x, s, v) ≤
(r

s

)n−1

e(E, x, r, v). (1.7)

Proof. Trivial.

Proposition 1.3 (Excess and changes of direction). For n ≥ 2, there exists a
constant C(n) such that if E is a (Λ, r0)-perimeter minimizer in the open set A ⊂ R

with Λr0 ≤ 1, then for x ∈ A ∩ ∂E, B(x, 2r) ⊂⊂ A and v, v0 ∈ S
n−1 it holds

e(E, x, r, v) ≤ C(n)
(

e(E, x,
√
2r, v0) + |v − v0|2

)

. (1.8)

Proof. Since |νE−v|2
2

≤ |νE − v0|2 + |v − v0|2 and C(x, r, v) ⊂ C(x,
√
2r, v0),

e(E, x, r, v) ≤ 2

rn−1

ˆ

C(x,
√
2r,v0)∩∂∗E

|νE(y)− v0|2
2

dHn−1(y)

+
2

rn−1

ˆ

C(x,
√
2r,v0)∩∂∗E

|v0 − v|2
2

dHn−1(y)

=
2

rn−1

ˆ

C(x,
√
2r,v)∩∂∗E

|νE(y)− v0|2
2

dHn−1(y) + |v − v0|2
P (E;C(x, r, v))

rn−1
.

So, since (by [MAG], Remark 21.12, p.283) P (E;C(x,r,v))
rn−1 ≤ C(n), we deduce that

e(E, x, r, v) ≤ 2e(E, x,
√
2r, v0)+C(n)|v− v0|2 ≤ C(n)

(

e(E, x,
√
2r, v0)+ |v− v0|2

)

.
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Theorem 1.4 (Lower density estimate). If n ≥ 2, there exists a positive constant
c(n) such that if E is a (Λ, r0)-perimeter minimizer in the open set A ⊂ R

n and
Λr0 ≤ 1, then

c(n)rn−1 ≤ P (E,B(x, r)). (1.9)

Proof. See [MAG], Theorem 21.11, pp.282-284.
We now state Campanato’s criterion, a cornerstone in the regularity theory

for variational problems because it characterizes Hölder continuity in terms of the
uniform decay of certain integral averages. We shall use this criterion in Section 3.2.

We set

(u)x,r =
1

|B ∩ B(x, r)|

ˆ

B∩B(x,r)

u, x ∈ B, r > 0.

Theorem 1.5 (Campanato’s criterion). If n ≥ 1, p ∈ [1,∞), γ ∈ (0, 1], then
there exists a constant C(n, p, γ) such that if u ∈ Lp(B), and there exists a constant
κ such that

(

1

rn

ˆ

B∩B(x,r)

|u− (u)x,r|p
)1/p

≤ κrγ

holds true, then there exists a function ū : B → R with ū = u a.e. on B and

|ū(x)− ū(y)| ≤ C(n, p, γ)κ|x− y|γ, ∀x ∈ B.

Proof. See [MAG], Theorem 6.1, pp.64-65.

1.2 The height bound

We now begin to analyze some őrst consequences of a small cylindrical excess
assumption. We aim to prove the height bound Lemma, a fundamental estimate
relating the height of a perimeter minimizer to his cylindrical excess. We divide
the proof in several lemmas, the starting point is small-excess position Lemma 1.6,
which we prove by a compactness argument, then in excess measure Lemma 1.15
these geometric properties are combined with the divergence theorem to introduce
the notion of excess measure. Finally combining the two together we prove the
height bound Lemma 1.8

Let q denote the projection of Rn−1 ×R on R, (x1, x2, ..., xn) 7→ xn and p denote
the projection of Rn−1 × R on R

n−1, (x1, x2, ..., xn) 7→ (x1, ..., xn−1).

Lemma 1.6 (Small-excess position). For n ≥ 2 and t0 ∈ (0, 1), there exists a
positive constant w(n, t0) such that:

if E is a (Λ, r0)-perimeter minimizer in C2 with Λr0 ≤ 1, 0 ∈ ∂E, and en(E, 0, s) ≤
w(n, t0), then

|qx| < t0, ∀x ∈ C ∩ ∂E, (1.10)
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|{x ∈ C ∩ E : qx > t0}| = 0,

|{x ∈ C \ E : qx < −t0}| = 0.

Proof. Let us argue by contradiction. Let us consider a sequence {Eh}h∈N of a
(Λ, r0)-perimeter minimizers in C2 such that Λr0 ≤ 1, limh→∞ e(Eh, 0, 2, en) = 0,
0 ∈ ∂Eh ∀h ∈ N and at least one of the following conditions holds true for inőnitely
many h ∈ N:

either |{x ∈ C ∩ ∂Eh : t0 ≤ |qx| ≤ 1}| ≠ ∅,
or |{x ∈ C ∩ Eh : qx > t0}| > 0,

or |{x ∈ C \ Eh : qx < −t0}| > 0.

(1.11)

By properties of sequences of (Λ, r0)-perimeter minimizers, there exists a set of
őnite perimeter F ∈ C5/3, which is a (Λ, r0)-perimeter minimizers in C5/3, such that
0 ∈ ∂F and, up to extracting subsequences, Eh ∩ C5/3 → F . Because C4/3 is a
compact subset of C5/3 he lower semicontinuity of the excess implies that

e(F, 0, 4/3, en) ≤ lim inf
h→∞

e(F, 0, 4/3, en) ≤
(3

2

)n−1

lim
h→∞

e(Eh, 0, 2, en) = 0.

Since 0 ∈ ∂F and e(F, 0, 4/3, en) = 0, we deduce that F ∩ C4/3 is equivalent to
C4/3 ∩ {qx < 0}. If (1.11.1) were valid for inőnitely many values of h ∈ N, we
would have that up to extracting a subsequence, we may construct {xh}h∈N with
xh ∈ C ∩ ∂Eh, t0 ≤ |qxh| ≤ 1 and xh → x0, for some x0 ∈ C ∩ ∂F . In particular, we
would have that C4/3 ∩ ∂F ∩ {|qx| ≥ t0} = ∅, which contradicts the formula above.

So it exists h0 ∈ N such that ∀h ≥ h0 holds {x ∈ C ∩ ∂Eh : t0 ≤ |qx| ≤ 1} = ∅
and |µC∩Eh

| = |µC | E
(1)
h + |µEh

| (C ∪ {νEh
= νC}).

