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Introduction

As an introductory example let us consider the following minimum problem: Let I = (a,b), a,b € R
and

min{ F(u) |u € H* (I); u(a) = 0, u(b) = B and G(u) = 1} (1)
where H'(I) denotes the Sobolev-space consisting of L? functions with weak derivatives in L? and
1 1/ A\2 1 2
F(u) =< [ v (x)*dx and G(u) == [ u(z)dx
21 21

We assume that there exists a minimizer of (1). In fact, the existence follows by the theory which
we will develop in Chapter 1.

We say that u is a regular extremal if the first variation of G does not vanish for all ¢ € C°(1),
meaning there exists some ¢ € C'2°(I) such that

/u(x)w(x)dx # 0.

1

In this case, by the Lagrange multiplier Theorem (this will be introduced in Chapter 2, Thm 5 )
there exists some A € R such that

% (F(u+ep) + AG(u + e9))|_y = 0.

Together with the boundary conditions we get the following ordinary differential equation

w’(z) = du(x)
{u(a) — 0 and u(b) = . (2)

For a given A the solution of this problem is unique and is given by

Az Vz

IFA>0: u(x)=mye + v2e where v; and v, are constants determined

by the boundary conditions.
IFA<O0: wu(x)=ysin(v—Ax) + vz cos(v —Az) where 7, and o are constants

determined by the boundary conditions.

IfA=0: u(:c):bfa(x—a).

So for all possible A the solution of (2) is smooth. We will actually see that a regular minimizer of
a general minimization problem is always smooth.

But what happens if « is not regular (meaning singular)? In this case we can not apply the
Lagrange multiplier theorem and it is not clear how to deduce an Euler Lagrange equation. Is a
singular minimizer also smooth? Is it of class C'? In our case it is easy to see that a singular
minimizer is smooth, since the singularity of u together with G(u) = 0 and 5 = 0 implies that
u(x) =0 on I and u = 0 also minimizes . Can we find examples of singular minimizers that are
not smooth?
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In this thesis we will study the regularity of minimizers for constrained problems. In the regular
case we will prove that a minimizer inherits the regularity of the Lagrangian of F and G. This will
be the first part. We will then focus on singular minimizers in Chapter 3 and Chapter 4



Chapter 1

Existence of constrained minimizers

We are interested in the following minimization problem: Let I = (a,b) C R, o, 8 € R and
min {F(u) |uv € AC(I), u(a) = o, u(b) = and G(u) =0}, (1.1)

where AC(I) denotes the space of absolutely continuous functions which we will define rigorously
in the next section. We fix the following functional setting:

Let I = (a,b) be a bounded interval and n > 1. Let G € C1(I xR;R") and F € C1(I xR x R; R).
We define the functionals

F:AC(I)—R and G:AC(I)—R"
as
b b
Flu) = / F(z,u(x),u' (z))dz and G(u):= / G(z,u(x))dz,

a a
respectively. The aim of this chapter is to prove existence for the constrained variational problem
(1.1). More precisely, we will prove the following theorem:
Theorem 1 (Tonneli’s existence theorem). Suppose F € C1(I x R x R;R) is such that:

1. F(x,2,£) is convex in £, meaning that the map & — F(x,z,£) is convex for all fized (x,z) €
I xR;

2. F(z,z,£) has quadratic growth: there exist positive constants cg,c1 such that for all £ € R
colé]? < F(z,2,6) < (1 + |€]?) for all (x,z) € I x R fized, (1.2)

3. There exists u € C(a, B) with G(u) = 0.
Then there exists a minimizer of F under the constraint G(u) = 0 in the class
Cla,B) :=={ue AC()|u(a) = a, u(b) = B and v’ € L*(I)},
where o, B € R are fized.

Tonelli’s Theorem is presented in [1, Chapter 1-4] but without the constraint G(u) = 0. We shall
therefore state and prove the theory adapted to our setting.

Remark 1. We choose p = 2 since H'(I) is a Hilbert space and so the characterization of weak
convergence is slightly easier.
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1.1 Background

In this thesis we will work with absolutely continuous functions, therefore we give a short overview
about the necessary background.

Definition 1 (Absolutely continuous functions). A function u : (a,b) — R is said to be absolutely
continuous if for all € > 0 there exists a § > 0 such that

N

N
(B — ) <& implies Y [u(Bi) —ulay)| < e

i=1 i=1

whenever (aq, 31), ..., (an, Bn) are disjoint line segments in (a, b). The class of absolutely continuous
functions is denoted by AC(a,b).

On the real line we have the following characterisation:

Theorem 2. For all I C R we have
AC(I) = HY(I)

where HY'(I) denotes the Sobolev space whose elements are the L' functions with weak derivative
in L.

More precisely, every uw € AC(I) has an almost everywhere classical derivative v’ which belongs
to LY (I) and viewed as an element of L', u' is the weak derivative of u. Conversely, every u €
HYY(I) is an absolutely continuous function, modulo a modification on a set of measure zero.

Finally, w € AC(I) if and only if u is almost everywhere differentiable in a classical sense, v’
belongs to L' (I) and the fundamental theorem of calculus holds true, i.e.: for all x, y € I we have

A proof is given in [1, Thm 2.17].

Remark 2 (Uniform continuity). For an absolutely continuous function v € AC(I) and for all
x, y € I we have by Holder’s inequality that

u(z) —u(y)| < / [u' ()l ds < || o gy | — yI*/2,
Y

meaning that v is %—Hélder equicontinuous so in particular uniformly continuous.

Remark 3. Condition (1.2) assures that the functional F is well-defined for u € C(«, 5). In fact,
since u is absolutely continuous u’ exists almost everywhere in I and by definition of C(«, 3) it
belongs to L2 Since & — F(z,2,€) is of class C! the composition F(x,u(x),u (z)) is measurable.
The upper and lower bounds in (1.2) then guarantee integrability, since I is bounded. Moreover,
x +— G(z,u(z)) is continuous and so G(u) = 0 is well-defined.

Remark 4. Since HY1(I) is not reflexive also AC(I) is not reflexive. We shall therefore work in the
Sobolev space H'(I) := H"?(I) containing of functions u € L*(I) with weak derivative v’ € L*(I),
which is a Hilbert space. Let us also notice that we have H'(I) = {u € AC(I)|v’ € L*(I) }.
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1.2 Tonneli’s semicontinuity theorem

To prove Theorem 1 we need a result from the direct methods of Calculus of Variation, called
Tonelli’s semicontinuity theorem, which provides lower semicontinuity of 7 (u) under the assumption
that F' is convex in £.

Definition 2 (Weak convergence in H*(I)). Let (ug)ren € H'(I). We say that u, converges weakly
to win H'(I) if uj, and u}, converge weakly to u and u’ respectively, where weak convergence in L?
is characterized as follows:

uy, converges weakly to u in L?(I) if for all ¢ € L*(I) we have

lim | ug(x)y(z)de = /u(x)w(z)das

k—oo Jr I

If uy converges weakly to u in H'(I) we write uy — u.

