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Introduction

As an introductory example let us consider the following minimum problem: Let I = (a, b), a, b ∈ R
and

min{F(u) |u ∈ H1(I); u(a) = 0, u(b) = β and G(u) = 1} (1)

where H1(I) denotes the Sobolev-space consisting of L2 functions with weak derivatives in L2 and

F(u) :=
1

2

∫
I

u′(x)2dx and G(u) := 1

2

∫
I

u(x)2dx.

We assume that there exists a minimizer of (1). In fact, the existence follows by the theory which
we will develop in Chapter 1.

We say that u is a regular extremal if the �rst variation of G does not vanish for all ψ ∈ C∞
c (I),

meaning there exists some ψ ∈ C∞
c (I) such that∫

I

u(x)ψ(x)dx ̸= 0.

In this case, by the Lagrange multiplier Theorem (this will be introduced in Chapter 2, Thm 5 )
there exists some λ ∈ R such that

d

dϵ
(F(u+ ϵφ) + λG(u+ ϵφ))|ϵ=0 = 0.

Together with the boundary conditions we get the following ordinary di�erential equation{
u′′(x) = λu(x)

u(a) = 0 and u(b) = β.
(2)

For a given λ the solution of this problem is unique and is given by

If λ > 0 : u(x) = γ1e
√
λx + γ2e

√
λx where γ1 and γ2 are constants determined

by the boundary conditions.

If λ < 0 : u(x) = γ1 sin(
√
−λx) + γ2 cos(

√
−λx) where γ1 and γ2 are constants

determined by the boundary conditions.

If λ = 0 : u(x) =
β

b− a
(x− a).

So for all possible λ the solution of (2) is smooth. We will actually see that a regular minimizer of
a general minimization problem is always smooth.

But what happens if u is not regular (meaning singular)? In this case we can not apply the
Lagrange multiplier theorem and it is not clear how to deduce an Euler Lagrange equation. Is a
singular minimizer also smooth? Is it of class C1? In our case it is easy to see that a singular
minimizer is smooth, since the singularity of u together with G(u) = 0 and β = 0 implies that
u(x) ≡ 0 on I and u ≡ 0 also minimizes F . Can we �nd examples of singular minimizers that are
not smooth?
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In this thesis we will study the regularity of minimizers for constrained problems. In the regular
case we will prove that a minimizer inherits the regularity of the Lagrangian of F and G. This will
be the �rst part. We will then focus on singular minimizers in Chapter 3 and Chapter 4
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Chapter 1

Existence of constrained minimizers

We are interested in the following minimization problem: Let I = (a, b) ⊆ R, α, β ∈ R and

min {F(u) |u ∈ AC(I), u(a) = α, u(b) = β and G(u) = 0} , (1.1)

where AC(I) denotes the space of absolutely continuous functions which we will de�ne rigorously
in the next section. We �x the following functional setting:

Let I = (a, b) be a bounded interval and n ≥ 1. Let G ∈ C1(I×R;Rn) and F ∈ C1(I×R× R;R).
We de�ne the functionals

F : AC(I) → R and G : AC(I) → Rn

as

F(u) :=

∫ b

a

F (x, u(x), u′(x))dx and G(u) :=
∫ b

a

G(x, u(x))dx,

respectively. The aim of this chapter is to prove existence for the constrained variational problem
(1.1). More precisely, we will prove the following theorem:

Theorem 1 (Tonneli's existence theorem). Suppose F ∈ C1(I × R× R;R) is such that:

1. F (x, z, ξ) is convex in ξ, meaning that the map ξ 7→ F (x, z, ξ) is convex for all �xed (x, z) ∈
I × R;

2. F (x, z, ξ) has quadratic growth: there exist positive constants c0, c1 such that for all ξ ∈ R

c0|ξ|2 ≤ F (x, z, ξ) ≤ c1(1 + |ξ|2) for all (x, z) ∈ I × R �xed; (1.2)

3. There exists u ∈ C(α, β) with G(u) = 0.

Then there exists a minimizer of F under the constraint G(u) = 0 in the class

C(α, β) :=
{
u ∈ AC(I) |u(a) = α, u(b) = β and u′ ∈ L2(I)

}
,

where α, β ∈ R are �xed.

Tonelli's Theorem is presented in [1, Chapter 1-4] but without the constraint G(u) = 0.We shall
therefore state and prove the theory adapted to our setting.

Remark 1. We choose p = 2 since H1(I) is a Hilbert space and so the characterization of weak
convergence is slightly easier.
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1.1. BACKGROUND CHAPTER 1. EXISTENCE

1.1 Background

In this thesis we will work with absolutely continuous functions, therefore we give a short overview
about the necessary background.

De�nition 1 (Absolutely continuous functions). A function u : (a, b) → R is said to be absolutely
continuous if for all ϵ > 0 there exists a δ > 0 such that

N∑
i=1

(βi − αi) < δ implies

N∑
i=1

|u(βi)− u(αi)| < ϵ

whenever (α1, β1), ..., (αN , βN ) are disjoint line segments in (a, b). The class of absolutely continuous
functions is denoted by AC(a, b).

On the real line we have the following characterisation:

Theorem 2. For all I ⊆ R we have

AC(I) = H1,1(I)

where H1,1(I) denotes the Sobolev space whose elements are the L1 functions with weak derivative
in L1.

More precisely, every u ∈ AC(I) has an almost everywhere classical derivative u′ which belongs
to L1(I) and viewed as an element of L1, u′ is the weak derivative of u. Conversely, every u ∈
H1,1(I) is an absolutely continuous function, modulo a modi�cation on a set of measure zero.

Finally, u ∈ AC(I) if and only if u is almost everywhere di�erentiable in a classical sense, u′

belongs to L1(I) and the fundamental theorem of calculus holds true, i.e.: for all x, y ∈ I we have

u(x)− u(y) =

∫ x

y

u′(s)ds.

A proof is given in [1, Thm 2.17].

Remark 2 (Uniform continuity). For an absolutely continuous function u ∈ AC(I) and for all
x, y ∈ I we have by Hölder's inequality that

|u(x)− u(y)| ≤
∫ x

y

|u′(s)| ds ≤ ∥u′∥L2(I) |x− y|1/2,

meaning that u is 1
2 -Hölder equicontinuous so in particular uniformly continuous.

Remark 3. Condition (1.2) assures that the functional F is well-de�ned for u ∈ C(α, β). In fact,
since u is absolutely continuous u′ exists almost everywhere in I and by de�nition of C(α, β) it
belongs to L2. Since ξ 7→ F (x, z, ξ) is of class C1 the composition F (x, u(x), u′(x)) is measurable.
The upper and lower bounds in (1.2) then guarantee integrability, since I is bounded. Moreover,
x 7→ G(x, u(x)) is continuous and so G(u) = 0 is well-de�ned.

Remark 4. Since H1,1(I) is not re�exive also AC(I) is not re�exive. We shall therefore work in the
Sobolev space H1(I) := H1,2(I) containing of functions u ∈ L2(I) with weak derivative u′ ∈ L2(I),
which is a Hilbert space. Let us also notice that we have H1(I) =

{
u ∈ AC(I) |u′ ∈ L2(I)

}
.
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1.2 Tonneli's semicontinuity theorem

To prove Theorem 1 we need a result from the direct methods of Calculus of Variation, called
Tonelli's semicontinuity theorem, which provides lower semicontinuity of F(u) under the assumption
that F is convex in ξ.

De�nition 2 (Weak convergence inH1(I)). Let (uk)k∈N ⊆ H1(I). We say that uk converges weakly
to u in H1(I) if uk and u′k converge weakly to u and u′ respectively, where weak convergence in L2

is characterized as follows:
uk converges weakly to u in L2(I) if for all ψ ∈ L2(I) we have

lim
k→∞

∫
I

uk(x)ψ(x)dx =

∫
I

u(x)ψ(x)dx.

If uk converges weakly to u in H1(I) we write uk ⇀ u.

De�nition 3 (Sequential lower semicontinuity). We say that the functional F is (weakly) lower
sequentially semicontinuous (weakly-lsc), if

F(u) ≤ lim inf
k→∞

F(uk)

for all sequences (uk)k∈N ⊆ H1(I) converging weakly to u ∈ H1(I).

Theorem 3 (Tonelli's semicontinuity theorem). Let F ∈ C1(I × R× R;R) be such that:

1. either F (x, z, ξ) ≥ 0 or there exists some f ∈ L1(I) such that F (x, z, ξ) ≥ f(x) for all
(x, z, ξ) ∈ I × R× R;,

2. F (x, z, ξ) is convex in ξ ∈ R for all (x, z) ∈ I × R.

Then F is weakly-lsc in H1(I), meaning if (uk)k∈N ⊆ H1(I) converges weakly to some u ∈ H1(I)
then we have

F(u) ≤ lim inf
k→∞

F(uk).

