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Introduction

The Plateau’s problem is a fundamental topic in geometric measure theory, it was
named after the Belgian physicist Joseph Plateau (1801-1833) who was interested in the
study of soap bubbles. The classical Plateau’s problem aims to find a surface in R? of
minimal area which spans a given curve I'. But today, we can consider a more general
case, that is given an M — 1-dimensional manifold I" in an M-dimensional Riemannian
manifold MY (M < N), find an M-dimensional surface 3 C M¥ of minimal area such
that 0¥ =T

Over the years, several approaches have been developed to solve Plateau’s problem.
The first one is the parametrized approach, which was developed by Garnier, Douglas and
Radé in [14], [15] and [16]. The method is to use disk parameterizations. When dealing
with a smooth simple loop I' in R3, we try to represent the surface using functions f
that map the unit disk in R? to R3. The area of the surface is calculated by the integral
of its Jacobian determinant. Douglas was able to prove the existence of a function
f that minimizes this area by using the harmonic extension under certain regularity
conditions. However, this approach has some drawbacks. The first one is that getting
reasonably normalized parameterizations will be much harder for higher dimensional
sets, thus making existence results in these dimensions much less likely. The second one
is that many physical solutions of Plateau’s problem are not parameterized by disks.
And also the solutions obtained from this method may cross themselves in ways that
are not seen in real world soap films, which means they don’t accurately represent the
physical situation, see page 116 in chapter 8 of [23] by G.David.

The second one is the set theoretical approach, which was developed by Reifenberg
in [17]. Here, for an M-dimensional surface, the area is defined using the M-dimensional
Hausdorff measure H*. A closed set E is considered to be bounded by a given (M — 1)-
dimensional set I based on homology conditions, that is requiring the homomorphism
iv: Hy1 (U, Z) — Hpy—1(E,Z) induced by the inclusion ¢ to be trivial. This is a good
framework to study soap bubbles, but there are still many open questions. For instance,
we don’t know much about the existence of solutions for other homologies and groups
like Z.

The third one is the distributional approach, which is also the one that is studied
in this thesis. This approach was developed by Federer and Fleming [5] in the 1960s,
where they invented a powerful tool: Currents. Currents are the dual of differential
forms and have proven to be a natural framework for formulating extremal problems
in geometry. Let RY be our ambient space, an M-dimensional (M < N) current T
is a linear functional on DM (RY), the space of M-dimensional differential forms with
compact support. The boundary 9T of T is defined by

OT (w) = T(dw) Yw € DM (RM).



Then Plateau’s problem is to find an M-current with minimal “area” (here the notion
of area will be the mass) such that 9T = S for some given M — 1-dimensional current
S. A natural idea to prove the existence of solutions to the Plateau’s problem is to use
the direct method from calculus of variation. Due to the definition of mass

M(T)= sup T(w),
weDM (RNY)
|w|<1

the lower semicontinuity of mass is obvious. Then by using the Banach-Alaoglu theorem,
the existence of solutions to the Plateau’ problem is obtained. However, general currents
don’t have that much geometric information, more precisely, they are too far away from
smooth surfaces of RY. In this case, we have to find a class of currents that are closer
to these surfaces. The right objects will be Integral currents.

Integral currents are Integer-Multiplicity (rectifiable) M-currents with finite mass
and finite boundary mass. Roughly speaking, integral currents are the countable union
of “pieces” of Cl-manifolds with integer multiplicity. Let U be an open set of RY, T is
an Integer-Multiplicity (rectifiable) M-current if there exist S, 0, £ such that

T(w) = /3 (w(x), £(x))8(x)dHM (z) Vw € DY (1),

where

1. S is a HM-measurable and M-rectifiable subset of U with HM (SN K) < +oco for
all K C U compact;

2. 0 is a locally HM-integrable, nonnegative, integer-valued function;

3. &: 5 = A\, RY is a HM-measurable function such that for H-almost every point
x € S, &(x) is a simple unit M-vector on the approximate tangent space T,.S of S.