Definition 3 (Sequential lower semicontinuity). We say that the functional F is (weakly) lower
sequentially semicontinuous (weakly-1sc), if

F(u) < liminf F(uy)
k—oo

for all sequences (uy)ren € H'(I) converging weakly to u € H'(I).
Theorem 3 (Tonelli’s semicontinuity theorem). Let F € C'(I x R x R;R) be such that:

1. either F(z,2,&) > 0 or there exists some f € L(I) such that F(z,z,&) > f(x) for all
(r,2,6) e I x R xR;,

2. F(x,z,¢) is convex in & € R for all (z,2) € I x R.

Then F is weakly-Isc in H(I), meaning if (uy)ren € H(I) converges weakly to some u € H*(I)
then we have
F(u) < liminf F(ug).

k— oo

The proof relies on these two standart results from measure theory, which we state for the sake
of completeness.

Theorem (Egorov). Let fi,: I - R, k € N be a sequence of measurable functions such that
fe(x) = f(x) a.e inI and |f(z)| < oo for a.e. x €1.

Then for all € > O there exists a compact set K C I with |I\ K| < € and fi converges uniformly to
f on K.

Proof. See [3, Thm. 2.33] O

Theorem (Lusin). Let f : [a,b] — R be measurable. Then for all € > 0 there exists a compact set
K C I such that |[I\ K| < € and f: K — R is continuous.

Proof. See [3, Thm. 7.10] O
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Proof of Theorem 1.2. Let (ug)ren € H'(I) be such that uy converges weakly to u € H(I).
This implies, after possibly passing to a subsequence, that uj converges strongly to u in L?(I)
by the Arzela-Ascoli compactness Theorem. So we can assume, again after possibly passing to a
subsequence, that uy(z) converges to u(z) for a.e. z € I. Therefore by Egorov’s theorem there
exists some K C I compact such that

ug(x) — u(x) uniformly on K. (1.3)

Moreover by Lusin’s theorem, since u and u' are measurable, we can also assume that v : K — R
and v’ : K — R are continuous.

Now F is of class C'! and since u € H*(I) the composition F(x,u,u’) is in L'(I). Therefore by
Lebesgue’s absolute continuity theorem (see [3, Cor. 3.6] for a proof) we have

/F(m,u,u’)dx:/ F(z,u,u')d:ch/ F(u,z,u)dz
I K INK

< / F(z,u,u)dz + e.
K

Since F is convex in ¢ and F is C' we have

F(.’I/',Z,fl) Z F($7Z7§2) + %(.’I},Z,fg)(fl - 52) for 3“1151752 eR. (14)

We obtain

Flug) > / F(z, uy, ul)da
K
F

14 9 / / / /
> —(x,uk,u)(uk—u)da:—}—/ F(z,ug,u)dz
K 0§ K
! aF !/ !/ /
= | F(z,up,uv)de+ | ——(z,u,u) (u, —u')dx
K K 0§

+ /K (g(z,uk,u’) - (z)];(z,u,u’)> (u), — ') dz.

Now since K is compact, u, v’ are bounded in K. Since J¢F is continuous we have that 0¢ F'(z, u, u)
is bounded in K as well. In particular O¢F (-, u(-),u'(-)) € L*(I) and therefore
oF

a—g(gc, w,u') (u), — ') dx — 0, for k — oo,
K

since uj, converges weakly to w.
Also (0¢F (x,up,v') — O F(z,u,v')) € L*(K) and (u), —v’) € L*(K) so by Holder we have

oF OF
7(xaukau/) - 7(1'7'“’ u/) (U;C - U/) dx < ||3§F(x,uk,u') - aiF(xauau/)HLZ K ”u;c - ul||L2(K)

<C for some C'>0
< C|OcF (, up, v') — O F(z, u,u') || 2 gy -
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As mentioned in Remark 2, uj and w are uniformly continuous. Since J¢F is continuous and K is
compact also ¢ F' is uniformly continuous. So for all € > 0 there exists some 6 = §(€) > 0 such that
forall k e N

|0 F (@, up, u') — OcF(y, ug, u')|, |0¢ F(z,u,u') — OF (y, u,u’)| < g
whenever |z — y| < d so for all k € N we have
|85F((x7ukau/) - (95F($,u7u/) - 8§F(yauk7u/) + 6F(yau7u/)| <e€

whenever |z —y < ¢ meaning that (0¢F(x,ug,u’) — 0¢F(x,u,u)ren is equicontinuous. It is also
bounded on K and by Arzela-Ascoli we can pass to a subsequence that converges uniformly to 0
on K.

Therefore we have

/K (aa};(x,uk,u’)—g(x,um’)) (uj, —u')dz — 0 for k — oo.

Finally we can conclude that for all ¢ > 0 we have

liminf F(ug) > liminf [ F(z,ug,u)dx

k—o00 k—oo JK
> / F(x,u,u')dz > /F(x,u,u’)dx — ¢,
K I

where we used the lower bound on F' and Fatou’s lemma to exchange the limes inferior and inte-
gration. Since € > 0 can be chosen as small as we want, the result follows. O

1.3 Existence

We are now ready to prove Theorem 1.

Proof of Thm 1. By the quadratic growth (1.2) the functional F is bounded from below by 0. Let
(ug)ren be a minimizing sequence of F in the class C(a, 8) with G(ug) = 0, i.e. limg_oo F(ug) =
inf,ec(a,) {F(v)} and G(v) = 0. Such a v does exists by the third assumption of the Theorem.
If F(u) = oo then F = +o00 on C(a, 8). Therefore we may assume without loss of generality that
F(u) < oo.

Our goal is to show that the sequence uy, is bounded in H(I). Since H'(I) is reflexive, we then
can extract a subsequence which converges weakly in H'(I) and by Tonelli’s lower semicontinuity
theorem we see that v is a candidate for a minimizer of (1.1).

The bound for u}, follows by the quadratic growth of F' and by the fact that u is a minimizing
sequence. Now since u € AC(I) we can bound uy by uj}, since we have

u(r) =a+ /: u,(s)ds

and therefore
||Uk||L2(1) <C ||u;€||L2(I)
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for some C depending on o and I. Therefore uy is bounded in H'(I) and so by Theorem 1.2 we
have
F(u) < liminf F(ug),
k—o00

meaning that u is a candidate minimizer of problem (1.1).

It remains to check that u(a) = «, u(b) = 8 and G(u) = 0. The boundary conditions follow by
the fact that I = [a,b] is compact and so u, converges uniformly to v on I which implies u(a) = «
and u(b) = 8. The constraint follows since ux and G are continuous so x — G(z, ur(z)) is bounded
and by dominated convergence we have

G(u) = lim G(up) = 0.
O

Remark 5. Let us mention that Theorem 1 holds also for a general choice of p > 1. Assumption
(1.2) has to be changed to

colélP < F(w,2,€) <e1(1+|€P)  forall (z,2) € T x R fixed.