The proof relies on these two standart results from measure theory, which we state for the sake
of completeness.

Theorem (Egorov). Let fk : I → R, k ∈ N be a sequence of measurable functions such that

fk(x) → f(x) a.e. in I and |f(x)| <∞ for a.e. x ∈ I.

Then for all ϵ > 0 there exists a compact set K ⊆ I with |I \K| < ϵ and fk converges uniformly to
f on K.

Proof. See [3, Thm. 2.33]

Theorem (Lusin). Let f : [a, b] → R be measurable. Then for all ϵ > 0 there exists a compact set
K ⊆ I such that |I \K| < ϵ and f : K → R is continuous.

Proof. See [3, Thm. 7.10]
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1.2. TONNELI'S SEMICONTINUITY THEOREM CHAPTER 1. EXISTENCE

Proof of Theorem 1.2. Let (uk)k∈N ∈ H1(I) be such that uk converges weakly to u ∈ H1(I).
This implies, after possibly passing to a subsequence, that uk converges strongly to u in L2(I)
by the Arzelà-Ascoli compactness Theorem. So we can assume, again after possibly passing to a
subsequence, that uk(x) converges to u(x) for a.e. x ∈ I. Therefore by Egorov's theorem there
exists some K ⊆ I compact such that

uk(x) → u(x) uniformly on K. (1.3)

Moreover by Lusin's theorem, since u and u′ are measurable, we can also assume that u : K → R
and u′ : K → R are continuous.

Now F is of class C1 and since u ∈ H1(I) the composition F (x, u, u′) is in L1(I). Therefore by
Lebesgue's absolute continuity theorem (see [3, Cor. 3.6] for a proof) we have∫

I

F (x, u, u′)dx =

∫
K

F (x, u, u′)dx+

∫
I\K

F (u, x, u′)dx

<

∫
K

F (x, u, u′)dx+ ϵ.

Since F is convex in ξ and F is C1 we have

F (x, z, ξ1) ≥ F (x, z, ξ2) +
∂F

∂ξ
(x, z, ξ2)(ξ1 − ξ2) for allξ1, ξ2 ∈ R. (1.4)

We obtain

F(uk) ≥
∫
K

F (x, uk, u
′
k)dx

(1.4)

≥
∫
K

∂F

∂ξ
(x, uk, u

′) (u′k − u′) dx+

∫
K

F (x, uk, u
′)dx

=

∫
K

F (x, uk, u
′)dx+

∫
K

∂F

∂ξ
(x, u, u′) (u′k − u′) dx

+

∫
K

(
∂F

∂ξ
(x, uk, u

′)− ∂F

∂ξ
(x, u, u′)

)
(u′k − u′) dx.

Now since K is compact, u, u′ are bounded in K. Since ∂ξF is continuous we have that ∂ξF (x, u, u
′)

is bounded in K as well. In particular ∂ξF (·, u(·), u′(·)) ∈ L2(I) and therefore∫
K

∂F

∂ξ
(x, u, u′) (u′k − u′) dx→ 0, for k → ∞,

since u′k converges weakly to u.
Also (∂ξF (x, uk, u

′)− ∂ξF (x, u, u
′)) ∈ L2(K) and (u′k − u′) ∈ L2(K) so by Hölder we have∫

K

(
∂F

∂ξ
(x, uk, u

′)− ∂F

∂ξ
(x, u, u′)

)
(u′k − u′) dx ≤ ∥∂ξF (x, uk, u′)− ∂ξF (x, u, u

′)∥L2(K) ∥u
′
k − u′∥L2(K)︸ ︷︷ ︸

≤C for some C>0

≤ C ∥∂ξF (x, uk, u′)− ∂ξF (x, u, u
′)∥L2(K) .

6



1.3. EXISTENCE CHAPTER 1. EXISTENCE

As mentioned in Remark 2, uk and u are uniformly continuous. Since ∂ξF is continuous and K is
compact also ∂ξF is uniformly continuous. So for all ϵ > 0 there exists some δ = δ(ϵ) > 0 such that
for all k ∈ N

|∂ξF ((x, uk, u′)− ∂ξF (y, uk, u
′)| , |∂ξF (x, u, u′)− ∂F (y, u, u′)| < ϵ

2

whenever |x− y| < δ so for all k ∈ N we have

|∂ξF ((x, uk, u′)− ∂ξF (x, u, u
′)− ∂ξF (y, uk, u

′) + ∂F (y, u, u′)| < ϵ

whenever |x − y < δ meaning that (∂ξF (x, uk, u
′) − ∂ξF (x, u, u

′)k∈N is equicontinuous. It is also
bounded on K and by Arzelà-Ascoli we can pass to a subsequence that converges uniformly to 0
on K.

Therefore we have∫
K

(
∂F

∂ξ
(x, uk, u

′)− ∂F

∂ξ
(x, u, u′)

)
(u′k − u′) dx→ 0 for k → ∞.

Finally we can conclude that for all ϵ > 0 we have

lim inf
k→∞

F(uk) ≥ lim inf
k→∞

∫
K

F (x, uk, u
′)dx

≥
∫
K

F (x, u, u′)dx ≥
∫
I

F (x, u, u′)dx− ϵ,

where we used the lower bound on F and Fatou's lemma to exchange the limes inferior and inte-
gration. Since ϵ > 0 can be chosen as small as we want, the result follows.

1.3 Existence

We are now ready to prove Theorem 1.

Proof of Thm 1. By the quadratic growth (1.2) the functional F is bounded from below by 0. Let
(uk)k∈N be a minimizing sequence of F in the class C(α, β) with G(uk) = 0, i.e. limk→∞ F(uk) =
infv∈C(α,β) {F(v)} and G(v) = 0. Such a v does exists by the third assumption of the Theorem.
If F(u) = ∞ then F ≡ +∞ on C(α, β). Therefore we may assume without loss of generality that
F(u) <∞.

Our goal is to show that the sequence uk is bounded in H1(I). Since H1(I) is re�exive, we then
can extract a subsequence which converges weakly in H1(I) and by Tonelli's lower semicontinuity
theorem we see that u is a candidate for a minimizer of (1.1).

The bound for u′k follows by the quadratic growth of F and by the fact that uk is a minimizing
sequence. Now since uk ∈ AC(I) we can bound uk by u′k since we have

u(x) = α+

∫ x

a

u′k(s)ds

and therefore
∥uk∥L2(I) ≤ C ∥u′k∥L2(I)

7



1.3. EXISTENCE CHAPTER 1. EXISTENCE

for some C depending on α and I. Therefore uk is bounded in H1(I) and so by Theorem 1.2 we
have

F(u) ≤ lim inf
k→∞

F(uk),

meaning that u is a candidate minimizer of problem (1.1).
It remains to check that u(a) = α, u(b) = β and G(u) = 0. The boundary conditions follow by

the fact that I = [a, b] is compact and so uk converges uniformly to u on I which implies u(a) = α
and u(b) = β. The constraint follows since uk and G are continuous so x 7→ G(x, uk(x)) is bounded
and by dominated convergence we have

G(u) = lim
k→∞

G(uk) = 0.

Remark 5. Let us mention that Theorem 1 holds also for a general choice of p > 1. Assumption
(1.2) has to be changed to

c0|ξ|p ≤ F (x, z, ξ) ≤ c1(1 + |ξ|p) for all (x, z) ∈ I × R �xed.

In fact, it even holds for p = 1. But since L1 and therefore H1,1 is not re�exive, it requires a weak
compactness criterion. A detailed analysis can be found in Chapter 2 of [1].

8



Chapter 2

Regular minimizers

In this chapter we will prove regularity for G-regular minimizers of Problem (1.1). The main result
will be the following:

Theorem 4. Let I = (a, b) be a bounded interval in R and let F : I × R × R → R be of class C1

with F (x, z, ·) ∈ C2(R) and G : I × R → Rn be of class C1 satisfying the following conditions:

1. There exist c ∈ R such that for all (x, z, ξ) ∈ I × R× R we have:

F (x, z, ξ) ≤ c(1 + |ξ|2). (2.1)

2. There exists c3 ∈ R such that for all (x, z, ξ) ∈ I × R× R we have∣∣∣∣∂F∂z (x, z, ξ)
∣∣∣∣+ ∣∣∣∣∂F∂ξ (x, z, ξ)

∣∣∣∣ ≤ c3(1 + |ξ|). (2.2)

3. There exists some δ > 0 such that for all (x, z, ξ) ∈ I × R× R

∂2F

∂ξ2
(x, z, ξ) > δ. (2.3)

If u ∈ AC(I) is a G-regular minimizer Problem (1.1) then u ∈ C1(I). Moreover, if F and G are of
class Ck for 2 ≤ k ≤ ∞ then u ∈ Ck(I).