We thus őnd that, for h ≥ h0 we have |µC∩Eh
|({x ∈ C : t0 < |qx| < 1}) = 0

. With 1C∩Eh
constant on {x ∈ C : t0 < qx < 1} and, for the same reason, 1C∩Eh

constant on {x ∈ C : −t0 > qx > −1} (possibly with a different constant).
By Eh ∩ C5/3 → F , necessarily 1C∩Eh

= 0 a.e. on {x ∈ C : t0 < qx < 1}, and
1C∩Eh

= 1 a.e. on {x ∈ C : −t0 > qx > −1}.
In particular this contradicts both (1.11.2) and (1.11.3).

Lemma 1.7 (Excess measure). Let E ⊂ R
n be a set of locally finite perimeter

with 0 ∈ ∂E, and such that, for some t0 ∈ (0, 1),

|qx| < t0, ∀x ∈ C ∩ ∂E (1.12)

|{x ∈ C ∩ E : qx > t0}| = 0, (1.13)

|{x ∈ C \ E : qx < −t0}| = 0, (1.14)

then (set M = C ∩ ∂∗E), for every Borel set G ⊂ D, ϕ ∈ C0
c (D) and t ∈ (−1, 1) we
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have that

Hn−1(G) ≤ Hn−1(M ∩ p−1(G)), (1.15)

Hn−1(G) =

ˆ

M∩p−1(G)

(νE · en) dHn−1, (1.16)

ˆ

D

ϕ =

ˆ

M

ϕ(px)(νE(x) · en) dHn−1(x), (1.17)
ˆ

Et∩D
ϕ =

ˆ

M∩{qx>t}
ϕ(px)(νE(x) · en) dHn−1(x), (1.18)

and the set function

ζ(G) = P (E;C ∩ p−1(G))−Hn−1(G)

= Hn−1(M ∩ p−1(G))−Hn−1(G), G ⊂ R
n−1,

defines a Radon measure on R
n−1 concentrated on D.

The measure ζ is called the excess measure of E over D, since ζ(D) = en(1).

Remark (on excess measure lemma). The lower bound (1.15) ensures that C ∩∂∗E
"leaves no holes" over D. If en(1) is small, the upper bound ζ(G) ≤ ζ(D) = en(1),
implies that C ∩ ∂∗E is "almost flat" over D, which means that

Hn−1(G) ≤ Hn−1(C ∩ ∂∗E ∩ p−1(G)) ≤ Hn−1(G) + en(1),

for every Borel set G ⊂ D. In a similar way, starting from 1.18 we see that, for
every t ∈ (−1, 1),

Hn−1(Et ∩D) ≤ Hn−1(M ∩ {qx > t} ≤ Hn−1(Et ∩D) + en(1).

Proof. By a standard approximation argument one can prove that (1.18) implies
(1.16), which then implies (1.15).

We explicitly prove only (1.17) and (1.18).
By a density argument we can assume that ϕ ∈ C1

c (D). We have

Hn−1(∂∗E ∩ (∂Dr × R)) = 0 for a.e. r ∈ (0, 1)

Hn−1(E ∩ (D × {s})) = 0 for a.e. s ∈ (t0, 1)

Hn−1(E ∩ (D × {t})) = 0 for a.e. t ∈ (−1,−t0).

(1.19)

We let r ∈ (0, 1) and s ∈ (t0, 1) satisfy (1.19.2) and (1.19.3). And we deőne a
set of őnite perimeter (setting t ∈ (−1, s)) F = E ∩ (Dr(t, s)) . If we set ν(x) = px

|px|
for every x ∈ R

n such that px ̸= 0, then

µF =µE (Dr × (t, s)) + µDr×(t,s) (E)

=µE (Dr × (t, s)) + enHn−1(Dr × {s})
+ vHn−1(∂Dr × (t, s)).

(1.20)
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So we őnd that

en · µF = (en · νE)Hn−1 (∂∗E ∩ (Dr × (t, s))−Hn−1 (E ∩ (∂Dr × {t})). (1.21)

So, given ϕ ∈ C1
c (D) we can deőne the vector őeld T (x) = ϕ(px)en, x ∈ R

n,
which is such that T ∈ C1(Rn;Rn). Since divT = 0, the divergence theorem applied
on F combined with (1.21) implies

ˆ

E∩(Dr×{t})
ϕ(px) dHn−1(x) =

ˆ

∂∗E∩(Dr×(t,s))

ϕ(px)(en · νE(x)) dHn−1(x).

Now we let r → 1− and set s → 1−, that is
ˆ

Et∩D
ϕ =

ˆ

E∩(D×{t})
ϕ(px) dHn−1(x)

=

ˆ

∂∗E∩(D×(t,1))

ϕ(px)(en · νE(x)) dHn−1(x)

=

ˆ

M∩{qx>t}
ϕ(px)(en · νE(x)) dHn−1(x).

(1.22)

This proves (1.18). Finally, we let t → (−1)+, and by (1.19), we prove (1.17).

Theorem 1.8 (The height bound). Given n ≥ 2, there exist positive constants
ε0(n) and C0(n) such that if E is a (Λ, r0)-perimeter minimizer in C(x0, 4r0) with

Λr0 ≤ 1, x0 ∈ ∂E, en(x0, 4r0) ≤ ε0(n),

then

sup

{ |qy − qx|
r0

: y ∈ C(x0, r0) ∩ ∂E

}

≤ C0(n)en(x0, 4r0)
1/2(n−1). (1.23)

Proof. Step one: scaling. Without loss of generality (replacing E with Ex0,2r0) we
can reduce to the following: given a (Λ, 1/2)-perimeter minimizer E in C2, with
Λ
2
≤ 1 , 0 ∈ ∂E , en(2) ≤ ε0(n) , we want to prove that |qx| ≤ c(n)en(2)

1/2(n−1)

∀x ∈ C1/2 ∩ ∂E where we are setting en(s) = e(E, 0, s, en) > 0. We assume
ε0(n) ≤ ω(n, 1/4) with ω(n, 1/4) as in small-excess position Lemma 1.6 and set
M = C ∩ ∂E, then we deduce that |qx| ≤ 1

4
∀x ∈ M .