In fact, it even holds for p = 1. But since L' and therefore H':! is not reflexive, it requires a weak
compactness criterion. A detailed analysis can be found in Chapter 2 of [1].
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Regular minimizers

In this chapter we will prove regularity for G-regular minimizers of Problem (1.1). The main result
will be the following;:

Theorem 4. Let I = (a,b) be a bounded interval in R and let F : T x R x R — R be of class C*
with F(x,z,+) € C?(R) and G : I x R — R" be of class C' satisfying the following conditions:

1. There exist c € R such that for all (z,2,£) € I x R x R we have:

F(z,2,6) < c(1+ €. (2.1)

2. There exists c3 € R such that for all (x,2,£) € I x R x R we have

F F
\a<x7z,5>\+\a

- (9] < a1+ ). (2.2)

8. There exists some § > 0 such that for all (z,2,6) € I x R xR

0’F
8—8(%,2,5) > 4. (2.3)

If u € AC(I) is a G-regular minimizer Problem (1.1) then uw € C'(I). Moreover, if F and G are of
class CF for 2 < k < co then u € C*(I).

Remark 6. If u is a minimizer we don’t need additional assumptions on G in order for G(u) to be
well-defined. Since u is a minimizer we have F(u) < C' < oo and ||lu g1 5y < C by (2.1) for some
C > 0. So if G is at least continuous on I x R then also G(z,u(z)) is bounded and G(u) is therefore
well defined.

For this whole chapter we assume that we have at least F' € C'(I x R x R;R) with F(x,z,-) €
C%(R) and G € C1(I x R;R").
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2.1 Lagrange Multipliers for G-regular extremal

In this subsection we introduce and prove the Lagrange Multiplier Theorem for Problem (1.1). We
will then use this result to prove that a G-regular extremal always inherits the regularity of ' and
G.

Definition 4 (Singular extremal). We say v € AC(I) is a G-singular extremal if for all ¢, ..., ¢, €
C(I;R) we have
det J,¥(0) =0,

where U : R — R™ is given by ¥(7) := G (u+ Y., 7:¢;) for 7 € R™ and J, denotes the Jacobian
matrix of ¥ with respect to 7.
We say that u € AC(I) is G-regular if it is not G-singular.

Remark 7 (Regular extremal). If u € AC(I) is a G-regular extremal then there exist 1, ..., 1, €
C°(I;R) such that det(J-¥(0)) # 0 Now for i,j € {1,...,n} we have

ou, 9 d
(J7¥),;(0) = ar, (0) = e Gi (u + ;n%)

a n
= i , d
o, J, G (:17 u + ,;:1 Tkllik) T

Since all derivatives are continuous we can exchange differentiation and integration by Leibniz
integral rule [4, Chapter 8] and we get

7=0

7=0

(T 0)i5(0) = [ B oy (24
I

We will use the observation from this Remark for the proof of the following Theorem.

Theorem 5 (Lagrange multiplier Theorem). Let u € AC(I) be a regular minimizer of our problem
(1.1). Then there exist A1, ..., A\p, € R such that

di (/ F(z,u+ep,u + ep’)dx + Z i / Gi (z,u+ ep) dx) =0 (2.5)
€ I i=1 I e=0
for all p € C°(I). Moreover if u € C?(I) it satisfies:
OF . d OF o 0G; _
%(w,u,u)—ﬁa—g(mm,u)—Z)\Z@(m,u)—0, Vo e 1. (2.6)

=1

Remark 8. We call (2.5) the weak Euler-Lagrange equation for (1.1) and (2.6) the (strong) Euler-
Lagrange equation for (1.1).

Proof. Let Q := {(e,7) e RxR"| |e|] < e, |7s] <70 Vie{l,..,n}} where 0 < €g, 79 << 1 are
fixed. For ¢ € C°(I) and 91, ..., ¢, € C°(I) we define

P: Q9 —-R and ¥v:9Q —+R"

10
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as
O(e, 1) :=F (u +ep + Z mm) and U(e,7):=G (u +ep + Z Tiwi>
i=1 i=1
respectively.
By assumption we have ¥(0,0) = 0 and by Remark 7, since u is a regular minimizer, there exist
1, ..y Py, € C°(I) such that det(J,¥(0,0)) # 0. This means the matrix J, ¥ in(2.4) is invertible

at the point (0,0) and since ¥ € C1(Q;R") we can apply the implicit function theorem (see |5,
Thm. 9.28, p. 224] to obtain some 7 € C'((—ep, €g); R™) such that

U(e,7(€)) =0, for |e| < €.

= /DZG(m,u) (g&—l— ZT;;(O)U%) dx
=0 JI k=1

—/DZG(:E,u)godm = ZT,’C(O)/DZG(x,u)wkdx.
I P I

This means

d
0= &\IJ(G,T(Q)

and so

Notice that

ZT,;(O)/DZG(z,u)wkdx = J,9(0,0) - 7'(0)
k=1 I

where J.¥(0,0) - 7'(0) € R™. Using that J¥(0,0) is invertible we get
—_———
ER"XR"  €Rn

7(0) = —[J,¥(0,0)] /D G(z,u)pdz, (2.7)

which component-wise reads

- oG .
= _ZMik J(yvu)w(y)dyv 1€ {17"'7’”‘}7
el I 32’

where we let M := [J,¥(0,0)] ! € R"*". The matrix M is independent of ¢.
Let us now compute the derivative of ®(e, 7(€)) with respect to e. For this we let ¢ € C°(I) be
arbitrary. We have:

d
0= %q)(e 7(€))

e=0

:/Ije<F(m7u—|—e§0—|—Z’Ti(€)Lﬁi,U/+EQOI+ZTZ'(€)'I/)£)>

i=1 i=1

dx
e=0

/I{(?)F(a: u, u ((p—I—ZT > g?(x’u’u’) <@'+§T;(O)w;>}dm

= I+IT+IIT+1V.

11
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For term I we use (2.7):

n

1= [ S @) 3 rl 0w o)

=1

O SN [ 9G |
A (z,u,u) 3 (kz_lek i (y,U)w(y)dy> Yi(z)dz

?