Remark 6. If u is a minimizer we don't need additional assumptions on G in order for G(u) to be
well-de�ned. Since u is a minimizer we have F(u) ≤ C < ∞ and ∥u∥H1(I) ≤ C by (2.1) for some

C > 0. So if G is at least continuous on I×R then also G(x, u(x)) is bounded and G(u) is therefore
well de�ned.

For this whole chapter we assume that we have at least F ∈ C1(I × R× R;R) with F (x, z, ·) ∈
C2(R) and G ∈ C1(I × R;Rn).

9
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2.1 Lagrange Multipliers for G-regular extremal

In this subsection we introduce and prove the Lagrange Multiplier Theorem for Problem (1.1). We
will then use this result to prove that a G-regular extremal always inherits the regularity of F and
G.

De�nition 4 (Singular extremal). We say u ∈ AC(I) is a G-singular extremal if for all ψ1, ..., ψn ∈
C∞

c (I;R) we have
det JτΨ(0) = 0,

where Ψ : Rn → Rn is given by Ψ(τ) := G (u+
∑n

i=1 τiψi) for τ ∈ Rn and Jτ denotes the Jacobian
matrix of Ψ with respect to τ .

We say that u ∈ AC(I) is G-regular if it is not G-singular.

Remark 7 (Regular extremal). If u ∈ AC(I) is a G-regular extremal then there exist ψ1, ..., ψn ∈
C∞

c (I;R) such that det(JτΨ(0)) ̸= 0 Now for i, j ∈ {1, ..., n} we have

(JτΨ)i,j(0) =
∂Ψi

∂τj
(0) =

∂

∂τj
Gi

(
u+

n∑
k=1

τkψk

)∣∣∣∣∣
τ=0

=
∂

∂τj

∫
I

Gi

(
x, u+

n∑
k=1

τkψk

)
dx

∣∣∣∣∣
τ=0

.

Since all derivatives are continuous we can exchange di�erentiation and integration by Leibniz
integral rule [4, Chapter 8] and we get

(JτΨ)i,j(0) =

∫
I

∂Gi

∂z
(x, u)ψjdx. (2.4)

We will use the observation from this Remark for the proof of the following Theorem.

Theorem 5 (Lagrange multiplier Theorem). Let u ∈ AC(I) be a regular minimizer of our problem
(1.1). Then there exist λ1, ..., λn ∈ R such that

d

dϵ

(∫
I

F (x, u+ ϵφ, u′ + ϵφ′)dx +

n∑
i=1

λi

∫
I

Gi (x, u+ ϵφ) dx

)∣∣∣∣∣
ϵ=0

= 0 (2.5)

for all φ ∈ C∞
c (I). Moreover if u ∈ C2(I) it satis�es:

∂F

∂z
(x, u, u′)− d

dx

∂F

∂ξ
(x, u, u′)−

n∑
i=1

λi
∂Gi

∂z
(x, u) = 0, ∀x ∈ I. (2.6)

Remark 8. We call (2.5) the weak Euler-Lagrange equation for (1.1) and (2.6) the (strong) Euler-
Lagrange equation for (1.1).

Proof. Let Q := {(ϵ, τ) ∈ R × Rn | |ϵ| < ϵ0, |τi| < τ0 ∀i ∈ {1, ..., n}} where 0 < ϵ0, τ0 << 1 are
�xed. For φ ∈ C∞

c (I) and ψ1, ..., ψn ∈ C∞
c (I) we de�ne

Φ : Q → R and Ψ : Q → Rn

10



2.1. LAGRANGE MULTIPLIERS CHAPTER 2. REGULAR MINIMIZERS

as

Φ(ϵ, τ) := F

(
u+ ϵφ+

n∑
i=1

τiψi

)
and Ψ(ϵ, τ) := G

(
u+ ϵφ+

n∑
i=1

τiψi

)
respectively.

By assumption we have Ψ(0, 0) = 0 and by Remark 7, since u is a regular minimizer, there exist
ψ1, ..., ψn ∈ C∞

c (I) such that det(JτΨ(0, 0)) ̸= 0. This means the matrix JτΨ in(2.4) is invertible
at the point (0, 0) and since Ψ ∈ C1(Q;Rn) we can apply the implicit function theorem (see [5,
Thm. 9.28, p. 224] to obtain some τ ∈ C1((−ϵ0, ϵ0);Rn) such that

Ψ(ϵ, τ(ϵ)) ≡ 0, for |ϵ| < ϵ0.

This means

0 =
d

dϵ
Ψ(ϵ, τ(ϵ))

∣∣∣∣
ϵ=0

=

∫
I

DzG(x, u)

(
φ+

n∑
k=1

τ ′k(0)ψk

)
dx

and so

−
∫
I

DzG(x, u)φdx =

n∑
k=1

τ ′k(0)

∫
I

DzG(x, u)ψkdx.

Notice that
n∑

k=1

τ ′k(0)

∫
I

DzG(x, u)ψkdx = JτΨ(0, 0) · τ ′(0)

where JτΨ(0, 0)︸ ︷︷ ︸
∈Rn×Rn

· τ ′(0)︸ ︷︷ ︸
∈Rn

∈ Rn. Using that JτΨ(0, 0) is invertible we get

τ ′(0) = −[JτΨ(0, 0)]−1 ·
∫
I

DzG(x, u)φdx, (2.7)

which component-wise reads

τ ′i(0) = −
n∑

k=1

Mik

∫
I

∂Gk

∂z
(y, u)φ(y)dy, i ∈ {1, ..., n},

where we let M := [JτΨ(0, 0)]−1 ∈ Rn×n. The matrix M is independent of φ.
Let us now compute the derivative of Φ(ϵ, τ(ϵ)) with respect to ϵ. For this we let φ ∈ C∞

c (I) be
arbitrary. We have:

0 =
d

dϵ
Φ(ϵ, τ(ϵ))

∣∣∣∣
ϵ=0

=

∫
I

d

dϵ

(
F (x, u+ ϵφ+

n∑
i=1

τi(ϵ)ψi, u
′ + ϵφ′ +

n∑
i=1

τi(ϵ)ψ
′
i)

)∣∣∣∣∣
ϵ=0

dx

=

∫
I

{
∂F

∂z
(x, u, u′)

(
φ+

n∑
i=1

τ ′i(0)ψi

)
+
∂F

∂ξ
(x, u, u′)

(
φ′ +

n∑
i=1

τ ′i(0)ψ
′
i

)}
dx

=: I + II + III + IV.
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For term II we use (2.7):

II :=

∫
I

∂F

∂z
(x, u, u′)

n∑
i=1

τ ′i(0)ψi(x)dx

= −
∫
I

∂F

∂z
(x, u, u′)

n∑
i=1

(
n∑

k=1

Mik

∫
I

∂Gk

∂z
(y, u)φ(y)dy

)
ψi(x)dx

= −
n∑

i,k=1

Mik

∫
I

∂F

∂z
(x, u, u′)ψi(x)

∫
I

∂Gk

∂z
(y, u)φ(y)dydx

= −
n∑

i,k=1

Mik

∫
I

∂Gk

∂z
(y, u)φ(y)

∫
I

∂F

∂z
(x, u, u′)ψi(x)dxdy

where we used Fubini-Tonelli in the last line. For IV we use a similar computation to get

IV :=

∫
I

∂F

∂ξ
(x, u, u′)

n∑
i=1

τ ′i(0)ψ
′
i(x)dx

= −
n∑

i,k=1

Mik

∫
I

∂Gk

∂z
(y, u)φ(y)

∫
I

∂F

∂ξ
(x, u, u′)ψi(x)dxdy.

Now we add everything together again and get, for all φ ∈ C∞
c (I)

∫
I


∂F
∂z

(x, u, u′)−
n∑

i,k=1

Mik
∂Gk

∂z
(x, u)

∫
I

[
∂F

∂z
(y, u, u′)ψi(y)−

∂F

∂ξ
(y, u, u′)ψ′

i(y)

]
dy

φ(x)

+
∂F

∂ξ
(x, u, u′)φ′(x)

}
dx = 0.

We de�ne the Lagrange multipliers as

λk := −
n∑

i=1

Mik

∫
I

[
∂F

∂z
(y, u, u′)ψi(y)−

∂F

∂ξ
(y, u, u′)ψ′

i(y)

]
dy, ∀k ∈ {1, ..., n}.