Our goal is to prove the compactness theorem of Ij;(RY), the space of Integral cur-
rents, which is stated as the following: Let {T}} C Dp(R”Y) be a sequence of uniformly
bounded Integral currents, Then there is an Integral current T' € Dy, (RY) and a subse-
quence {7} such that 7; — T weakly. Using again the direct method, we obtain the
existence of solutions to the Plateau’s problem. The proof of the compactness theorem
is complicated and will be divided into several steps.

The first step will be the deformation theorem, which is one of the fundamental
results of the theory of currents. It provides a useful approximation of a current 7" by
a polyhedral chain P lying on a certain M-skeleton such that the error is of the form
T—P = 0R+S. The main error term is OR, where R is the (M + 1)-dimensional surface
through which 7" is deformed to P. The other error term S arises in moving 97" into the
skeleton, this is called the weak polyhedral approximation. The isoperimetric inequality
is also an important result yielded by the deformation theorem.

The next step of the proof of the compactness theorem will be an induction argument
on the dimension of the currents. In the case M = 0, the compactness is just a result of
Bolzano-Weierstrass theorem. Now we assume the compactness theorem is valid for the
dimension of M — 1, then we can use the induction assumption and the weak polyhedral
approximation to get that every 07} is an Integral current (this result is called the
boundary rectifiability theorem), and so is 0T. Then by Homotopy Formula, we can



assume that 07 = 0. Finally, using some preliminary lemmas such as the Density
Lemma and the Rectifiability Criterion, we can conclude that T' € Dy, (RY) is indeed an
Integral current.

The Integral currents approach has the advantage of providing existence results in
all dimensions, and solutions are very regular away from a small singular set. See [18],
[19], [20], [21], [22], [24] and [25]. However, mass-minimizers may not be a perfect model
for soap films as the mass may not be the right notion of area, and some soap films with
interior singularities cannot be described by mass-minimizers. Also, the fact that the
notion of current inherently involves an orientation is problematic for certain examples,
such as Mobius films.

The thesis will focus on the theory of current in Euclidean spaces, but in fact, currents
could be generalized to metric spaces. In the 1990s, De Giorgi’s paper [13] formulated
a generalized Plateau’s problem in any metric space F using only the metric structure,
having done so, he raised some natural questions about the existence of solutions to the
generalized Plateau problem in metric or in Banach and Hilbert spaces. See also [26].
In metric spaces, the concept of currents is extended in a more abstract way. Since
metric spaces lack a differentiable structure, currents are no longer defined as the dual
of differential forms. Instead, following De Giorgi’s approach, currents are defined in
terms of metric functionals. Metric functionals are functions 7' defined on (M + 1)-
tuples w = (fo, f1,- -, fm), where M is the dimension, f; are Lipschitz functions in the
metric space E, and fj is also bounded, the space of these (M + 1)-tuples is denoted by
Dy (E). Then, an M-currents 7' is a function T': Dy (E) — R satisfying the following
three conditions:

1) T is (M + 1)-linear;

2) continuity with respect to pointwise convergence in the last M arguments with
uniform Lipschitz bounds;

3) locality, that is T'(fo, f1,- -+, far) = 0 whenever some f; (i # 0) is a constant on a
neighborhood of the support of fj.