Step two: tools. Let f : R −→ {0,Hn−1(M)} be f(t) = Hn−1(M ∩ {qx > t}).
Since the function is clearly decreasing we can deőne t0 ∈ R to be

f(t) ≤ Hn−1(M)

2
, if t ∈ [t0,∞)

f(t) ≥ Hn−1(M)

2
, if t ∈ (−∞, t0)

(1.24)
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(interpreted as "the median value for the nth coordinate of M") and let t1 be such
that t1 > t0 and

f(t1) ≥
√

en(2) (1.25)

(it is easy to prove such t1 exists).

Step three: t1 − t0 ≤ c(n)en(2)
1/2(n−1). By remark for excess measure Lemma

(1.2) for every t ∈ (−1, 1) we have

0 ≤ Hn−1(M ∩ {qx > t})−Hn−1(Et ∩D) ≤ 2n−1en(2) (1.26)

and so by 1.26 and 1.25, for ε0(n) small enough we have

Hn−1(Et ∩D) ≥ Hn−1(M ∩ {qx > t})− 2n−1en(2) ≥
√

en(2)− 2n−1en(2)

≥ c(n)
√

en(2)

and so
ˆ t1

t0

Hn−1(Et ∩D)(n−2)/(n−1) dt ≥ c(n)(t1 − t0)
√

en(2)
(n−2)/(n−1)

. (1.27)

Now thanks to the slicing formula ([MAG], 18.25, p.225) with g = 1C and by
Hölder inequality

ˆ 1

−1

Hn−2(∂∗Et ∩D) dt =

ˆ 1

−1

Hn−2((∂∗E ∩ C)t) dt

=

ˆ

M

√

1− (νE · en)2 dHn−1

≤
√
2

ˆ

M

√

1− (νE · en) dHn−1

≤
√

2Hn−1(M)

√

ˆ

M

1− (νE · en) dHn−1

≤ C(n)
√

en(2).

(1.28)

So the relative isoperimetric inequality ([MAG], 12.45, p.143) can be applied
(with the disk D and the set of őnite perimeter Et ∩D), giving

Hn−2(∂∗Et ∩D) = P (Et ∩D;D) ≥ c(n)Hn−1(Et ∩D)(n−2)/(n−1), (1.29)

and the equation above (1.28) becomes

ˆ t1

t0

Hn−1(Et ∩D)(n−2)/(n−1) dt ≤ C(n)
√

en(2); (1.30)

so, by 1.27 and 1.30 we have

c(n)(t1 − t0)
√

en(2)
(n−2)/(n−1) ≤ C(n)

√

en(2)
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which implies

t1 − t0 ≤ c(n)en(2)
1/2(n−1). (1.31)

Step four: qy − t1 ≤ c(n)en(2)
1/2(n−1). If y ∈ C1/2 ∩ ∂E and qy > t1 then

B(y, qy − t1) and qy − t1 <
1
2
. So the lower density esitmate Theorem 1.4 implies

c(n)(qy − t∗1)
n−1 ≤ P (E;B(y, qy − t1))

≤ Hn−1(M ∩ {qx > t1})
= f(t1) ≤

√

en(2)

(1.32)

and so
qy − t1 ≤ c(n)en(2)

1/2(n−1). (1.33)

Step five: conclusion. By combining (1.31) and (1.33) we have

qy − t0 ≤ c(n)en(2)
1/2(n−1). (1.34)

By a similar argument
t0 − qy ≤ c(n)en(2)

1/2(n−1), (1.35)

and this allows us to conclude.

1.3 The Lipschitz approximation theorem

This section concludes the chapter with the statement of Lipschitz approximation
Lemma 1.9, this lemma guarantees the existence of a Lipschitz function u that covers
a substantial portion of C(x0, r)∩∂E in relation to the excess, while also exhibiting
a behavior that is nearly harmonic. Precisely, the őrst statement would be that the
measure of the symmetric difference between C(x0, r) ∩ ∂E and x0 + {(z, u(z)) :
z ∈ Dr} is controlled up to a constant by rn−1 multiplied by en(x0, 9r) and the
second would be that the quantity 1

rn−1

´

Dr
|∇′u|2 is controlled up to a constant by

the excess on a cylinder of bigger radius.
We set

M = C(x0, r) ∩ ∂E, M0 = {y ∈ M : sup
0<s<8r

en(y, s) ≤ δ0(n)}.

Theorem 1.9 (Lipschitz approximation theorem). There exist positive constants
C1(n), ε1(n), and δ0(n) such that given E ⊂ R

n a (Λ, r0)-perimeter minimizer in
C(x0, 9r) with

Λr0 ≤ 1, 9r < r0, x0 ∈ ∂E, en(x0, 9r) ≤ ε1(n),

then there exists a Lipschitz function u : Rn−1 → R with

sup
Rn−1

|u|
r

≤ C1(n)en(x0, 9r)
1/2(n−1), Lip(u) ≤ 1, (1.36)
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such that if we set Γ = x0 + {(z, u(z)) : z ∈ Dr}, it holds

M0 ⊂ M ∩ Γ, (1.37)

and

Hn−1(M∆Γ)

rn−1
≤ C1(n)en(x0, 9r). (1.38)

Moreover, u is "almost harmonic" in Dr, so that for every ϕ ∈ C1
c (Dr)

1

rn−1

ˆ

Dr

|∇′u|2 dx′ ≤ C1(n)en(x0, 9r), (1.39)

1

rn−1

∣

∣

∣

∣

ˆ

Dr

∇′u · ∇′ϕdx′
∣

∣

∣

∣

≤ C1(n) sup
Dr

|∇′ϕ|
(

en(x0, 9r) + Λr
)

.
(1.40)

Proof. We omit the proof due to space constraints, the proof is in [MAG], Theorem
23.7, pp.309-319.

In order to prove excess improvement by tilting Theorem 2.3 we shall need a
reverse height bound, in which the excess in controlled through a sort of L2-height.
We now deőne the ŕatness f(E, x, r, v) that measures the L2-average distance distance
of ∂∗E from the family of hyperplanes {y : (y − x) · v = c} (c ∈ R) in the cylinder
C(x, t, v).

Deőnition 1.9 (Cylindrical ŕatness). Let E ⊂ R
n be a set of locally finite perimeter,

the cylindrical flatness of E at x ∈ R
n with respect to v ∈ S

n−1 at scale r > 0 is

f(E, x, r, v) = inf
c∈R

1

rn−1

ˆ

C(x,r,v)∩∂∗E

|(y − x) · v − c|2
r2

dHn−1(y).