& OF G
== 3 M [ Grwayita) [ FE @ we)dus

ik=1

_ N, [9Ge or b
== 3 M [ FEwel) [ Gt yinta)dady

i,k=1

)

where we used Fubini-Tonelli in the last line. For IV we use a similar computation to get

n

IV .= /8{ z,u u)z (0)¢}(z)dz

i=1

=3 [ Sk ot) [ O i)y
i,k=1

Now we add everything together again and get, for all ¢ € C°(I)

/ { (?f () = 3 M) [ G wyst) = G i) dy) o()

i,k=1
oF
+87£($ u,u' )’ (z )}dx—O
We define the Lagrange multipliers as

ZMzk/ |: y7u U )ﬂ}z( ) 8@? (yauau/)w;(y)] dy’ Vk € {1a ,TL}

We notice that A, does not depend on ¢ for any k € {1,...,n}. In terms of our funtions ® and ¥
we have just shown
9e®(0,0) — 8,9(0,0)T [J,¥(0,0)] " 8.¥(0,0) =0

=:\€R"

where A € R™ corresponds to the Lagrange multipliers. This shows (2.5).
If we have u € C%(I) we can perform an integration by parts for the term involving ¢'(z) . We
then get for all p € C2°(1)

OF ., dOF IGy,
/{az(%uau) dz O (z,u,u +Z>\k 5, (x u)}go(x)dxzo.
I

This shows (2.6) since the equation holds for all ¢ € CS°(1). O

12
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2.2 Regularity of G-regular extremal

In this section we prove that a G-regular minimizer of Problem (1.1) inherits the regularity of F
and G. For this we define H : I xR xR —+ R as

H(z,2,§) = F(z,2,§) — Z/\kaxz

This is the Lagrangian of the constrained problem, where Ay, ..., A, € R are the multipliers from
Theorem 5. We define the functional H : AC(I) — R as

w) :/IH(m,u(x),u’(m))dx.

Remark 9. Condition (2.1) assures that the functional H is well defined for u € AC(I). In fact since
u is absolutely continuous v’ exists almost everywhere in I and it belongs to L. Since ¢ — H(z, 2, )
is of class C?, so in particular continuous, the composition H(x,u(x),u (z)) is measurable. The
bound in (2.1) then guarantee integrability, since I is bounded.

We divide the proof into two steps. We first prove that a G-regular minimizer v € AC(I) is
actually in C*(I). We then continue by proving that a C*(I) minimizer is actually C*(I) if F and
G are in CF.

Proposition 1. Under the same assumptions as in Theorem 4, if u € AC(I) is a G-regular mini-
mizer of Problem (1.1) then u € C1(I).

Proof. We claim that there exists some ¢ € R such that
0H
23

First we observe that the mappings = — %—Z(:c,u(x),u’(:c)) and z — %—Ig( u(zx),u'(x)) are mea-

surable since H is of class C! and u' is integrable. By (2.2) they are in L'(I). So the weak
Euler-Lagrange equation (2.5) reads

(v, u,u’) = c+/ %—H(s,u,u’)ds for a.e. z € 1. (2.8)
o 0z

OH OH o
[ (Gt + S warg@) as=0. o, (29
We do an integration by parts in the first term:

¢
/I%f(x,u,u o) d:c—(/ oH suu)ds> /(/ o suuds> /(2)da
- %H;uwd) o (@)de,

where we used that ¢ has compact support. So (2.9) becomes

/(ig(muu / o suu)ds) '(x)dz =0, @ € C(I).

13
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By the Lemma of du Bois-Raymond (see [6, Lemma 2, p.10] there exists a constant ¢ € R such that

%—?(m,u,u’) = c+/ %(s,u,u’)ds for a.e. v € I. (2.10)

We notice that the function

m(z) := c+/ %—Ij(s,u,u')ds (2.11)

is absolutely continuous. 3 B
Let us now define the mapping I' : I x Rx R — I xR xR as

F(m,z,f) = ($,Z,8§H($,Z,§)) .

Let moreover Q := {F(x,z,g) |(x,2,6) €T xR x R} be the image of I'. Since the mapping £
O¢H (z, 2, ) is continuously differentiable and 8€2H(x, 2,€) # 0 for all (x,2,€) € I xRxR by (2.3) by
the implicit function theorem the inverse map ¢ H ! exists and is C'!. Therefore I': I xR xR —
is a C! diffeomorphism.
We define
o(z) :== (z,u(z),u (x)) and e(x) := (z,u(z), (x)).

The function o is defined a.e. in I while e is actually defined for all 2 € T, since 7(x) and u(z) are
absolutely continuous. Since 7(z) = 0¢H (x,u, ), identity (3.2) reads

T(o(x)) = e(x), a.e. in I. (2.12)

We now need to check that T'~!(e(x)) is well-defined, meaning we need to check that e(z) € Q
for all z € I. This follows from (2.3), which implies that 9:H (z,u,R) = R. Le. Q@ =1 x R x R,
and so e(z) € Q and T ~!(e(x)) is well defined and continuous for all = € T.

Therefore

I~ (e(x)) = (2, u(z),v(z))

for some v(z) € C(I). But then (2.12) implies
(x,u(x),u'(2)) = (z,u(z),v(x)), a.e. in1,

so u'(x) = v(x) a.e. in I. This proves Proposition 1 since we have
u(x) = u(a) +/ u'(s)ds = u(a) +/ v(s)ds

and therefore u € C1(I). O
We are now ready to prove Theorem 4.

Proof of Thm. 4. Let u € AC(I) be a G-regular minimizer of Problem (1.1). We argue by induction
that we have u € C*(T) for all k € N whenever F’ and G are of class C*.
By Proposition 1 we have u € C1(I). Let us show that we have

u € C*(T),

14



which will be our base step. To this aim let P: I x R — R be given by

Pla.€) == %—f@, u(x), &) - n(x),

where 7(z) is defined as in (2.11). Since u € C*(I) we have that (x, &) — 9¢H (z,u(z),§) is of class

C'! and also s oH
7(z) = c—|—/a a(s,u,u')ds
(S
cc)
is of class C'. So we have P € C'(I x R;R). Moreover we have P(z,u’) = 0 and

oP O*F -
a—g(x,{):a—g(z,u(:ﬂ),f) >0, (I,f) €I xR,

by assumption (2.3). In particular we have 0P (z,u’) > 0. By the implicit function theorem
there exists a neighbourhood U, C I and a function v : U, — R, which is of class C', such that
v(z) = u/(z) for all z € U,. This means u € C?(U,). But = € I can be chosen arbitrary and we
conclude u € C?(I).

Let now k € N, k > 2 be arbitrary and let u € C*(I). We show that u € C**1(I). With the
same arguments as above we see that P € C*(I x R) and the implicit function theorem yields the
existence of some v € C*(U,) such that v(z) = u/(x) in some neighbourhood U, C I of . Again
this argument holds for all z € I so we have u € C**+1(T). This concludes the induction step.

So we just have shown B
ueCFI), keN,

which is precisely what we wanted.






Chapter 3

Non minimality for a class of singular
extremal

In this chapter we turn to the study of a class of singular extremal that have a cusp of arbitrary
type. We will show that they are not minimizers for the energy.
The minimization problem we consider is the following:

min { F(u) |u(£l) =1and G(u) = Vi i } (3.1)
weH(I)
where I :=[-1,1] and
2k+1
Flu) = %/I|u’(x)|2dx and G(u) := /I (:vzhu(x) - %) dz
where k7h S NZl are fixed and Vh7k = Wifh"'k""h)

2k+1

Remark 10. The Lagrangian F = F(¢) = 1[¢[* and the constraint G(z,z) = z?'z — SreT are
smooth. F is well defined for v € H'(I) and also G is well-defined since u is continuous.