The mass of a current 7" denoted by ||7'|| in this context is defined as the least measure
1 satistying

M
T i dan) < [[Lin(5) [ Ifoldn
i=1 E
In metric spaces, the class of rectifiable currents Ry, (F) can be defined as
Ru(E) = {T :||T|| < H™ and is concentrated on a countably H™-rectifiable set},

and the class of Integer-Multiplicity rectifiable currents Zy(F) is defined based on the
property that the pushforward ¢4 (T|A) € Dy (RM) has Integer-Multiplicity for any
Borel set A C E, and Lipschitz map ¢ : £ — R™. Similar to the Euclidean case, the
pushforward is defined by

¢#T(f07f17"' 7fM>:T(¢Of07f10907"' 7fMO§0)7

and the boundary of T is defined by
OT(w) = T(dw) Yw € DM(E),
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where dw is the exterior differential defined by

dw = d(fO)fla"' 7fM) = (1'f0af17"' an) € DM—H(E)

In [11], Ambrosio and Kirchheim proved that the closure theorem and boundary
rectifiability theorem for Integer-Multiplicity rectifiable currents hold in any complete
metric space, which is a significant result as it shows that these are general phenomena
independent of the Euclidean-like homogeneous structure. Finally, in chapter 8 and
chapter 10 of [11], the existence of solutions to the generalized Plateau’s problem

min{||T||(E) : T € Ty (E), T = S}

was proven.

The theory of currents remains an active area of research. As we mentioned before,
integral currents can be approximated by polyhedral chains. A natural question arises:
Can integral currents be approzimated by smooth manifolds? A recent work [27] by De
Lellis and his collaborators provides an answer: Each integral cycle T' (integral current
with 9T = 0) in a Riemannian manifold M can be approximated by an integral cycle
in the same homology class which is a smooth submanifold 3 of nearly the same area,
up to a singular set of codimension 5. Moreover, if the homology class 7 is representable
by a smooth submanifold (there exists a smooth embedding f : ¥ — M such that the
fundamental class of ¥ equals 7), then 3 can be chosen free of singularities.

Assume N, M € NT are positive integers, M is a connected smooth oriented closed
Riemannian manifold of dimension M + N, 7 is a nonzero element of the M-dimensional
integral homology group Hy (M, Z) and T is an integral current (hence a cycle) repre-
senting 7. Then there is a sequence of smooth triangulations K; of M and a sequence of
smooth embedded oriented M-dimensional submanifolds (3;); in M\ K}'~° such that

1. [|%;]] = T in the sense of currents,
2. lim;_,o HM(Z;) = M(T),
3. 9[|%;|] = 0 and [|X;]] is in the same homology class as T'.

This theorem provides a stronger approximation result than polyhedral chains.
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Chapter 1

Preliminary Tools

1.1 Analytical Tools
Denote the set of continuous functions with compact support in RY by
C.(RY) = {f € C(R") : supp f € R" compact}
where C'(RY) is the space of continuous functions f: RY — R and
supp f = {z € RN : f(x) # 0}

is the support of f. Because all elements of C'(RY) are bounded functions, we may equip
C(RY) with the norm

If1] = sup |f(x)]

zeRN
Linear functionals on C.(R”) are described by the following

Theorem 1.1.1 (Riesz Representation Theorem). Let L : C.(RY) — R be a linear
functional satisfying

M = sup {|L(6)] 6 € CLRY), sup [o(a)] < 1] < o
z€RN

Then there exists a Radon measure X on RN and a \-measurable function g : RN — R
such that
1LARN) =M, 2. L(¢) = [gn ¢gdX,  for all ¢ € C.(RY).

One can find the proof on page 116 of [1].
We call ¢ a mollifier it

o pe C*RY);

e 0 2>0;

supp ¢ C B(0,1);

/RN p(x)dr = 1;

o p(z) = p(—7).



For o > 0 we set ¢, (1) = 0 Np(x/0) and we call {p, },-0 a family of mollifiers. In case
fe Ll (RY)and o > 0, we define

loc

fa(l') = f * QOU([L') = f(z)goa@ - Z)dz = f(l’ - Z)QOU(Z)dZ
RN RN
Theorem 1.1.2. We have f, € C* and f, converges to f as o — 0% in the following
senses:

o fo — [ pointwise almost everywhere;

o f, — f in the L topology;

loc

o If f is continuous then f, converges uniformly on compact sets to f.

The reference[7] contains details of these assertions.