We now are able to provide the required bound on the excess in terms of the
ŕatness. In the statement, ω(n, t) denotes the constant introduced in small-excess
position Lemma 1.6.

Theorem 1.10 (Reverse Poincaré inequality). There exists a positive constant
C(n) with the following property. If E is a (Λ, r0)-perimeter minimizer in C(x0, 4r, v)
with

Λr0 ≤ 1, x0 ∈ ∂E, 4r < r0, e(E, x0, 4r, v) ≤ ω
(

n,
1

8

)

,

then

e(E, x0, r, v) ≤ C(n)
(

f(E, x0, 2r, v) + Λr
)

.

Proof. See [MAG], Theorem 24.1, pp.320-336.
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Chapter 2

Harmonic approximation and excess

improvement

The aim of this chapter is to prove excess improvement by tilting Theorem 2.3,
that (if α < 1/72) establishes the existence of v0 ∈ S

n−1 such that e(x0, αr, v0) ≤
C(n)(α2e(x0, r, v) + αΛr). This theorem and the harmonic approximation Lemma
2.2 play a crucial role in proving the regularity theorem. The proof of excess
improvement by tilting Theorem 2.3 will follow this rough sketch:

• we prove Lemma 2.1;

• we prove the harmonic approximation Lemma 2.2;

• we use the "almost harmonicity" of u on D(px0, r) from the Lipschitz approxi-
mation Lemma 1.9 and harmonic approximation Lemma 2.2 to őnd an harmonic
function v on D(px0, r) which is L2-close to u and such that

´

D(px0,r)
|∇′u|2 dx

is controlled by e(E, x0, r, v);

• we use the harmonicity of v and Lemma 2.1 to prove that setting w(x) =
v(0) + (0) · x we have

1

ωn(αr)n−1

ˆ

D(px0,αr)

|v − w|2
α2

dxC(n)α2

ˆ

D(px0,r)

|∇′v|2 dx;

• when we set v0 = (−∇′v0, 1)/|(−∇′v0, 1)| we can use that v is L2-close to
u and that the graph of u is Hn−1-close to C(x0, r) ∩ ∂E, to prove that
α2

´

D(px0,r)
|∇′v|2 dx controls f(E, x0, αr, v0);

• by step one and step three we have thus proved that

f(E, x0, αr, v0) ≤ C(n)α2e(E, x0, r, v)

and so by the reverse Poincaré inequality

e(E, x0, αr, v) ≤ C(n)
(

α2e(E, x0, r, v) + αΛr
)

.

We will prove the two lemmas in Section 2.1 while in Section 2.2 we will state
and prove excess improvement by tilting Theorem 2.3.

15
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2.1 Two lemmas on harmonic functions

In this section we prove the two properties of harmonic functions that we are
going to exploit. First of all, let us recall that if v is harmonic in B, then, by
an application of the divergence theorem, the mean value property holds true.
In the following lemma we provide a bound on the L∞(B1/2)−norm of the
Hessian of v in terms of the L2(B)-norm of ∇v.
We set ωn = |B(0, 1)| in R

n.

Lemma 2.1. Let v be harmonic in B and w(x) = v(0) +∇v(0) · x ∀x ∈ B,
then

sup
B(0,α)

|v − w| ≤ C(n)α2||∆v||L2(B), ∀α ∈ (0, 1/2].

In particular,

1

ωnαn

ˆ

B(0,α)

|v − w|2
α2

dx ≤ C(n)α2

ˆ

B

|∇v|2 dx. (2.1)

Proof. Select e ∈ S
n−1 and let |x| > 1/2. Then e · ∇v is harmonic in B, so by

the mean-value property for r < 1/4 we have that,

|e · ∇v(x)| =
∣

∣

∣

∣

ˆ

B(x,r)

e · ∇v dx

∣

∣

∣

∣

=
C(n)

rn

∣

∣

∣

∣

ˆ

∂B(x,r)

v(e · νB(x,r)) dHn−1(y)

∣

∣

∣

∣

≤ C(n)

rn

ˆ

∂B(x,r)

|v(y)| dHn−1(y)

≤ C(n)

rn

ˆ

∂B(x,r)

∣

∣

∣

∣

 

∂B(y,r)

v(z)dz

∣

∣

∣

∣

dHn−1(y)

≤ C(n)

rn
1

ωnrn

ˆ

∂B(x,r)

ˆ

∂B(y,r)

|v(z)| dz dHn−1(y)

≤ C(n)

r2n

ˆ

B(x,2r)

(2r)n−1|v(z)| dz

≤ C(n)

rn+1

ˆ

∂B(x,2r)

|v(y)| dHn−1(y).

(2.2)

In particular
sup
B1/2

|∇v| ≤ C(n)||v||L2(B). (2.3)

This inequality, applied to e · ∇v in place of v, leads to

sup
B1/2

|∇2v| ≤ C(n)||∇v||2L. (2.4)

So by Taylor’s formula, for every x ∈ B there exists t ∈ (0, 1) such that
|v(x)− w(x)| ≤ C|∇2v(tx)||x|2, and this concludes.
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Lemma 2.2 (Harmonic Approximation). If τ > 0 there exists σ > 0 with
the following property. If u ∈ W 1,2(B) is such that

ˆ

B

|∇u|2 dx ≤ 1,

∣

∣

∣

∣

ˆ

B

∇u · ∇ϕdx

∣

∣

∣

∣

≤ sup
B

|∇ϕ|σ, ∀ϕ ∈ C∞
c (B),

then there exists a harmonic function v on B such that

ˆ

B

|∇v|2 dx ≤ 1,

ˆ

B

|v − u|2 dx ≤ τ.

Proof. By contradiction assume that there exist τ > 0 and a sequence {uh}h∈H ⊂
W 1,2(B), such that

ˆ

D

|∇uh|2 dx ≤ 1,

∣

∣

∣

∣

ˆ

D

∇uh · ∇ϕdx

∣

∣

∣

∣

≤
||∇ϕ||L∞(B)

h
, ∀ϕ ∈ C∞

c (B),

but for every harmonic function v such that
´

B
|∇v| dx ≤ 1 we have

ˆ

B

|uh − v|2 dx ≥ τ > 0.