Remark 11. The value of V}, ;, may seem a bit arbitrary. We will see later that V}, i is the exact
value of G(u) for a singular extremal w.

Our aim is to prove that for this choice of F' and G a singular extremal is not a minimizer of
(3.1).

Theorem 6. For all h,k € N with h # k there exists no G-singular minimizer u € H*(I) of (3.1).
But what happens if A = k? It turns out that this case is more difficult.
Open question 1. If h =k, can a G-singular extremal be a minimizer of Problem (3.1)?

We will focus on this question in the next Chapter. Before we turn to the proof we notice that
there exists a minimizer u € H*(I) of (3.1), because the conditions of Theorem 1 of Chapter 1 hold:

Obviously F' has quadratic growth and is convex. So we know that (3.1) has a solution. Let us
first study the case of when w is regular.

15



3.1. REGULAR EXTREMALS CHAPTER 3. NON MINIMALITY

3.1 Regular extremals

If u is a regular minimizer we can use the theory developed in Chapter 2. First let us check that
u is smooth so we can compute the FEuler Lagrange equation for u. We need to check that the
conditions of Theorem 4 hold.

By assumption u € H'(I), F € C*°(R) and G € C*(I x R;R). F has quadratic growth and
OcF = ¢ < (1+¢). Finally we have 8§F =1 > 0 so all conditions of Theorem 4 are fulfilled
and therefore u € C°°(I) if u is a regular minimizer of (3.1). In particular, v € C?(I) and we can
compute the Euler Lagrange equation: There exists some A € R such that

OF ~ d OF , oG B
g(gc,u ) —%a—g(aﬁ,u ) — )\E(x,u) =0.
=0

which leads to the following boundary value problem:

{u"(:c) = ¥ (z) — \z? forall x € 1, (3.2)

u(—1) =u(l) = 1.

Now the most straight-forward approach to prove Theorem 6 would be to compare analyti-
cally regular and singular extremals. If we can show that for any singular extremal usins; we have
F(treg) < F(using) we are finished. But it turns out that this is more difficult then it may look
like. In fact, it is in general impossible to bound a regular extremal. To see this we recall that the
Lagrange multiplier X is given by X := 9,®(0,0)79,¥(0,0)~! where ®(¢,7) = F(u + ep + 7¢) and
U(e,7) = G(u+ ep + 71¢) (see Thm. 4). In our setting this means that

j; o' (z)y (x)dx

A= .
[ @ = (@) ()i

Now u2*(z) might be arbitrarily close to 22". Therefore it is impossible to find a general bound on
A and this approach will fail. So we will turn our focus on the study of singular extremals.

3.2 Singular extremals

If u is a singular extremal of (3.1) then for all ¢ € C2°(I) (where I = (—1,1) denotes the interior
of I) we have

4 G(u+ey)|._,=0.

de
This implies that
P w2kt
% (xzhu—%_’_l> :0, fOI' allxe[
So u2* = 22" and therefore
h/k if z > 0;
bk )T nr=Uu; 3.3
u(@) = 2l {(—x)h/k if x <0. (3:3)
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We see that this is not a smooth function for all choices of h and k. For example if h = 2 and
k =1, u is smooth but if h = k = 1 then u(x) = |x| which is not in C*(I). However it is Lipschitz-
continuous on I. Another obvious example of a non-smooth version is when h = 1 and k& = 2.
Then u(z) = \/m which is not even Lipschitz in = 0. The question is, whether one of these
non-smooth candidates is actually a minimizer of Problem (3.1).

Let us compute G(u). Observe, that for a singular v we have G(—z, u(—z) = G(x, u(z)) for all
x € [—1,1], meaning that G is an even function for all € [—1,1]. This helps us to compute the
integral of G:

1
G(u) = /OG(x,u(x))dx

B 1 heanmk £ (2hk+h) [k
=2 T — | dx
0 2k +1

1 1
( 2% + 1) /0 ‘ “

_y 2k k
T U\2%+1) 2hk+h+k
= Vik

Now we see where the definition of the value of the constraint comes from. The only possibility to
take is Vj, 1, otherwise a singular extremal w can not be a solution of (3.1).

3.3 Proof of Theorem 6

Let u be a singular extremal. As mentioned above u is an even function for all natural numbers h
and k. We will therefore prove the Theorem for I = [0,1] to make things easier. The idea is the
following: We fix § > 0 and modify « in [0, d] by setting u.(z) =& > 0 for z < § with u.(0) = e.
Basically we remove a part where the L? norm of the derivative is big. We then modify u. in the
interval [$, 3] in such a way that we have a gain of L? derivative in this part. We call this modified
function w?, where n € R is fixed so that G(u?) = G(u). Roughly speaking we take more derivative
away than we add. We then show that F(u?) < F(u) for € > 0 small, meaning that v can’t be a
minimizer of (3.1).
So let € > 0 and 1 € R be fixed. We define

€ cx <6

u(x) a0 € [0, 3]

miz+dy cx €31+ n]
w(x)+n  cxely+nl i -l
mox +dy :x € [%—|n|,%]
u(x) x> 3

where

o () (3 + In)"* +n— (3)"* o (Y ma)
() o= - 4 din) = ( )

17
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and

3\h/k _ (3 _ | [\h/k _ .
ma(n) = (1) (3 —nb) " and do () = <3> 3 2(77).

7]
The picture is the following:

Ya

17240l 314; Inl

0 5 34 X

Figure 3.1: Sketch for n > 0 where the modifications for u] are drawn in green.

Since we want u7 to be continuous we choose § = £¥/".

Remark 12. We have u” € H*(I). In fact, u? is Lipschitz continuous on I and it is bounded so in
L®°. Therefore we have u € H»*(I) C H*(I). (See |2, Prop. 8.4] for a proof)

Proof of Thm 6. Step 1: We would like to express n in terms of €. For this we set

)

- / (Gl ulx)) — Glar,ul(z)) d + / (G, u(2)) — Glar,ul(z)) da
0

= 0.