We notice that λk does not depend on φ for any k ∈ {1, ..., n}. In terms of our funtions Φ and Ψ
we have just shown

∂ϵΦ(0, 0)− ∂τΦ(0, 0)
T [JτΨ(0, 0)]

−1︸ ︷︷ ︸
=:λ∈Rn

∂ϵΨ(0, 0) = 0

where λ ∈ Rn corresponds to the Lagrange multipliers. This shows (2.5).
If we have u ∈ C2(I) we can perform an integration by parts for the term involving φ′(x) . We
then get for all φ ∈ C∞

c (I)∫
I

{
∂F

∂z
(x, u, u′)− d

dx

∂F

∂ξ
(x, u, u′) +

n∑
k=1

λk
∂Gk

∂z
(x, u)

}
φ(x)dx = 0.

This shows (2.6) since the equation holds for all φ ∈ C∞
c (I).

12
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2.2 Regularity of G-regular extremal

In this section we prove that a G-regular minimizer of Problem (1.1) inherits the regularity of F
and G. For this we de�ne H : I × R× R → R as

H(x, z, ξ) := F (x, z, ξ)−
n∑

k=1

λkGk(x, z).

This is the Lagrangian of the constrained problem, where λ1, ..., λn ∈ R are the multipliers from
Theorem 5. We de�ne the functional H : AC(I) → R as

H(u) :=

∫
I

H(x, u(x), u′(x))dx.

Remark 9. Condition (2.1) assures that the functional H is well de�ned for u ∈ AC(I). In fact since
u is absolutely continuous u′ exists almost everywhere in I and it belongs to L1. Since ξ 7→ H(x, z, ξ)
is of class C2, so in particular continuous, the composition H(x, u(x), u′(x)) is measurable. The
bound in (2.1) then guarantee integrability, since I is bounded.

We divide the proof into two steps. We �rst prove that a G-regular minimizer u ∈ AC(I) is
actually in C1(I). We then continue by proving that a C1(I) minimizer is actually Ck(I) if F and
G are in Ck.

Proposition 1. Under the same assumptions as in Theorem 4, if u ∈ AC(I) is a G-regular mini-
mizer of Problem (1.1) then u ∈ C1(I).

Proof. We claim that there exists some c ∈ R such that

∂H

∂ξ
(x, u, u′) = c+

∫ x

a

∂H

∂z
(s, u, u′)ds for a.e. x ∈ I. (2.8)

First we observe that the mappings x 7→ ∂H
∂z (x, u(x), u

′(x)) and x 7→ ∂H
∂ξ (x, u(x), u

′(x)) are mea-

surable since H is of class C1 and u′ is integrable. By (2.2) they are in L1(I). So the weak
Euler-Lagrange equation (2.5) reads∫

I

(
∂H

∂z
(x, u, u′)φ(x) +

∂H

∂ξ
(x, u, u′)φ′(x)

)
dx = 0, φ ∈ C∞

c (I). (2.9)

We do an integration by parts in the �rst term:∫
I

∂H

∂z
(x, u, u′)φ(x)dx =

(∫ x

a

∂H

∂z
(s, u, u′)ds

)
φ(x)

∣∣∣∣x=b

x=a︸ ︷︷ ︸
=0

−
∫
I

(∫ x

a

∂H

∂u
(s, u, u′)ds

)
φ′(x)dx

= −
∫
I

(∫ x

a

∂H

∂z
(s, u, u′)ds

)
φ′(x)dx,

where we used that φ has compact support. So (2.9) becomes∫
I

(
∂H

∂ξ
(x, u, u′)−

∫ x

a

∂H

∂z
(s, u, u′)ds

)
φ′(x)dx = 0, φ ∈ C∞

c (I).

13
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By the Lemma of du Bois-Raymond (see [6, Lemma 2, p.10] there exists a constant c ∈ R such that

∂H

∂ξ
(x, u, u′) = c+

∫ x

a

∂H

∂z
(s, u, u′)ds for a.e. x ∈ I. (2.10)

We notice that the function

π(x) := c+

∫ x

a

∂H

∂z
(s, u, u′)ds (2.11)

is absolutely continuous.
Let us now de�ne the mapping Γ : I × R× R → I × R× R as

Γ(x, z, ξ) := (x, z, ∂ξH(x, z, ξ)) .

Let moreover Ω :=
{
Γ(x, z, ξ) | (x, z, ξ) ∈ I × R× R

}
be the image of Γ. Since the mapping ξ 7→

∂ξH(x, z, ξ) is continuously di�erentiable and ∂2ξH(x, z, ξ) ̸= 0 for all (x, z, ξ) ∈ I×R×R by (2.3) by

the implicit function theorem the inverse map ∂ξH
−1 exists and is C1. Therefore Γ : I×R×R → Ω

is a C1 di�eomorphism.
We de�ne

σ(x) := (x, u(x), u′(x)) and e(x) := (x, u(x), π(x)).

The function σ is de�ned a.e. in I while e is actually de�ned for all x ∈ I, since π(x) and u(x) are
absolutely continuous. Since π(x) = ∂ξH(x, u, u′), identity (3.2) reads

Γ(σ(x)) = e(x), a.e. in I. (2.12)

We now need to check that Γ−1(e(x)) is well-de�ned, meaning we need to check that e(x) ∈ Ω
for all x ∈ I. This follows from (2.3), which implies that ∂ξH(x, u,R) = R. I.e. Ω = I × R × R,
and so e(x) ∈ Ω and Γ−1(e(x)) is well de�ned and continuous for all x ∈ I.

Therefore
Γ−1(e(x)) =: (x, u(x), v(x))

for some v(x) ∈ C(I). But then (2.12) implies

(x, u(x), u′(x)) = (x, u(x), v(x)), a.e. in I,

so u′(x) = v(x) a.e. in I. This proves Proposition 1 since we have

u(x) = u(a) +

∫ x

a

u′(s)ds = u(a) +

∫ x

a

v(s)ds

and therefore u ∈ C1(I).

We are now ready to prove Theorem 4.

Proof of Thm. 4. Let u ∈ AC(I) be a G-regular minimizer of Problem (1.1). We argue by induction
that we have u ∈ Ck(I) for all k ∈ N whenever F and G are of class Ck.

By Proposition 1 we have u ∈ C1(I). Let us show that we have

u ∈ C2(I),

14



which will be our base step. To this aim let P : I × R → R be given by

P (x, ξ) :=
∂H

∂ξ
(x, u(x), ξ)− π(x),

where π(x) is de�ned as in (2.11). Since u ∈ C1(I) we have that (x, ξ) 7→ ∂ξH(x, u(x), ξ) is of class
C1 and also

π(x) = c+

∫ x

a

∂H

∂z
(s, u, u′)ds︸ ︷︷ ︸
∈C(I)

is of class C1. So we have P ∈ C1(I × R;R). Moreover we have P (x, u′) = 0 and

∂P

∂ξ
(x, ξ) =

∂2F

∂ξ2
(x, u(x), ξ) > 0, (x, ξ) ∈ I × R,

by assumption (2.3). In particular we have ∂ξP (x, u
′) > 0. By the implicit function theorem

there exists a neighbourhood Ux ⊆ I and a function v : Ux → R, which is of class C1, such that
v(x) = u′(x) for all x ∈ Ux. This means u ∈ C2(Ux). But x ∈ I can be chosen arbitrary and we
conclude u ∈ C2(I).

Let now k ∈ N, k ≥ 2 be arbitrary and let u ∈ Ck(I). We show that u ∈ Ck+1(I). With the
same arguments as above we see that P ∈ Ck(I × R) and the implicit function theorem yields the
existence of some v ∈ Ck(Ux) such that v(x) = u′(x) in some neighbourhood Ux ⊆ I of x. Again
this argument holds for all x ∈ I so we have u ∈ Ck+1(I). This concludes the induction step.

So we just have shown
u ∈ Ck(I), k ∈ N,

which is precisely what we wanted.





Chapter 3

Non minimality for a class of singular

extremal

In this chapter we turn to the study of a class of singular extremal that have a cusp of arbitrary
type. We will show that they are not minimizers for the energy.

The minimization problem we consider is the following:

min
u∈H1(I)

{F(u) |u(±1) = 1 and G(u) = Vh,k } (3.1)

where I := [−1, 1] and

F(u) :=
1

2

∫
I

|u′(x)|2dx and G(u) :=
∫
I

(
x2hu(x)− u(x)2k+1

2k + 1

)
dx

where k, h ∈ N≥1 are �xed and Vh,k := 4k2

(2k+1)(2kh+k+h) .

Remark 10. The Lagrangian F = F (ξ) = 1
2 |ξ|

2 and the constraint G(x, z) = x2hz − z2k+1

2k+1 are

smooth. F is well de�ned for u ∈ H1(I) and also G is well-de�ned since u is continuous.