Let ch =
¸

B
uh dx, then by the Poincaré inequality we have ||uh − ch||L2(B) ≤

C(n) . Thus the sequence {wh}h∈H , wh = uh − ch, is bounded in W 1,2(B). In
particular, up to extracting a subsequence, we may assume wh → w in L2(B)
for some w ∈ W 1,2(B) such that ||∇w||L2(B) ≤ 1. We őnd a contradiction by
showing that w is harmonic. Indeed, when ϕ ∈ C∞

c (B) we have that

∣

∣

∣

∣

ˆ

B

∇w · ∇ϕdx

∣

∣

∣

∣

≤
∣

∣

∣

∣

ˆ

B

∇(w − wh) · ∇ϕdx

∣

∣

∣

∣

+
supB |∇ϕ|

h
,

where
´

B
∇(w−wh)·∇ϕdx = −

´

B
(w−wh)∆ϕdx. So by the Hölder inequality,

and letting h → ∞, we obtain a contradiction.

2.2 Excess improvement by tilting

We now őnally prove the excess improvement by tilting Theorem 2.3, that
is the existence (given α < 1/72) of v0 ∈ S

n−1 such that e(x0, αr, v0) ≤
C(n)(α2e(x0, r, v) + αΛr).

In the statement we directly set

e(E, x, r, v) = e(x, r, v), 0 ∈ ∂E, r > 0, v ∈ S
n−1, en(s) = e(0, s, en).
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Theorem 2.3 (Excess improvement by tilting). Given α ∈ (0, 1/72),
there exist positive constants ε2(n, α) and C2(n) with the following property.
If E is a (Λ, r0)-perimeter minimizer in C(x0, r, v) with

Λr0 ≤ 1, r0 < r, x0 ∈ ∂E, e(x0, r, v) + Λr ≤ ε2(n, α),

then there exists v0 ∈ S
n−1 such that

e(x0, αr, v0) ≤ C2(n)(α
2e(x0, r, v) + αΛr).

Proof. Step one: By replacing E with Ex0,r/9, and considering a rotation taking
v into en, we can assume E to be a (Λ′, r′0)-perimeter minimizer in C9 satisfying:

Λ′ =
Λr

9
, r′0 =

9r0
r

> 9, Λ′r′0 ≤ 1, x0 ∈ ∂E.

Also, for s > 0, if

en(9) + Λr ≤ ε2(n, α), (2.5)

and given α ∈ (0, 1/72), we thus aim to őnd positive constants ε2(n, α) and
C2(n) such that the validity of (2.5) implies the existence of v0 ∈ S

n−1 with

e(0, 9α, v0) ≤ C2(n)(α
2en(9) + αΛr). (2.6)

Step two: Let ε0(n), ε1(n), and C1(n) be constants from the height bound
Lemma 1.8 and Lipschitz approximation Theorem 1.9. Assuming ε2(n, α) ≤
min{ε0(n), ε1(n)}, we őnd a function u : Rn−1 → R with Lip(u) ≤ 1 such that,
setting Γ = {(z, u(z)) : z ∈ D} the following inequalities hold true:

Hn−1(M∆Γ) ≤ C1(n)en(9), (2.7)

sup
Rn−1

|u| ≤ C1(n)en(9)
1/2(n−1),

sup{|qu| : y ∈ M} ≤ C1(n)en(9)
1/2(n−1), (2.8)

ˆ

D

|∇′u|2dHn−1 ≤ C1(n)en(9),

∣

∣

∣

∣

ˆ

D

∇′u · ∇′ϕ

∣

∣

∣

∣

≤ C1(n), sup
D

|∇′ϕ|{en(9) + Λr}

for every ϕ ∈ C1
c (D). If we set

β = C1(n){en(9) + Λr} and u0 =
u√
β
,
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then u0 ∈ W 1,2(D) with

ˆ

D

|∇′u0|2 ≤ 1,

∣

∣

∣

∣

ˆ

D

∇′u · ∇′ϕ

∣

∣

∣

∣

≤ ||∇′ϕ||L∞(D)
√

β, ∀ϕ ∈ C1
c (D).

By the harmonic approximation Lemma 2.2, for every τ > 0 there exists
σ(τ) > 0 such that if

√

β ≤ σ(τ), (2.9)

then there exists a harmonic function v0 on D with
ˆ

D

|∇′v0|2 ≤ 1,

ˆ

D

|v0 − u0|2 ≤ τ.

Therefore the function v =
√
βv0 is harmonic on D and such that

ˆ

D

|∇′v|2 ≤
√

β,

ˆ

D

|v − u|2 ≤ βτ.

As 36α > 1/2, by Lemma 2.1, if we set w(z) = v(0) +∇v(0) · z (z ∈ D), then

sup
D36α

|v − w| ≤ C(n)(36α)2||∇′v||L2(D) ≤ C(n)α2
√

β.

So we easily őnd that

1

αn+1

ˆ

D36α

|u− w|2 ≤ C(n)

(

τ

αn+1
+ α2

)

β. (2.10)

We apply this argument with τ = αn+3: provided ε2(n, α) is such that

√

C1(n)ε2(n, α) ≤ σαn+3, (2.11)

then,
√
β ≤ σ(τ) holds true with τ = αn+3 and (2.10) takes the form

1

αn+1

ˆ

D36α

|u− w|2 ≤ C(n)α2β. (2.12)

We now relate the left-hand side with the excess of E at scale 18α with respect
to the direction v0 given by

v0 =
(−∇′v(0), 1)
√

1 + |∇′v|2
.

In this way we shall be able to deduce by (2.12) and the reverse Poincaré
inequality 1.10 that

e(0, 9α, v0) ≤ C2(n)(C(n)α2β + 9αΛ). (2.13)
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We will prove this in the following steps.

Step three: We claim that if (2.11) and β1/(n−1) ≤ αn+3 are in force (recall that

β = C1(n)(en(9) + Λr) ) and we set c = v(0)√
1+|∇′v(0)|2

, then

1

αn+1

ˆ

M∩C36α

|v0 · y − c|2dHn−1(y) ≤ C(n)α2β. (2.14)

In order to prove (2.14) we decompose M by the graph Γ. On the one hand,
by (2.12) and thanks to the fact that Lip(u) ≤ 1 we őnd that

1

αn+1

ˆ

M∩Γ∩C36α

|v0 · y − c|2dHn−1(y)

≤ 1

αn+1

ˆ

D36α

|u− w|2
√

1 + |∇′v|2
√

1 + |∇′v|2dHn−1(y) ≤ C(n)α2β.