To compute these integrals we notice that for 0 < a < b <1 we have

b
/a G(z,u(x))dx = <1 — kl_y_ 1)/ R
[ 2hk;h,+k:|b
2k+1 2kh+h+k a’

- 2
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For the first term we have

eh/h k/h ck/h

/0 (G(z,u) — G(z,ul)) = /05 G(z,u)dr —/0 (:13%5 — ;:i:) dx

_ Vi (Ek/h)w - (Ek/h)zhﬂg N g2k+1 K/
2 2h +1 2k +1
_ 2k k 1 + 1 €2khth+k
\(@2k+1)(2kh+h+k) 2h+1 2k+1 '
Cq
Now
2k k 1 1 2h2%(2k + 1)

Cl =

Cht D) @kh+ht k) 2h L 2k+1 @kt Dh+ Dkh+htH)

and therefore we have C; > 0 for all choices of k, h € N.
For the second term we write

3 2+Inl 3—|n|
A (G(a, u(x)) - G, ul(z))) de = / (G(z,u(x)) - G, ul(z))) da + / (G(z, u(x)) - G, u"(z))) da

2 2 3+l

=1 =II

+/§Z (G, u(@)) — G, u? () da

4_|77|

=111

Our goal is to express these three terms as a part depending linearly on n and a rest o(|n|) for n
small.
Estimates for I: We have

2 1

3 2

3+l Vi 1
2 Wk [ 2khthtr 30l
/ G(z,u)dr = —= {x k }

1

and for 7 small enough we can do a Taylor expansion:

2kh+4+h+k

Vi { M}%Hnl Vi 1 % h -t htk (1)20H d .
2 17 2 2 + L B dn|7l\|77| +o(|n]) 5
N——

1
2

2kh+h+k
k

=n for n>0 and <0

2% ko 2kh+h+k (1) + ol
T 2%+ 12kh+h+k Kk 2 oAl

2k <1>2h+1n+0(|77|)-

T2k +1\2
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Now we have

3+l
/ G(z,ul)dz =

2

%‘HTI' m .T+d 2k+
(x% (myx +dy) — (12k:—|—11)) dx

o

my [$2h+2} +n .

2h +2

+nl dy oha17 5+l 1 2%+2
_n . d
oy T (2k + 1)(2k + 2)my [(maz + da)™]

[NENNIE
[NERNIEY

For every term we do again a Taylor expansion:
14| ont+1 [ d
o gt [ = ()7 (il ) ol
=n

il _ g (1) <dcf7|nl) [l +o([n]),

—_——
=n

* 2}?-11 [$2h+1]

[MERVE

+|nl m1 g2kt (d
= G (i) 4ol

—_——
=n

o (m1$+d1)2k+2
(2k+2) (2k+1)m;

[SIES ST

)2k+1 _ (%)(h/k)@k-i-l) _ (1)W '

Recall that we have d; := (%)h/k — 5+ and therefore (% +dq !

Adding everything together we get

. 9% 1\ 21 1\ 2h+1 ; 1\ 2" 1 1 Zkhth
Ymrilz)  Tmilz) ~4lz) T e n+ollnl)-
Now —mq (5)"7" = di (3)™" == (3)™ (Bt + 1) = — (3)™ ()"" and 50
I 1 2h 2% 1 h/k‘+ 1 1 h/k N (| |)
V\2) |2+ \2 2% +1\2 7T oA

=C7
We have

o (1 ok )~ (2k+1)+1 1\ 2k 1)
r= <2> 2h/k(2k + 1) - (2) 2h/k(2k + 1)
and notice that C; = 0 if and only if h = k. Moreover, for h > k we have C; > 0 and for h < k we
have C; < 0.
III:
The calculations for part 111 are almost the same as for part I but with other factors contributing

to the constants. We first note that for a term of the form z* we have the following Taylor expansion

for :
a= () C) () ()i ot | =a(3) ot

=—n for n>0 and n<0

(2]

SRS
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so we can adapt the calculations from I and get

Qk‘ 3 2h+1 3 2h+1 3 2h 1 3m2 2k+1
III{%_H <4) — Mo <4) —ds <4> +2k+1( 1 +d2> n+o(|nl).

=:Crr1

This time we have (322 4 dy)***" = (3)/MEHD ang — (23) (Bma 4 g)) = — (3)*" (3)"* 50

2h(3 ok 3\ "k 1 /3\"M*
42k+1 \4 torr1\a

3
4
3\ 6k(47F) — 3M/R(2k + 1) + 30/
4
3
4

4h/k(2k + 1)
2 GR(at — 35
AnR (2K + 1)

We notice that we have Cy;p =0if and only if h =k, Cyrp >0if h >k and Crr; < 0if h < k.
II:
For z € [L + |n|, 2 — |n|] we have u?(z) = z"/¥ + 1. So

2—In| (zh/k)2k+1 (zh/* 4 )2kt
7] = 2h_h/k . 2h( h/k n d
/é+n <x ! 2k +1 w @)+ 2k +1 v
2ki}z€+h

2—Inl 2—|n| 2—|n| (.h/k 2k+1
:—/ de—n/ x2h+/ wdw
b+l 2B+ 1 3+l sl 2R+

= o(|nl)

since, again by a Taylor expansion, we have (z/F 4-9)2k+1 = (2h/F)2k+1 1 (2% 1+-1) (2" *)2Fn4-0(|n]).
This is enough to know if we have h # k since we already know that in this case C, Cyr; # 0.
Now we have two cases:

o If h #£ k:
O,(c) = C1e® + Cm+ Crm+o(|n) =0
where o := Mhh"’k and so
Cy
=———— %+ o(e%). 3.5
K Cr+Crrr (%) (35)

— If h > k we have C7 + Crrr > 0 so —ﬁ < 0 and therefore n < 0.

— If h < k we have C7 + Crrr < 0 so —ﬁ > 0 and therefore n > 0.

e If h = k we have
Oy(e) = Cre® +o(|n]) =0
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meaning £* = o(|n|) and this approach will not work. One could think in this case we expand
the integrals I, I1, I1] again to get a quadratic equation for n. But this equation will have no
real solution if we don’t have an additional assumption on G. We will study this phenomena
in the next chapter.

Step 2): Now we define ¢(¢) := F(ull) — F(u). If we have ¢(¢) < 0 we are finished. Notice that

u(x) = %x%_l and

0 cx < gk/h
u'(x) :ax € [eFh %]
ius(x) _ m1 HEAS [%7 % + |T’H
da " u'(x) caxe g+l g —Inll
my  izelf—nl,g]

u'(z) x> 3.
Consequently we have

Ek/h

3+n] i
o(e) = —%/0 u (x) d + %/ (m% — u'(m)Q) dr + % ﬁ_ ‘ (m3 — u’(x)2) dz.

Note that for 0 < a < b <1 we have

b 2 b 2
h 2h—2k h 1 2n-1k 70
25 - _ 2h—k
[ terda =g [ e = T [, (3
and so
h2 1 . 2}5;7“ m2 h2 1 — %+|17| m2 h2 1 ohk %
() g L ey L e
o %%_k(e M gkank 4 2 M= Span g ¥ $—In|
=45 (1T nl+o(in) 22 "5 nlo(in)
h? 1 | 271N\ 3\ T
i (ek/h) +3 m? +m? — = (2> + <4) In| + o(|n)).
Conclusion: Recall that if h # k we have n = _szé‘m £+ 0(c*) by (3.5) and o ;= 2khthth,

o If 2h — k > 0 then 2=k < 2khakth o514 therefore, if h # k, n = o(sﬁ) for e — 0 so

h? 1 2hh—k+ (%
2% 2h — k- ofe” ™).