Remark 11. The value of Vh,k may seem a bit arbitrary. We will see later that Vh,k is the exact
value of G(u) for a singular extremal u.

Our aim is to prove that for this choice of F and G a singular extremal is not a minimizer of
(3.1).

Theorem 6. For all h, k ∈ N with h ̸= k there exists no G-singular minimizer u ∈ H1(I) of (3.1).

But what happens if h = k? It turns out that this case is more di�cult.

Open question 1. If h = k, can a G-singular extremal be a minimizer of Problem (3.1)?

We will focus on this question in the next Chapter. Before we turn to the proof we notice that
there exists a minimizer u ∈ H1(I) of (3.1), because the conditions of Theorem 1 of Chapter 1 hold:

Obviously F has quadratic growth and is convex. So we know that (3.1) has a solution. Let us
�rst study the case of when u is regular.
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3.1 Regular extremals

If u is a regular minimizer we can use the theory developed in Chapter 2. First let us check that
u is smooth so we can compute the Euler Lagrange equation for u. We need to check that the
conditions of Theorem 4 hold.

By assumption u ∈ H1(I), F ∈ C∞(R) and G ∈ C∞(I × R;R). F has quadratic growth and
∂ξF = ξ ≤ (1 + ξ). Finally we have ∂2ξF = 1 > 0 so all conditions of Theorem 4 are ful�lled

and therefore u ∈ C∞(I) if u is a regular minimizer of (3.1). In particular, u ∈ C2(I) and we can
compute the Euler Lagrange equation: There exists some λ ∈ R such that

∂F

∂z
(x, u′)︸ ︷︷ ︸
=0

− d

dx

∂F

∂ξ
(x, u′)− λ

∂G

∂z
(x, u) = 0.

which leads to the following boundary value problem:{
u′′(x) = λu2k(x)− λx2h for all x ∈ I,

u(−1) = u(1) = 1.
(3.2)

Now the most straight-forward approach to prove Theorem 6 would be to compare analyti-
cally regular and singular extremals. If we can show that for any singular extremal using we have
F(ureg) < F(using) we are �nished. But it turns out that this is more di�cult then it may look
like. In fact, it is in general impossible to bound a regular extremal. To see this we recall that the
Lagrange multiplier λ is given by λ := ∂τΦ(0, 0)

T∂τΨ(0, 0)−1 where Φ(ϵ, τ) = F(u+ ϵφ+ τψ) and
Ψ(ϵ, τ) = G(u+ ϵφ+ τψ) (see Thm. 4). In our setting this means that

λ :=

∫
I
u′(x)ψ′(x)dx∫

I
(x2h − u2k(x))ψ(x)dx

.

Now u2k(x) might be arbitrarily close to x2h. Therefore it is impossible to �nd a general bound on
λ and this approach will fail. So we will turn our focus on the study of singular extremals.

3.2 Singular extremals

If u is a singular extremal of (3.1) then for all ψ ∈ C∞
c (I̊) (where I̊ = (−1, 1) denotes the interior

of I) we have
d

dϵ
G (u+ ϵψ)|ϵ=0 = 0.

This implies that
∂

∂u

(
x2hu− u2k+1

2k + 1

)
= 0, for all x ∈ I.

So u2k = x2h and therefore

u(x) = |x|h/k =

{
xh/k if x ≥ 0;

(−x)h/k if x < 0.
(3.3)
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We see that this is not a smooth function for all choices of h and k. For example if h = 2 and
k = 1, u is smooth but if h = k = 1 then u(x) = |x| which is not in C1(I). However it is Lipschitz-
continuous on I. Another obvious example of a non-smooth version is when h = 1 and k = 2.
Then u(x) =

√
|x| which is not even Lipschitz in x = 0. The question is, whether one of these

non-smooth candidates is actually a minimizer of Problem (3.1).
Let us compute G(u). Observe, that for a singular u we have G(−x, u(−x) = G(x, u(x)) for all

x ∈ [−1, 1], meaning that G is an even function for all x ∈ [−1, 1]. This helps us to compute the
integral of G:

G(u) = 2

∫ 1

0

G(x, u(x))dx

= 2

∫ 1

0

(
x(2hk+h)/k − x(2hk+h)/k

2k + 1

)
dx

= 2

(
1− 1

2k + 1

)∫ 1

0

x(2hk+h)/kdx

= 2

(
2k

2k + 1

)
k

2hk + h+ k

= Vh,k.

Now we see where the de�nition of the value of the constraint comes from. The only possibility to
take is Vh,k, otherwise a singular extremal u can not be a solution of (3.1).

3.3 Proof of Theorem 6

Let u be a singular extremal. As mentioned above u is an even function for all natural numbers h
and k. We will therefore prove the Theorem for I = [0, 1] to make things easier. The idea is the
following: We �x δ > 0 and modify u in [0, δ] by setting uε(x) = ε > 0 for x ≤ δ with uε(δ) = ε.
Basically we remove a part where the L2 norm of the derivative is big. We then modify uε in the
interval [ 12 ,

3
4 ] in such a way that we have a gain of L2 derivative in this part. We call this modi�ed

function uηε , where η ∈ R is �xed so that G(uηε) = G(u). Roughly speaking we take more derivative
away than we add. We then show that F(uηε) < F(u) for ε > 0 small, meaning that u can't be a
minimizer of (3.1).

So let ε > 0 and η ∈ R be �xed. We de�ne

uηε(x) :=



ε : x ≤ δ

u(x) : x ∈ [δ, 12 ]

m1x+ d1 : x ∈ [ 12 ,
1
2 + |η|]

u(x) + η : x ∈ [ 12 + |η|, 34 − |η|]
m2x+ d2 : x ∈ [ 34 − |η|, 34 ]
u(x) : x ≥ 3

4 ,

(3.4)

where

m1(η) :=
( 12 + |η|)h/k + η − ( 12 )

h/k

|η|
and d1(η) :=

(
1

2

)h/k

− m1(η)

2

17
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and

m2(η) :=
( 34 )

h/k − ( 34 − |η|)h/k − η

|η|
and d2(η) :=

(
3

4

)h/k

− 3m2(η)

4
.

The picture is the following:

Figure 3.1: Sketch for η > 0 where the modi�cations for uηε are drawn in green.

Since we want uηε to be continuous we choose δ = εk/h.

Remark 12. We have uηε ∈ H1(I). In fact, uηε is Lipschitz continuous on I and it is bounded so in
L∞. Therefore we have u ∈ H1,∞(I) ⊆ H1(I). (See [2, Prop. 8.4] for a proof)

Proof of Thm 6. Step 1: We would like to express η in terms of ε. For this we set

Θη(ε) := G(u)− G(uηε)

=

∫ δ

0

(G(x, u(x))−G(x, uηε(x)) dx+

∫ 3
4

1
2

(G(x, u(x))−G(x, uηε(x)) dx

≡ 0.

To compute these integrals we notice that for 0 ≤ a < b ≤ 1 we have∫ b

a

G(x, u(x))dx =

(
1− 1

2k + 1

)∫ b

a

x
2kh+h

k dx

=

(
2k

2k + 1

)(
k

2kh+ h+ k

)
︸ ︷︷ ︸

=
Vh,k

2

[
x

2hk+h+k
k

]b
a
.
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For the �rst term we have∫ εk/h

0

(G(x, u)−G(x, uηε)) =

∫ εk/h

0

G(x, u)dx−
∫ εk/h

0

(
x2hε− ε2k+1

2k + 1

)
dx

=
Vh,k
2

(
εk/h

) 2kh+h+k
k − (εk/h)2h+1

2h+ 1
ε+

ε2k+1

2k + 1
εk/h

=

(
2k

(2k + 1)

k

(2kh+ h+ k)
− 1

2h+ 1
+

1

2k + 1

)
︸ ︷︷ ︸

C1

ε
2kh+h+k

h .

Now

C1 :=
2k

(2k + 1)

k

(2kh+ h+ k)
− 1

2h+ 1
+

1

2k + 1
=

2h2(2k + 1)

(2k + 1)(2h+ 1)(2kh+ h+ k)

and therefore we have C1 > 0 for all choices of k, h ∈ N.
For the second term we write∫ 3

4

1
2

(G(x, u(x))−G(x, uηε(x))) dx =

∫ 1
2+|η|

1
2

(G(x, u(x))−G(x, uηε(x))) dx︸ ︷︷ ︸
:=I

+

∫ 3
4−|η|

1
2+|η|

(G(x, u(x))−G(x, uηε(x))) dx︸ ︷︷ ︸
:=II

+

∫ 3
4

3
4−|η|

(G(x, u(x))−G(x, uηε(x))) dx︸ ︷︷ ︸
:=III

.