Next, we will introduce the notion of weak topology, which is very important in
functional analysis.

Let V' be a normed space, the space of continuous linear functional on V is denoted
by V*, it is equipped with the operator norm. A sequence (7},) C V* is said to converge
weakly-x to T € V* if

T,(v) = T(v) foralvelV.

In this case, we use the notation: T, — T
The proof of the following propsition is easy:

Proposition 1.1.1. Let T,T,, € V*, n € N. Then
1. IfT, = T, then T, > T.
2. If T, > T, then ||T|| < liminf, o ||T}]|-

The most important fact about the weak-x topology is the following compactness
result:

Theorem 1.1.3 (Banach-Alaoglu). Let V' be a separable normed space and (T,,) C V*
a sequence satisfying

sup || T, || < oo.
neN

Then there ezists a subsequence (T,,,) and T € V* such that
T, = T.

For the proof, see Theorem 3.17 in [9].
Next we will introduce the BV functions, let U C RY be an open set and u € L' (U).
We can define

/|Du| ;= sup {/udivgdw:g:(gl,---,gN)ECl(U,RN),supngU}.
U lg U

(z)I<1

Then w is said to have bounded variation in U (u is a BV function in U) if [, [Du| <
oo, and the space of these functions is denoted by BV (U) := {u € L'(U) : [, |Du| < oc}.



Moreover, the total variation measure |Du| of u is defined by

Dul(4) = [ D

for A C RY open. We also have the local version which is BVj,.(U) := {u € L} .(U) :
S |1Du| < 0o for U cc U}.
The space BV (U) equipped with the BV norm

ullsv = [l + / Dyl

is a Banach space.

Theorem 1.1.4 (Compactness theorem for BV functions). Let U C RY be open, bounded
with Lipschitz boundary and assume { fi.}}25 is a sequence in BV (U) such that || fi||pv <
+00. Then there exists a subsequence { fy,};=} and a function f € BV(U) such that

One can find the content of BV functions and this theorem in [10]. The next theorem
gives us some information on smooth approximations to BV functions.

Theorem 1.1.5. Let Q C RY be open and f € BV (). Then there exists a sequence of
functions fi, fa, ... in C*(Q) such that

1. fi = f in LY(),

For the proof, see Theorem 3.6.12 in[10].

Next we introduce the Poincaré Inequalities. We begin with a version for smooth
functions. Let £V denote the standard N-dimensional Lebesgue measure. If f is a
Lebesgue measurable function and U is a subset of the domain of f such that LY (U).
Then the average of f over U is defined by

(1.1)

Lemma 1.1.1. Let U be a bounded, convex, open subset of RN. Let f be a continuously
differentiable function on U. Then there is a constant ¢ = c¢(U) such that

L =towia<e. [ s

Next we wish to replace the average fy; in the statement of the lemma with a more
arbitrary constant.

Lemma 1.1.2. Let f € R and 0 < 8 < 1 be constants. Let f and U be as in Lemma
1.1.1, and let fy be as in (1.1). Assume that

LYz eU: f(x)> B} >0LNU)
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and
LYz eU: f(x) < B} >0LNU).

Then there is a constant C' = C(0) such that

/U\f(x)—6\d:c§9—1(1+9>-/U|f(x)—fU|dx.

Theorem 1.1.6. Let U be a bounded, convex, open subset of RN. Let 3,0 be as in
Lemma 1.1.2. Let f be a continuously differentiable function on U. Then

/U|f(:v)—ﬁ|d:c§c-/U|Df<x)|dx.

Theorem 1.1.7. Let U be a bounded, convex, open subset of RN. Let 3,0 be as in
Lemma 1.1.2. Let u € BV (U), then

/]u—ﬁldﬁNﬁc-/|Du\.
U U

Theorem 1.1.8. Let U C RY be a bounded, open, and convex domain. If u € BV,.(RY)
with suppu C U, then there is a constant ¢ = c(U) such that

/RN |Du(z)|dz < c- </U|Du| +/U|u(x),dl,) ‘

One can find the proof of these lemmas and theorems in section 5.5 of [1].