¢(e) =
This means F(u?) < F(u) so u can’t be a minimizer of (3.1).

o If 2h — k < 0 we have:

1 2
h 1 2n—k 1
li "2)%de = — ——— [ ] = —
’Ym%/y o' (z)°dx e G , 00,

so in this case we see that u’ ¢ L?([0,1]) and so u can’t be a minimizer of (3.1).
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Therefore for all k, h € N with h # k we see that u(z) = |z|¥ can’t be a minimizer of (3.1) which
concludes the proof of Theorem 6. O

If h # k Theorem 6 tells us that a minimizer of Problem (3.1) is always as regular as F' and G.
We present now two Corollaries.

3.4 Corollaries

For both Corollaries we change the functional F while G stays the same.

3.4.1 Extension to p>1
We still consider our minimization problem

HI?I%I {Fpu)|u' € LP(I)u(+1) =1 and G(u) = Vp } (3.7)
ue 1

where we generalize the functional F, as follows: For every p > 1 and for all v € H'(I) with the
additional assumption that u' € LP(I) we define

]./ ’ P
= - u(x)|” dx.
’ I\ ()]

Let us mention that we do not now if there exists a minimizer of this new problem. In Chapter 2 we
worked in the space H'. But nevertheless the theory can be generalized so that we have existence
for all p > 1. A detailed analysis of this can be found in [1, Chapter 3]. We will therefore assume
existence for the following Corollary.

Corollary 1. For all k,h € N such that h # k there exists no singular minimizer of (3.7).

Proof. The idea is the same as before. Since we did not change G we adapt the very same compu-
tation as in Theorem 6 to get an ¢ dependence for n. Now we again show that F,(ul) < Fp,(u).
We have

Pp(e) == Fp(ul) — Fp(u)
1 ok/h

|+l | 3+
— [ W@ [T G = W @p)de s [T (mal? - @) da
0 1 3

p 2 4

The only positive terms are the ones involving m; and ms. So if we can show that they go faster
hp phk

to zero than the first term we are done. Note that |u/(2)[? = 5 2P F and so
k pht(1—p)k
u'(z)|Pdx {x F } .
/ (=) pk‘pph+(1—p)k
=:C

Therefore if ph + (1 — p)k < 0 we have that v’ ¢ L¥(I) and so u can’t be a solution of (3.7). So we
consider the case ph + (1 — p)k > 0. This leads to

k< h fl (3.8)

Now
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ok/h
. ;I |/ (z)|Pdz = Cce

. Z+In L
e 2|l = Ll + o))
2

Recall that n = C"e + 0(¢®) with « := ZER+htk anq the constant C” = ﬁ depending on

h,k € N with h # k from the proof of Theorem 6. Now we are interested for which k,h € N we

have Z h+(}1L pk < 2RhEhtk hecause then we have for € > 0 small that ¢,(e) < 0. This is equivalent
to ph + k — pk < 2kh + h + k which leads to

< k. (3.9)

Now together with (3.8) we have

p—1
h2h+ <k<h _1

and so (p — 1)? < 2hp + p?. This is equivalent to
1<2p(h+1)

and since p > 1 we see that this is true for all h € N. It remains to check that (3.9) also holds true
for all k € N. To see this we use that (3.9) holds for all h € N. Since

h(p—1) h p—1 p—1

Sh+p h24p/h  2+p/h

and

2+p/ < Tl < 1 we have that

p—1
— <1<k
9 <

+p
since k > 1. This means that for all p > 1 and for all k,h € N with k£ < % we have ¢,(¢) < 0

and so Fp(u?) < F(u), meaning that u is not a minimizer of (3.7). Therefore we see that for all
k,h € N and for all p > 1 (3.7) has no singular solution. O

3.4.2 Theorem 6 for the Length
Another important example for F is length. We look at the following problem

uerrbllllr%[){fL( u)|u(£l) =1 and G(u) = Vi } (3.10)

where

= /1 V14 |uw(2))?de.

Corollary 2. For all k,h € N such that h # k there exists no singular solution of (3.10).
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Proof. Again we adapt the computations from Theorem 6 and define

¢r(e) == Fr(ul) — Fr(u)

ek/h 2 3 5+l 3+nl 2 z
h® 2n—2k\ ? 2 o\ % 2 h® 2n—2k
———/0 (1+k2x F ) dm—&—A (1—|—ml)2’dgc—/l (1+k2x E ) dx

2 2
3 3

1
1 1 1 h2 . 2
—|—/ (l—i—m%)?da:—/ (1+2x2hk2k> dx
3—Inl £—1In| k

1 1
Again the only positive terms are the ones involving m; and msy. We have fanl (1 + m%) 2dx =
2

1 3 1 1

(1+m3)? [n| and f;“_w (1+m3)? dz = (1+m3)? |n|]. Now both of these terms go faster to zero
4

than the first term. To see this it is enough to do a Taylor expansion for x > 0 small:

1
h? 2 d h? ano)?
(1) =1 (14 5™)

So

k/h

1
£ h2 - 2
/o <1+k2x2}k2k) dz = eF/M 4 o(ek/h)

and since |n| = Ce® + o(c®) where a = ZEhthth > k for 4]l ki, h € N we have ¢1,(c) < 0 for all
k heN. 0







Chapter 4

Non-minimality of corners

4.1 Introduction

In this chapter we apply the construction of u? of Chapter 3 to u(x) = |x| and a general constraint
G. The goal is to prove that if u is a singular extremal it cannot be a solution of the minimization
problem for the energy.

We fix the following setting:
Let I =[-1,1] and G : I x R — R be smooth. Let

F(u) := %/I\u’(x)\zdx and  G(u):= /IG(x,u(x))dm.

The minimum problem is the following:

min {F(u)|u(+l) =1 and G(u) =V} (4.1)
weH(I)
where V' € R. We choose V' € R such that G(|z|) = V. For this whole chapter we assume that
u(z) := |z| is a G-singular extremal. We recall that this means that for all ¢ € C2°(I) we have
0= a /G(m |z| + T¢)dx
B dr 1 7 7=0
and so
0.G(z,|z]) =0 on I. (4.2)

The result of this chapter is the following:
Theorem 7. Let u(z) = |z| and G € C°(I x R;R) be such that there exists § € (0, 1) with

02G(0,0)0%G(6,0) < 0. (4.3)

If u is a G-singular extremal then u is not a solution of Problem (4.1).

Remark 13. Let h,k € N and G(z,z) = (:c%u - ;j:_:i) be the constraint of (3.1) from Chapter 3.