Our goal is to express these three terms as a part depending linearly on η and a rest o(|η|) for η
small.
Estimates for I: We have ∫ 1

2+|η|

1
2

G(x, u)dx =
Vh,k
2

[
x

2kh+h+k
k

] 1
2+|η|

1
2

and for η small enough we can do a Taylor expansion:

Vh,k
2

[
x

2kh+h+k
k

] 1
2+|η|

1
2

=
Vh,k
2


(
1

2

) 2kh+h+k
k

+
2kh+ h+ k

k

(
1

2

)2h+1
d

dη
|η||η|︸ ︷︷ ︸

=η for η>0 and η<0

+o(|η|)−
(
1

2

) 2kh+h+k
k


=

2k

2k + 1

k

2kh+ h+ k

2kh+ h+ k

k

(
1

2

)2h+1

η + o(|η|)

=
2k

2k + 1

(
1

2

)2h+1

η + o(|η|).
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Now we have∫ 1
2+|η|

1
2

G(x, uηε)dx =

∫ 1
2+|η|

1
2

(
x2h (m1x+ d1)−

(m1x+ d1)
2k+

2k + 1

)
dx

=
m1

2h+ 2

[
x2h+2

] 1
2+|η|
1
2

+
d1

2h+ 1

[
x2h+1

] 1
2+|η|
1
2

− 1

(2k + 1)(2k + 2)m1

[
(m1x+ d1)

2k+2
] 1

2+|η|
1
2

.

For every term we do again a Taylor expansion:

�
m1

2h+2

[
x2h+2

] 1
2+|η|
1
2

= m1

(
1
2

)2h+1
(
d

dη
|η|
)
|η|︸ ︷︷ ︸

=η

+o(|η|),

�
d1

2h+1

[
x2h+1

] 1
2+|η|
1
2

= d1
(
1
2

)2h( d

dη
|η|
)
|η|︸ ︷︷ ︸

=η

+o(|η|),

�

[
(m1x+d1)

2k+2

(2k+2)(2k+1)m1

] 1
2+|η|

1
2

=
(
m1
2 +d1)

2k+1

(2k+1)

(
d

dη
|η|
)
|η|︸ ︷︷ ︸

=η

+o(|η|).

Recall that we have d1 :=
(
1
2

)h/k − m1

2 and therefore
(
m1

2 + d1
)2k+1

=
(
1
2

)(h/k)(2k+1)
=
(
1
2

) 2kh+h
k .

Adding everything together we get

I =

{
2k

2k + 1

(
1

2

)2h+1

−m1

(
1

2

)2h+1

− d1

(
1

2

)2h

+
1

2k + 1

(
1

2

) 2kh+h
k

}
η + o(|η|).

Now −m1

(
1
2

)2h+1 − d1
(
1
2

)2h
= −

(
1
2

)2h (m1

2 + d1
)
= −

(
1
2

)2h ( 1
2

)h/k
and so

I =

{(
1

2

)2h
[

2k

2(2k + 1)
−
(
1

2

)h/k

+
1

2k + 1

(
1

2

)h/k
]}

︸ ︷︷ ︸
:=CI

η + o(|η|).

We have

CI =

(
1

2

)2h
2k(2

h−k
k )− (2k + 1) + 1

2h/k(2k + 1)
=

(
1

2

)2h
2k(2

h−k
k − 1)

2h/k(2k + 1)

and notice that CI = 0 if and only if h = k. Moreover, for h > k we have CI > 0 and for h < k we
have CI < 0.
III:

The calculations for part III are almost the same as for part I but with other factors contributing
to the constants. We �rst note that for a term of the form xa we have the following Taylor expansion
for :

[xa]
3
4
3
4−|η| =

(
3

4

)a

−


(
3

4

)a

+ a

(
3

4

)a−1 (
− d

dη
|η|
)
|η|︸ ︷︷ ︸

=−η for η>0 and η<0

+o(|η|)

 = a

(
3

4

)a−1

η + o(|η|),
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so we can adapt the calculations from I and get

III =

{
2k

2k + 1

(
3

4

)2h+1

−m2

(
3

4

)2h+1

− d2

(
3

4

)2h

+
1

2k + 1

(
3m2

4
+ d2

)2k+1
}

︸ ︷︷ ︸
=:CIII

η + o(|η|).

This time we have
(
3m2

4 + d2
)2k+1

=
(
3
4

)(h/k)(2k+1)
and −

(
3
4

)2h ( 3m2

4 + d2
)
= −

(
3
4

)2h ( 3
4

)h/k
so

CIII =

(
3

4

)2h
{
3

4

2k

2k + 1
−
(
3

4

)h/k

+
1

2k + 1

(
3

4

)h/k
}

=

(
3

4

)2h
6k(4

h−k
k )− 3h/k(2k + 1) + 3h/k

4h/k(2k + 1)

=

(
3

4

)2h
6k(4

h−k
k − 3

h−k
k )

4h/k(2k + 1)
.

We notice that we have CIII = 0 if and only if h = k, CIII > 0 if h > k and CIII < 0 if h < k.
II:

For x ∈ [ 12 + |η|, 34 − |η|] we have uηε(x) = xh/k + η. So

II :=

∫ 3
4−|η|

1
2+|η|

(
x2hxh/k − (xh/k)2k+1

2k + 1
− x2h(xh/k + η) +

(xh/k + η)2k+1

2k + 1

)
dx

= −
∫ 3

4−|η|

1
2+|η|

x
2kh+h

k

2k + 1
dx− η

∫ 3
4−|η|

1
2+|η|

x2h +

∫ 3
4−|η|

1
2+|η|

(xh/k + η)2k+1

2k + 1
dx

= o(|η|)

since, again by a Taylor expansion, we have (xh/k+η)2k+1 = (xh/k)2k+1+(2k+1)(xh/k)2kη+o(|η|).
This is enough to know if we have h ̸= k since we already know that in this case CI , CIII ̸= 0.

Now we have two cases:

� If h ̸= k:
Θη(ε) = C1ε

α + CIη + CIIIη + o(|η|) = 0

where α := 2kh+h+k
h and so

η = − C1

CI + CIII
εα + o(εα). (3.5)

� If h > k we have CI + CIII > 0 so − C1

CI+CIII
< 0 and therefore η < 0.

� If h < k we have CI + CIII < 0 so − C1

CI+CIII
> 0 and therefore η > 0.

� If h = k we have
Θη(ε) = CIε

α + o(|η|) = 0
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meaning εα = o(|η|) and this approach will not work. One could think in this case we expand
the integrals I, II, III again to get a quadratic equation for η. But this equation will have no
real solution if we don't have an additional assumption on G. We will study this phenomena
in the next chapter.

Step 2): Now we de�ne ϕ(ε) := F(uηε) − F(u). If we have ϕ(ε) < 0 we are �nished. Notice that

u′(x) = h
kx

h
k−1 and

d

dx
uεη(x) =



0 : x ≤ εk/h

u′(x) : x ∈ [εk/h, 12 ]

m1 : x ∈ [ 12 ,
1
2 + |η|]

u′(x) : x ∈ [ 12 + |η|, 34 − |η|]
m2 : x ∈ [ 34 − |η|, 34 ]
u′(x) : x ≥ 3

4 .

Consequently we have

ϕ(ε) = −1

2

∫ εk/h

0

u′(x)2dx+
1

2

∫ 1
2+|η|

1
2

(
m2

1 − u′(x)2
)
dx+

1

2

∫ 3
4

3
4−|η|

(
m2

2 − u′(x)2
)
dx.

Note that for 0 ≤ a < b ≤ 1 we have∫ b

a

u′(x)2dx =
h2

k2

∫ b

a

x
2h−2k

k dx =
h2

k

1

2h− k

[
x

2h−k
k

]b
a

(3.6)

and so

ϕ(ε) = −h
2

2k

1

2h− k

(
εk/h

) 2h−k
k

+
m2

1

2
|η| − h2

2k

1

2h− k

[
x

2h−k
k

] 1
2+|η|

1
2︸ ︷︷ ︸

= h2

2k2 ( 1
2 )

2h−2k
k |η|+o(|η|)

+
m2

2

2
|η| − h2

2k

1

2h− k

[
x

2h−k
k

] 3
4

3
4−|η|︸ ︷︷ ︸

h2

2k2 ( 3
4 )

2h−2k
k |η|+o(|η|)

= −h
2

2k

1

2h− k

(
εk/h

) 2h−k
k

+
1

2

{
m2

1 +m2
2 −

h2

k2

((
1

2

) 2h−2k
k

+

(
3

4

) 2h−2k
k

)}
|η|+ o(|η|).