(2.15)

On the other hand,
ˆ

(M\Γ)∪C36α

|v0 · y − c|2dHn−1(y)

≤ 2

ˆ

(M\Γ)∪C36α

|qy|2 + |v(0) +∇′v(0) · py|2dHn−1(y)

≤ 4Hn−1(M \ Γ)(sup
y∈M

|qy|2 + |v(0)|2 + |∇′v(0)|2)

≤ C(n)β
(

β1/(n−1) + |v(0)|2 + |∇′v(0)|2
)

,

(2.16)

where in the last inequality we have applied (2.7) and (2.8). By the mean
value property of v we trivially őnd |v(0)|2 ≤ C(n)

´

D
|v|2 so that

|v(0)|2 + |∇′v(0)|2 ≤ C(n)

ˆ

D

|v|2 ≤ C(n)

(
ˆ

D

|u− v|2 +
ˆ

D

u2

)

≤ C(n)
(

αn+3β + β1/(n−1)
)

.

(2.17)

Combining (2.16) and (2.18), we őnally deduce
ˆ

(M\Γ)∪C36α

|v0 · y − c|2dHn−1(y) ≤

≤ C(n)
(

αn+3β2 + β1+[1/(n−1)]
)

≤ C(n)αn+3β,
(2.18)

which, together with (2.15), gives us (2.14).

Step four: We show that, if ε2(n, α) is suitably small, then e(0, 36α, v0) ≤
w(n, 1

8
) here w(n, t0) denotes the constant of Lemma 1.6 and Theorem 1.10.
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Indeed, by excess and change of direction Lemma 1.3

e(0, 36α, v0) ≤ C(n)
(

en(36
√
2α) + |v0 − en|2

)

.

By deőnition of v0 and (2.18), we may roughly estimate that

|v0 − en|2 ≤ C|∇′v(0)|2 ≤ C(n)β1/(n−1),

while en(36
√
2α) ≤ (9/36

√
2α)n−1en(9) by the scaling of the excess Proposition

1.4. Hence,
e(0, 36α, v0) ≤ C3(n, α)β

1/(n−1),

and so e(0, 36α, v0) ≤ w(n, 1
8
) follows provided ε2(n, α) is small enough with

respect to the constant C3(n, α) appearing in this last inequality.

Step five: By step four we are now in the position to apply the reverse Poincaré
inequality 1.10. Indeed, E is a (Λ′, r′0)-perimeter minimizer in C(0,36α,v0), with
Λ′r′0 ≤ 1, 0 ∈ ∂E, 36α < r′0. Therefore by 1.10 and since Λ′ = Λr9, we őnd

e(0, 9α, v0) ≤ C(n)(f(0, 18α, v0) + Λ′9α) = C(n)(f(0, 18α, v0) + αΛr).

At the same time, by (2.14) we have

f(0, 18α, v0) ≤ 2n+1f(0, 36α, v0) ≤ C(n)α2(en(9) + Λr),

and thus (2.13) is proved, as desired.
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Chapter 3

Regularity theorem

In this chapter we conclude the proof of the C1,γ-regularity theorem for γ ∈
(0, 1/2) and (Λ, r0)-perimeter minimizers.

3.1 A lemma for the regularity theorem

Lemma 3.1 (for the regularity theorem). For γ ∈ (0, 1/2) there exist
positive constants α1(n, γ) < 1, ε5(n, γ) and C6(n, γ) with the following property.
Let E be a (Λ, r0)-perimeter minimizer in C(x0, r, v) and set

e∗(x, s, v) = max
{

e(x, s, v),
Λs

αn−1+2γ
1

}

, x ∈ R
n, s > 0.

If we have Λr0 ≤ 1, r < r0, x0 ∈ ∂E, and e∗(x0, r, v) ≤ ε5(n, γ), then there
exists v0 ∈ Sn−1 such that

e∗(x0, α1r, v0) ≤ α2γ
1 e∗(x0, r, v), (3.1)

|v0 − v|2 ≤ C6(n, γ)e
∗(x0, r, v). (3.2)

Proof. We deőne α1(n, γ) and ε5(n, γ):

α1(n, γ) = min
{ 1

72
,
( 1

2C2(n)

)1/(1−2γ)}

, ε5(n, γ) =
ε2(n, α1)α

n−1+2γ
1

2
,

where ε2 and C2 are the constants introduced in excess improvement by tilting
2.3. Let us now prove 3.1. Taking into account that, by 2γ < 1,

Λα1r

αn−1+2γ
1

≤ α1e
∗(x0, r, v), (3.3)

we only have to show the existence of v0 ∈ S
n−1 such that

e(x0, α1r, v0) ≤ α2γ
1 e∗(x0, r, v). (3.4)

23
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If Λr ≥ e(x0, r, v), then this is a trivial consequence of the scaling of the excess
Proposition 1.4,

e(x0, α1r, v) ≤
e(x0, r, v)

αn−1
1

≤ α2γ
1

Λr

αn−1+2γ
1

≤ α2γ
1 e∗(x0, r, v), (3.5)

claim (3.1) holds with v = v0, and claim (3.2) follows immediately. If, instead,

Λr ≤ e(x0, r, v), (3.6)

then we notice that, by our choice of ε5(n, γ), so by excess improvement by
tilting 2.3 we őnd v0 ∈ S

n−1 such that

e(x0, α1r, v0) ≤ C2(n)
(

α2
1e(x0, r, v) + α1Λr

)

≤ C2(n)(α
2
1 + α1)e(x0, r, v)

≤ 2C2(n)α1e(x0, r, v) ≤ 2C2(n)α1e
∗(x0, r, v)

≤ α2γ
1 e∗(x0, r, v),

(3.7)

where in the last inequality we have exploited the deőnition of α1. This
concludes the proof of (3.1). Concerning the proof of (3.2), as already noticed,
we may directly assume that (3.6), and thus (3.7) holds true. By integrating
|v0 − v|2 ≤ 2(|v0 − vE|2 + |vE − v|2) over C(x, α0r, v0) ∩ ∂∗E we őnd that:

P (E;C(x, α0r, v0))

(α0r)n−1
|v0 − v|2 ≤

≤ 4e(x0, α0r, v0) +
2

(α0r)n−1

ˆ

C(x,α0r,v0)∩∂∗E

|vE − v|2dHn−1.
(3.8)

In turn, by the lower density estimate (1.15) and by (3.1)

|v0 − v|2 ≤ C(n)
(

e(x0, α1r, v0) +
1

(α1r)n−1

ˆ

C(x,α0r,v0)∩∂∗E

|vE − v|2dHn−1
)

.