We have 02G(z, z) = —2kz?~1 so assumption 4.3 fails to hold. So the question, whether u(z) = |z|
can be a minimizer of (3.1) is still open.
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4.2 Proof of Theorem 7

Proof. The idea of the proof is the same as in Chapter 3. We modify « to u! and show that
F(u) < F(u). As before it is enough to do the computations in [0,1]. Since 9?G is continuous
there exists o > ¢ such that
92G(0,0)0%G(z,z) < 0
holds for all x € [§,0). We define u! as follows: For all ¢ > 0 with ¢ < ¢ we fix € R such that
o — 4> 2|n| and
€ x<e
u(z) cx € [g,0]
mix+dy x €[0,5+ |n]]
w@)+n iz eld+|nl,o—Inl]
mex +dy 1z € [0 —|n|, 0]

u(x) x>0
where
mil) = 2T and ) =6 - b o)
and
ma(n) = |n|77_| 1 and dy := 0 —oma(n).

Remark 14. For all values of n we have that mq,ms € {0,2}. In particular, if n > 0 then m; = 2
and ms = 0 and if n < 0 then m; = 0 and mo = 2.

As a first step, we want to express 1 in terms of €. For this we compute again the asymptotic
behaviour of the difference of the constraint: G(u) — G(u??). We start expanding the integrals in
[0,e]. We define

0.6) = [ (Glarute)) = Gla,w2w) ds = [ (Glaw) - Gla0)

We have 6.(0) = 0 and

d

£0.(5) = Gle,e) ~ Gle,e) + /O di (Gla,2) — Gz, ) do = — /O 0.G(x, 2)dx,

&

were we used Leibniz’s rule for the differentiation under the integral sign. Therefore we have
0.(0) = 0. Now

0”(e) = —0.G(e,e) — /0 0*G(x,e)dx = —/0 02G(z,e)dx

since 0,G(e,e) = 0 for all € by (3.3). Again we have 8”(0) = 0, and so we compute

67 (c) = —02Ge, ) — /0 PGz, e)da.
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Now by assumption (4.3) of the Theorem we have 6”/(0) = —92G(0,0) # 0 so for all € > 0 small
enough we have

Oc(e) = — é@gG(O, 0)e® 4 o(e?).

~———
Cy

Next, we expand the integral on the interval [, o].
This time it turns out to be convenient to compute first the asymptotic behaviour in the middle
part [0 + |n],0 — |n|]. We define

o—|n|

=R a—|n|
0(n) == /6+|n| (G(z,u(z)) — G(a,ul(z)) de = /6+|n| (G(z,x) — G(z,z +n)) d.

~

Let us first assume that n > 0. We have 6(0) = 0 and

d ~
%G(W) =G(oc—n0—-n)—G(oc—n0—-n+n) -G +n,0+n)
o—1
+G((5+77,(5+77+77)—/ 9.G(x,x + n)dx.
o+n

So Y
0'(0) = —/ 0.G(z,z)dr =0
B

by (4.2). Now

0"(n) =—0,G (o0 —n,0—n) —0.G (0 —n,0 — 1) +0,G (6 —n,0 —n+1)

=0 by (4.2)
—0.G (0 —n,0—n+n) = 0:G(6+n,0+n)—0.G(0+n,6+n)
=0 by (4.2)
+0,G6+n0+n+n)+0.GO+nd+n+n) —0.G(oc—n,o—n+n)
o—n
+8ZG(6+77,6+77+77)—/ 02G(x,x + n)dx
5+n

So we see, using again (4.2), that
/(0) = —0,G (0,0) + 0,G (0, 0) — G (6,6) + DaG (6, 6) — / 092Gz, x)dz,
5
If n < 0 we have a minus sign in front of the remaining terms since %|n| = —1 and so

0" (0) = 8,G (0,0) — 0:G (0,0) + 8,G (5,6) — 0,G (6,5) — / 02G(z, x)dx.
S
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Therefore for all n € R with 2|n| < o — § we have
6" (0 / 0*G(x,x)dx #0

by assumption (4.3) of the Theorem and so

i) =~ (5 | 026(e.)de) i+ o)
~

We compute the asymptotic behaviour in [4,d + |n|]: Let

_ +In|

3+l
0(n) == /l (G(z,u(z)) — G(a,ul(x))) dz = / (G(z,x) — G(z,mix + dy)) dx.

1

2 2

It is enough to show that for n — 0 we have 8(n) = o(n?). Let z € [5,8 + ||]. We have by Taylor’s
Theorem that

o Gz,7) = G(5,8) + 0,G(8,0)(x — 8) + 0.G(6,6)(x — ) + 82G(6,6) 252 + 9, 0.G(6,6)(x —
N—— ——

=0 =0

5)2 + 02G(6,6) S0 4 o((x — 6)2)

o G(z,myaztdy) = G(5,6)+0,G(8,0)(3—6)+0.G(5,8) my (x—08)+02G (5, 8) 2522 40, 8.G(5,8) my (v —
=0 =0

6)2 + 9265, )m3 5 + of(w — 6)?)
Notice that we used Schwarz Theorem to change the order of differentiation. Therefore

x—0)>2

6lo.2) = G-+ )] = |£026(6.6) 2 4ol - 07| < 6542 + ol

on [0,d + |n|] where C?El) > 0 and the sign in front of 0,G(J,0) depends on the value of m;. So

0(n) = o(17?).
For the interval [0 — ||, o] the computations are almost the same. We have
_ _ 2 (U - $)2 N2 (2) 2
|G(z,z) — G(x, mox + do)| = |£0;G(0,0) 5 +o((o —x)*)| < C37n + o(n?).

Now we express 1 in terms of : Let

Oe.n) == / (G(z, u(x)) - Gla, u"(x))) da.

We just showed that O(e,n) = —C1e% +0(3) — Can? + o(|n|?). Define C := —%. With O(e,n) =0
we get Can? + o(|n]?) = —C1e + o(e?) and so

() = (ifc) 32 4 o(3/2). (4.4)

28



4.2. PROOF OF THEOREM 7 CHAPTER 4. NON-MINIMALITY OF CORNERS

Notice that by assumption (4.3) we have that sgn(C1) = —sgn(C2) so C' > 0 and therefore n > 0.
The second step is the same as in Theorem 6. We define ¢(g) := F(u?) — F(u) so

€ 3+[n| o
o(e) = 1 o (x)de + 1 (m? —/(z)?) da + (m3 —u/(2)?) dz
2 0 2 ) o

=l

1 1 1 1 1
= —ge+omiln(e)| = 5ln(E) + gmaln(e)] - 5 In(e)|
1 1 1 3
= _——e42 - = _ g4 2
3¢+ 2n(e)] - 5ln(e)l = —3e + Sl
where we used the observations made in Remark 14. Together with (4.4) we have ¢(¢) = —1e+o(e)

for € > 0 small enough so we proved F(u?) < F(u) meaning that w is not a minimizer of (4.1). O
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