Conclusion: Recall that if h ̸= k we have η = − C1

CI+CIII
εα + o(εα) by (3.5) and α := 2kh+k+h

h .

� If 2h− k > 0 then 2h−k
h < 2kh+k+h

h and therefore, if h ̸= k, η = o(ε
2h−k

h ) for ε→ 0 so

ϕ(ε) = −h
2

2k

1

2h− k
ε

2h−k
h + o(ε

2h−k
h ).

This means F(uηε) < F(u) so u can't be a minimizer of (3.1).

� If 2h− k ≤ 0 we have:

lim
γ→0

∫ 1

γ

u′(x)2dx =
h2

k

1

2h− k

[
x

2h−k
k

]1
γ
= −∞,

so in this case we see that u′ ̸∈ L2([0, 1]) and so u can't be a minimizer of (3.1).
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Therefore for all k, h ∈ N with h ̸= k we see that u(x) = |x|hk can't be a minimizer of (3.1) which
concludes the proof of Theorem 6.

If h ̸= k Theorem 6 tells us that a minimizer of Problem (3.1) is always as regular as F and G.
We present now two Corollaries.

3.4 Corollaries

For both Corollaries we change the functional F while G stays the same.

3.4.1 Extension to p > 1

We still consider our minimization problem

min
u∈H1(I)

{Fp(u) |u′ ∈ Lp(I)u(±1) = 1 and G(u) = Vh,k } (3.7)

where we generalize the functional Fp as follows: For every p > 1 and for all u ∈ H1(I) with the
additional assumption that u′ ∈ Lp(I) we de�ne

Fp(u) :=
1

p

∫
I

|u′(x)|p dx.

Let us mention that we do not now if there exists a minimizer of this new problem. In Chapter 2 we
worked in the space H1. But nevertheless the theory can be generalized so that we have existence
for all p > 1. A detailed analysis of this can be found in [1, Chapter 3]. We will therefore assume
existence for the following Corollary.

Corollary 1. For all k, h ∈ N such that h ̸= k there exists no singular minimizer of (3.7).

Proof. The idea is the same as before. Since we did not change G we adapt the very same compu-
tation as in Theorem 6 to get an ε dependence for η. Now we again show that Fp(u

η
ε) < Fp(u).

We have

ϕp(ε) := Fp(u
η
ε)−Fp(u)

= −1

p

∫ εk/h

0

|u′(x)|pdx+
1

p

∫ 1
2+|η|

1
2

(|m1|p − |u′(x)|p) dx+
1

p

∫ 3
4+|η|

3
4

(|m2|p − |u′(x)|p) dx.

The only positive terms are the ones involving m1 and m2. So if we can show that they go faster

to zero than the �rst term we are done. Note that |u′(x)|p = hp

kp x
ph−k

k and so

1

p

∫ 1

0

|u′(x)|pdx =
1

p

hp

kp
k

ph+ (1− p)k︸ ︷︷ ︸
=:C

[
x

ph+(1−p)k
k

]
.

Therefore if ph+ (1− p)k ≤ 0 we have that u′ ̸∈ LP (I) and so u can't be a solution of (3.7). So we
consider the case ph+ (1− p)k > 0. This leads to

k < h
p

p− 1
. (3.8)

Now
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�
1
p

∫
εk/h

0
|u′(x)|pdx = Cε

ph+(1−p)k
h

�
1
p

∫
1
2+|η|

1
2

|m1|p = 1
p |m1|p|η|+ o(|η|)

Recall that η = C ′′εα + o(εα) with α := 2kh+h+k
h and the constant C ′′ = − C1

CI+CIII
depending on

h, k ∈ N with h ̸= k from the proof of Theorem 6. Now we are interested for which k, h ∈ N we

have ph+(1−p)k
h < 2kh+h+k

h because then we have for ε > 0 small that ϕp(ε) < 0. This is equivalent
to ph+ k − pk < 2kh+ h+ k which leads to

h
p− 1

2h+ p
< k. (3.9)

Now together with (3.8) we have

h
p− 1

2h+ p
< k < h

p

p− 1

and so (p− 1)2 < 2hp+ p2. This is equivalent to

1 < 2p(h+ 1)

and since p > 1 we see that this is true for all h ∈ N. It remains to check that (3.9) also holds true
for all k ∈ N. To see this we use that (3.9) holds for all h ∈ N. Since

h(p− 1)

2h+ p
=
h

h

p− 1

2 + p/h
=

p− 1

2 + p/h

and p−1
2+p/h ≤ p−1

2+p < 1 we have that

p− 1

2 + p
< 1 ≤ k

since k ≥ 1. This means that for all p > 1 and for all k, h ∈ N with k < p
p−1 we have ϕp(ε) < 0

and so Fp(u
η
ε) < F(u), meaning that u is not a minimizer of (3.7). Therefore we see that for all

k, h ∈ N and for all p > 1 (3.7) has no singular solution.

3.4.2 Theorem 6 for the Length

Another important example for F is length. We look at the following problem

min
u∈H1(I)

{FL(u) |u(±1) = 1 and G(u) = Vh,k } (3.10)

where

FL(u) :=

∫
I

√
1 + |u′(x)|2dx.

Corollary 2. For all k, h ∈ N such that h ̸= k there exists no singular solution of (3.10).
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Proof. Again we adapt the computations from Theorem 6 and de�ne

ϕL(ε) := FL(u
η
ε)−FL(u)

= −
∫ εk/h

0

(
1 +

h2

k2
x

2h−2k
k

) 1
2

dx+

∫ 1
2+|η|

1
2

(
1 +m2

1

) 1
2 dx−

∫ 1
2+|η|

1
2

(
1 +

h2

k2
x

2h−2k
k

) 1
2

dx

+

∫ 3
4

3
4−|η|

(
1 +m2

2

) 1
2 dx−

∫ 3
4

3
4−|η|

(
1 +

h2

k2
x

2h−2k
k

) 1
2

dx

Again the only positive terms are the ones involving m1 and m2. We have
∫ 1

2+|η|
1
2

(
1 +m2

1

) 1
2 dx =(

1 +m2
1

) 1
2 |η| and

∫ 3
4
3
4−|η|

(
1 +m2

2

) 1
2 dx =

(
1 +m2

2

) 1
2 |η|. Now both of these terms go faster to zero

than the �rst term. To see this it is enough to do a Taylor expansion for x ≥ 0 small:(
1 +

h2

k2x
2h−2k

k

) 1
2

= 1 +
d

dx

(
1 +

h2

k2
x

2h−2k
k

) 1
2

∣∣∣∣∣
x=0︸ ︷︷ ︸

=0

x+ o(x).

So ∫ εk/h

0

(
1 +

h2

k2
x

2h−2k
k

) 1
2

dx = εk/h + o(εk/h)

and since |η| = Cεα + o(εα) where α := 2kh+h+k
h > k

h for all k, h ∈ N we have ϕL(ε) < 0 for all
k, h ∈ N.





Chapter 4

Non-minimality of corners

4.1 Introduction

In this chapter we apply the construction of uηε of Chapter 3 to u(x) = |x| and a general constraint
G. The goal is to prove that if u is a singular extremal it cannot be a solution of the minimization
problem for the energy.

We �x the following setting:
Let I = [−1, 1] and G : I × R → R be smooth. Let

F(u) :=
1

2

∫
I

|u′(x)|2dx and G(u) :=
∫
I

G(x, u(x))dx.

The minimum problem is the following:

min
u∈H1(I)

{F(u) |u(±1) = 1 and G(u) = V } (4.1)

where V ∈ R. We choose V ∈ R such that G(|x|) = V . For this whole chapter we assume that
u(x) := |x| is a G-singular extremal. We recall that this means that for all ψ ∈ C∞

c (I̊) we have

0 =
d

dτ

(∫
I

G(x, |x|+ τψ)dx

)∣∣∣∣
τ=0

and so
∂zG(x, |x|) ≡ 0 on I. (4.2)

The result of this chapter is the following:

Theorem 7. Let u(x) = |x| and G ∈ C∞(I × R;R) be such that there exists δ ∈ (0, 1) with

∂2zG(0, 0)∂
2
zG(δ, δ) < 0. (4.3)

If u is a G-singular extremal then u is not a solution of Problem (4.1).

Remark 13. Let h, k ∈ N and G(x, z) =
(
x2hu− z2k+1

2k+1

)
be the constraint of (3.1) from Chapter 3.