Since α0 ≤ 1√
2
, we have C(x0, α1r, v0) ⊂ B(x0, r) ⊂ C(x0, r, v), and thus

1

(α1r)n−1

ˆ

C(x,α1r,v0)∩∂∗E

|vE − v|2dHn−1 ≤ 2

αn−1
1

e(x0, r, v).

In conclusion if C(n) is as showed before, then it holds

|v0−v|2 ≤ C(n)
(

e(x0, α1r, v0)+
1

αn−1
1

e(x0, r, v0)
)

≤ C(n)
(

α2γ
1 +

2

αn−1
1

)

e∗(x0, r, v0).

And (3.2) follows with C6(n, γ) = C(n)
(

α2γ
1 + 2

αn−1

1

)

.
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3.2 Regularity theorem

In this chapter we őnally prove the C1,γ-regularity theorem for (Λ, r0)-perime-
ter minimizers if γ ∈ (0, 1/2). We shall use the height bound Lemma 1.8,
Lipschitz approximation Theorem 1.9, excess improvement by tilting Theorem
2.3 and Campanato’s criterion Theorem 1.5.

Theorem 3.2 ( C1,γ-regularity theorem for (Λ, r0)-perimeter minimizers).
For γ ∈ (0, 1/2) there exist positive constants ε6(n, γ) and C8(n, γ) with the
following property. If E is a (Λ, r0)-perimeter minimizer in C(x0, 9r) with

Λr0 ≤ 1, 9r < r0,x0 ∈ ∂E, en(x0, 9r) + Λr ≤ ε6(n, γ).

then there exists a Lipschitz function u : Rn−1 −→ R with

sup
Rn−1

|u|
r

≤ C1(n)en(x0, r, v)
1/2(n−1), Lip(u) ≤ 1, (3.9)

such that
C(x0, r) ∪ ∂E = x0 + {(z, u(z)) : z ∈ Dr}, (3.10)

C(x0, r) ∪ E = x0 + {(z, t) : z ∈ Dr,−r < t < u(z)}. (3.11)

In fact, u ∈ C1,γ(D(px0, r)), and for every z, z′ ∈ D(px0, r) and x, y ∈
C(x0, r) ∩ ∂E we have

|∇′u(z)−∇′u(z′)| ≤ C8(n, γ)
(

en(x0, 9r) + Λr
)1/2
( |z − z′|

r

)γ

, (3.12)

|νE(x)− νE(y)| ≤ C8(n, γ)
(

en(x0, 9r) + Λr
)1/2
( |x− y|

r

)γ

. (3.13)

Proof. Step one: Given γ ∈ (0, 1/2), we show the existence of a constant
C = C(n, γ) such that: if ε5(n, γ) denotes the constant of Lemma 3.1 and

if e∗n(x0, 9r) ≤
(

8
9

)n−1
ε5(n, γ), then for every x ∈ C(x0, r) ∩ ∂E there exists

v(x) ∈ S
n−1 such that

e∗(x, s, v(x)) ≤ C
(s

t

)2γ

e∗n(x0, 9r), ∀s ∈ (0, 4r), (3.14)

|v(x)− en|2 ≤ Ce∗n(x0, 9r), (3.15)

e∗n(x, s) ≤ Ce∗n(x0, 9r), ∀s ∈ (0, 8r). (3.16)

First we prove (3.15). Indeed, let us őx x ∈ C(x0, r) ∩ ∂E, and set t = 8r for
brevity. By excess at different scales Proposition 1.2 we immediately őnd

e∗(x, t, v(x)) ≤
(9

8

)n−1

e∗n(x0, 9r) ≤ ε5(n, γ). (3.17)
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Thus we can apply the Lemma 3.1 to E at the point x and at the scale t, and
correspondingly őnd a direction v1 = v1(x) ∈ S

n−1 such that

e∗(x, αt, v1) ≤ α2γe∗n(x, t),

|v1 − en|2 ≤ Ce∗n(x, t),
(3.18)

where α = α(n, γ) and C = C(n, γ) are as in Lemma 3.1 . Since α ≤ 1 we see
that e∗(x, αt, v1) ≤ ε3(n, γ).

In particular we can apply Lemma 3.1 again to E at the point x, but this
time at the smaller scale αt. Iterating, we prove the existence of a sequence
of vectors vh = vh(x) ∈ S

n−1 such that

e∗(x, αht, vh) ≤ α2γhe∗n(x, t),

|vh − vh−1|2 ≤ Ce∗(x, αh−1t, vh−1) ≤ Cα2γ(h−1)e∗n(x, t),
(3.19)

for every h ∈ N where we have set v0 = en. So if j ≥ h ≥ 1 then

|vj − vh−1| ≤
j
∑

k=h

|vk − vk−1| ≤
√

Ce∗n(x, t)
∞
∑

k=h

αγ(k−1) =

√

Ce∗n(x, t)

1− αγ
αγ(h−1).

(3.20)

Hence there exists v(x) = limj→∞ vj(x). Moreover, if we set h = 1 and let
j → ∞ by (3.17) and the formula above we őnd that, for a constant C(n, γ),

|v(x)− en|2 ≤ C(n, γ)e∗n(x0, 9r), (3.21)

which is (3.15).

We now prove 3.14. Since s ∈ (0, t/2), there exists h ≥ 0 such that αh+1t ≤√
2s ≤ αht . In particular by excess and changes of direction Proposition 1.3

and excess at different scales Proposition 1.2.

e∗(x, s, v(x)) ≤ C(n)
(

e∗(x,
√
2s, vh) + |v(x)− vh|2

)

≤ C(n)

(

( αht

s

)n−1

e∗(x, αht, vh) + |v(x)− vh|2
)

,
(3.22)

where for the őrst term by (3.15) we have

( αht

s

)n−1

e∗(x, αht, vh) ≤
C(n)

αn−1
α2γhe∗n(x, t) ≤

C(n)

αn−1+2γ

(s

t

)2γ

e∗n(x, t)

≤ C(n, γ)
(s

t

)2γ

e∗n(x0, 9r)

(3.23)
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while for the second term by (3.20) we have

|v(x)− vh|2 ≤ C(n, γ)α2γhe∗n(x0, 9r) ≤ C(n, γ)
(s

t

)2γ

e∗n(x0, 9r). (3.24)

so combining the two together

e∗(x, s, v(x)) ≤ C(n, γ)
(s

t

)2γ

e∗n(x0, 9r), ∀s ∈ (0, t/2), (3.25)

which is (3.14).