We have ∂2zG(x, z) = −2kz2k−1 so assumption 4.3 fails to hold. So the question, whether u(x) = |x|
can be a minimizer of (3.1) is still open.
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4.2 Proof of Theorem 7

Proof. The idea of the proof is the same as in Chapter 3. We modify u to uηε and show that
F(uηε) < F(u). As before it is enough to do the computations in [0, 1]. Since ∂2zG is continuous
there exists σ > δ such that

∂2zG(0, 0)∂
2
zG(x, x) < 0

holds for all x ∈ [δ, σ). We de�ne uηε as follows: For all ε > 0 with ε < δ we �x η ∈ R such that
σ − δ > 2|η| and

uηε(x) :=



ε : x ≤ ε

u(x) : x ∈ [ε, δ]

m1x+ d1 : x ∈ [δ, δ + |η|]
u(x) + η : x ∈ [δ + |η|, σ − |η|]
m2x+ d2 : x ∈ [σ − |η|, σ]
u(x) : x ≥ σ

where

m1(η) :=
|η|+ η

|η|
and d1(η) := δ − δm1(η)

and

m2(η) :=
|η| − η

|η|
and d2 := σ − σm2(η).

Remark 14. For all values of η we have that m1,m2 ∈ {0, 2}. In particular, if η > 0 then m1 = 2
and m2 = 0 and if η < 0 then m1 = 0 and m2 = 2.

As a �rst step, we want to express η in terms of ε. For this we compute again the asymptotic
behaviour of the di�erence of the constraint: G(u) − G(uηε). We start expanding the integrals in
[0, ε]. We de�ne

θε(ε) :=

∫ ε

0

(G(x, u(x))−G(x, uηε(x))) dx =

∫ ε

0

(G(x, x)−G(x, ε)) dx.

We have θε(0) = 0 and

d

dε
θε(ε) = G(ε, ε)−G(ε, ε) +

∫ ε

0

d

dε
(G(x, x)−G(x, ε)) dx = −

∫ ε

0

∂zG(x, ε)dx,

were we used Leibniz's rule for the di�erentiation under the integral sign. Therefore we have
θ′ε(0) = 0. Now

θ′′ε (ε) = −∂zG(ε, ε)−
∫ ε

0

∂2zG(x, ε)dx = −
∫ ε

0

∂2zG(x, ε)dx

since ∂zG(ε, ε) = 0 for all ε by (3.3). Again we have θ′′ε (0) = 0, and so we compute

θ′′′ε (ε) = −∂2zG(ε, ε)−
∫ ε

0

∂3zG(x, ε)dx.
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Now by assumption (4.3) of the Theorem we have θ′′′ε (0) = −∂2zG(0, 0) ̸= 0 so for all ε > 0 small
enough we have

θε(ε) = − 1

6
∂2zG(0, 0)︸ ︷︷ ︸

C1

ε3 + o(ε3).

Next, we expand the integral on the interval [δ, σ].
This time it turns out to be convenient to compute �rst the asymptotic behaviour in the middle

part [δ + |η|, σ − |η|]. We de�ne

θ̂(η) :=

∫ σ−|η|

δ+|η|
(G(x, u(x))−G(x, uηε(x)) dx =

∫ σ−|η|

δ+|η|
(G(x, x)−G(x, x+ η)) dx.

Let us �rst assume that η > 0. We have θ̂(0) = 0 and

d

dη
θ̂(η) =G (σ − η, σ − η)−G (σ − η, σ − η + η)−G (δ + η, δ + η)

+G (δ + η, δ + η + η)−
∫ σ−η

δ+η

∂zG(x, x+ η)dx.

So

θ̂′(0) = −
∫ σ

δ

∂zG(x, x)dx = 0

by (4.2). Now

θ̂′′(η) =− ∂xG (σ − η, σ − η)− ∂zG (σ − η, σ − η)︸ ︷︷ ︸
=0 by (4.2)

+∂xG (σ − η, σ − η + η)

− ∂zG (σ − η, σ − η + η)− ∂xG (δ + η, δ + η)− ∂zG (δ + η, δ + η)︸ ︷︷ ︸
=0 by (4.2)

+ ∂xG (δ + η, δ + η + η) + ∂zG (δ + η, δ + η + η)− ∂zG (σ − η, σ − η + η)

+ ∂zG (δ + η, δ + η + η)−
∫ σ−η

δ+η

∂2zG(x, x+ η)dx

So we see, using again (4.2), that

θ̂′′(0) = −∂xG (σ, σ) + ∂xG (σ, σ)− ∂xG (δ, δ) + ∂xG (δ, δ)−
∫ σ

δ

∂2zG(x, x)dx,

If η < 0 we have a minus sign in front of the remaining terms since d
dη |η| = −1 and so

θ̂′′(0) = ∂xG (σ, σ)− ∂xG (σ, σ) + ∂xG (δ, δ)− ∂xG (δ, δ)−
∫ σ

δ

∂2zG(x, x)dx.
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Therefore for all η ∈ R with 2|η| < σ − δ we have

θ̂′′(0) = −
∫ σ

δ

∂2zG(x, x)dx ̸= 0

by assumption (4.3) of the Theorem and so

θ̂(η) = −
(
1

2

∫ σ

δ

∂2zG(x, x)dx

)
︸ ︷︷ ︸

:=C2

η2 + o(|η|2).

We compute the asymptotic behaviour in [δ, δ + |η|]: Let

θ̃(η) :=

∫ 1
2+|η|

1
2

(G(x, u(x))−G(x, uηε(x))) dx =

∫ 1
2+|η|

1
2

(G(x, x)−G(x,m1x+ d1)) dx.

It is enough to show that for η → 0 we have θ̃(η) = o(η2). Let x ∈ [δ, δ + |η|]. We have by Taylor's
Theorem that

� G(x, x) = G(δ, δ) + ∂xG(δ, δ)(x − δ) + ∂zG(δ, δ)︸ ︷︷ ︸
=0

(x − δ) + ∂2xG(δ, δ)
(x−δ)2

2 + ∂x ∂zG(δ, δ)︸ ︷︷ ︸
=0

(x −

δ)2 + ∂2zG(δ, δ)
(x−δ)2

2 + o((x− δ)2)

� G(x,m1x+d1) = G(δ, δ)+∂xG(δ, δ)(x−δ)+∂zG(δ, δ)︸ ︷︷ ︸
=0

m1(x−δ)+∂2xG(δ, δ)
(x−δ)2

2 +∂x ∂zG(δ, δ)︸ ︷︷ ︸
=0

m1(x−

δ)2 + ∂2zG(δ, δ)m
2
1
(x−δ)2

2 + o((x− δ)2)

Notice that we used Schwarz Theorem to change the order of di�erentiation. Therefore

|G(x, x)−G(x,m1x+ d1)| =
∣∣∣∣±∂2zG(δ, δ) (x− δ)2

2
+ o((x− δ)2)

∣∣∣∣ ≤ C
(1)
3 η2 + o(η2)

on [δ, δ + |η|] where C(1)
3 > 0 and the sign in front of ∂zG(δ, δ) depends on the value of m1. So

θ̃(η) = o(η2).

For the interval [σ − |η|, σ] the computations are almost the same. We have

|G(x, x)−G(x,m2x+ d2)| =
∣∣∣∣±∂2zG(σ, σ) (σ − x)2

2
+ o((σ − x)2)

∣∣∣∣ ≤ C
(2)
3 η2 + o(η2).

Now we express η in terms of ε: Let

Θ(ε, η) :=

∫ 1

0

(G(x, u(x))−G(x, uηε(x))) dx.

We just showed that Θ(ε, η) = −C1ε
3+ o(ε3)−C2η

2+ o(|η|2). De�ne C := −C1

C2
. With Θ(ε, η) = 0

we get C2η
2 + o(|η|2) = −C1ε

3 + o(ε3) and so

η(ε) =
(
±
√
C
)
ε3/2 + o(ε3/2). (4.4)
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Notice that by assumption (4.3) we have that sgn(C1) = − sgn(C2) so C > 0 and therefore η > 0.
The second step is the same as in Theorem 6. We de�ne ϕ(ε) := F(uηε)−F(u) so

ϕ(ε) = −1

2

∫ ε

0

u′(x)2dx+
1

2

∫ δ+|η|

δ

(
m2

1 − u′(x)2
)
dx+

∫ σ

σ−|η|

(
m2

2 − u′(x)2
)
dx

= −1

2
ε+

1

2
m2

1|η(ε)| −
1

2
|η(ε)|+ 1

2
m2

2|η(ε)| −
1

2
|η(ε)|

= −1

2
ε+ 2|η(ε)| − 1

2
|η(ε)| = −1

2
ε+

3

2
|η(ε)|,

where we used the observations made in Remark 14. Together with (4.4) we have ϕ(ε) = − 1
2ε+o(ε)

for ε > 0 small enough so we proved F(uηε) < F(u) meaning that u is not a minimizer of (4.1).
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