We finally prove (3.16). If s ∈ (0, t/4) , then by excess and changes of direction
Proposition 1.3 we deduce

e∗n(x, s) ≤ C(n)
(

e∗(x,
√
2s, v(x)) + |v(x)− en|2

)

, (3.26)

then with (3.14) on the second term and excess at different scales Proposition
1.2 with (3.25) on the őrst term we have

e∗n(x, s) ≤ C(n, γ)e∗n(x0, 9r), (3.27)

if otherwise s ∈ (t/4, t) , then, by C(x, s) ⊂ C(x0, 9r),

e∗n(x, s) ≤
(9r

s

)n−1

e∗n(x0, 9r) ≤
(9

2

)n−1

e∗n(x0, 9r). (3.28)

We have thus achieved the proof of (3.16).

Step two: Now we prove (3.9), (3.10) and (3.11). We deőne

ε4(n, γ) = min
{

ε0(n), ε1(n),
(8

9

)n−1

ε3(n, γ),
δ0(n)

C4(n, γ)

}

; (3.29)

where ε0(n) is constant introduced in the height bound, ε1(n) and δ0(n) come
from Lipschitz approximation Theorem 1.9, and ε5(n, γ) comes from Lemma

3.1. Since en(x0, 9r) ≤ ε4(n, γ) we have en(x0, 9r) ≤
(

8
9

)n−1
ε3(n, γ), so we are

in the situation analyzed in step one.

First we prove (3.9).
So if M0 =

{

x ∈ C(x0, r) ∩ ∂E : sup0<s<8r en(x, s) ≤ δ0(n)
}

, by (3.16) we
have M0 = C(x0, r) ∩ ∂E, and since en(x0, 9r) ≤ ε1(n) we have that there
exists a Lipschitz function u : Rn−1 → R

n such that M0 = C(x0, r) ∩ ∂E ⊂
x0 + {(z, u(z)) : z ∈ R

n} and so (3.9) holds true.

Now we prove (3.10).
By Lipschiz graph criterion C(x0, r)∩∂E ⊂ x0+{(z, u(z)) : z ∈ Dr}, so (3.10)
holds true.

Finally we prove (3.10).
From step three in the proof of Lipschitz approximation Lemma 1.9 we see
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that νE(x) =
(−∇′u(px),1)√
1+|∇′u(px)|2

, for Hn−1-a.e. x ∈ C(x0, r)∩∂E, so by small-excess

position Lemma 1.6 and (3.10) follows that (3.11) holds true.

Step three: We now prove that ∀z ∈ D(px0, r) and s ∈ (0, r),

1

sn−1

ˆ

D(z,s)

|∇′u− (∇′u)z,s|2 ≤ C(n, γ)
(s

r

)2γ

en(x0, 9r), (3.30)

where (∇′u)z,s denotes the mean value of ∇′u on D(z, s).

To this end, let us őrst notice that by (3.15), up to further decreasing ε3(n, γ),
we can assume that qv(x) ≤ 1√

2
, ∀x ∈ C(x0, r) ∩ ∂E. In particular, the set

inclusion C(x, s) ⊂ C(x, 2s, v(x)) will hold whenever x ∈ C(x0, r) ∩ ∂E and
s > 0. We can also deőne a vector őeld τ : C(x0, r) ∩ ∂E → R

n−1 by setting

τ(x) = −pv(x)

qv(x)
, x ∈ C(x0, r) ∩ ∂E, (3.31)

so that for every x ∈ C(x0, r) ∩ ∂E,

pv(x) =
−τ(x)

√

1 + |τ(x)|2
, qv(x) =

1
√

1 + |τ(x)|2
, |τ(x)| ≤ 1.

If z ∈ D(px0, r), s < r, x = (z, u(z)), then x ∈ C(x0, r) ∩ ∂E, and

(2s)n−1e(x, 2s, v(x)) ≥
ˆ

C(x,s)∩∂∗E

|νE − v(x)|2
2

dHn−1

≥
ˆ

D(z,s)

∣

∣

∣

∣

∣

∇′u
√

1 + |∇′u|2
− τ(px)
√

1 + |τ(px)|2

∣

∣

∣

∣

∣

2
√

1 + |∇′u|2

+

ˆ

D(z,s)

∣

∣

∣

∣

∣

1
√

1 + |∇′u|2
− 1
√

1 + |τ(px)|2

∣

∣

∣

∣

∣

2
√

1 + |∇′u|2.

And from the above chain of inequalities and the fact that |τ(px)| ≤ 1 , we
infer that

ˆ

D(z,s)

|∇′u− (∇′u)z,s|2 = inf
ζ∈Rn

ˆ

D(z,s)

|∇′u− ζ|2 ≤
ˆ

D(z,s)

|∇′u− τ(px)|2

≤ 2

ˆ

D(z,s)

∣

∣

∣

∣

∣

∇′u− τ(px)
√

1 + |τ(px)|2

∣

∣

∣

∣

∣

2
√

1 + |∇′u|2

≤ C(n)sn−1e(x, 2s, v(x))

which by (3.14) implies (3.30).
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Step four: We now prove (3.2). From (3.30) and by Campanato’s criterion
Theorem 1.5 applied to ∇′u we immediately deduce (3.12).

Since v ∈ R
n−1 7→ (−v,1)√

1+|v|2
∈ R

n deőnes a Lipschitz map on R
n−1, we easily

deduce from (3.1) that, if x, y,∈ C(x0, r) ∩ ∂E, then

|νE(x)− νE(y)| ≤ C|∇′u(px)−∇′u(py)| ≤ Cen(x0, 9r)
1/2
( |px− py|

r

)γ

≤ C(n, γ)en(x0, 9r)
1/2
( |x− y|

r

)γ

.
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