1.2 Algebraic Tools

Current are the dual of differential forms. To define differential forms, we need some
exterior algebra. We first introduce the space of M-vectors in R¥.

M-vectors are a kind of “products” of vectors. Given vy,v5 € RY, a geometric
interpretation of the 2-vector v; A vy is the oriented parallelogram spanned by vectors
v and vy. If v;1 = Awy for some A € R, then the parallelogram is degenerate, and we
have v; A vo = 0. Similarly, a 3-vector v; A v9 A v3 can be interpreted as an oriented
parallelepiped spanned by vectors vy, vg, v3 € RV,

We generalize this observation:

1. Define an equivalence relation ~ on

R =RY xR x --- x RY

/

~
M — factors

by requiring, for alla € R, 1 <i < j < m and u; € RV,

(a)

(Uty ooy QU ooy Wy ooy Upg) ™~ (U ey Uiy ey QU ooy Ung),



(c)

(Wty ooy Wiy oy Wy oy Upg) ™~ (U ey = Uy ooy Uiy ey Upg )

Extend the resulting relation to be symmetric and transitive.

2. The equivalence class of (uy,us, ..., uy ) under ~ is denoted by uy Aug A -+ A uyy.
We call uy Aus A- - - Auyy a simple M-vector, the symbol A is called exterior product
(or wedge product).

3. On the vector space of formal linear combinations of simple M-vectors, we define
the equivalence relation ~ by extending the relation defined by requiring

(a) auy Aug A+ ANupr) = (auy) ANug A -+ A uyy.

(b) (Ul/\UQ/\/\UM)+(U1/\UQ/\/\UM>%<U1+1)1)/\U,2/\/\UM

4. The equivalence classes of formal linear combinations of simple M-vectors under
~ are the M-vectors in RY. The vector space of M-vectors in RY is denoted by
Ay (RY), and one can observe that it is also the space of all linear combinations

E Qiy.ipg€ir N N €iyy,
1<iy < <ipyy <N

where a;, ;,, € R, and {ey,..., ey} is the standard basis of RY.
5. The exterior product A defined by the following;:
) N N N
A /\K(R ) X /\M(R ) — /\K+M(R )
(ul/\---/\uK)/\(vl/\---/\vM)r—>uK/\--~/\uK/\v1/\---/\vM

is an anticommutative, multilinear multiplication, and the exterior algebra of RY,
denoted by A, (RY), is the direct sum of A;(RY), i.e.

AR = ABY 0\ B o

One can show that {e;, A--- Ae;, } is the basis of A,,(RY), and since it is defined
by the strictly increasing sequences 7; < --- < 77, then

N
. Ny _
dlm/\M(R )= (M)
If M =N,e NA---Aey is the only basis vector, and therefore
. Ny
dim /\N(R )= 1.
So we identify Ay (RY) = R. Similarly, A,(RY) = span(ey,...,ex) = RY. We also
define A\ (RY) =R and A, (RY) = {0} for K > N.

For a,b,c € R,u,v € \(RY),w € A\,;(RY), one can easily check that the exterior
product has the following properties:

(a) Multilinearity:
(au 4 bv) A cw = ac(u A w) + be(v A w),
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au A (bv + cw) = ab(u A v) + ac(u A w),

(b) Associativity:
uN(vAw)=(uAv)Aw,

(c¢) Anticommutativity:
uAw= (=1 My Aw

Since the M-vectors e;; A -~ Nej,, 1 < 43 < -+ < iy < N, form a basis of
Ay (RY), we may equip it with an inner product (-,-) such that these M-vectors form
an orthonormal basis. This peoduct can defined in the following way:

Denote
AN, M) = {(ir, i) €NM 11 <y < <y < NY,

and e = e, A ... Ney, for I = (iy,...,15) € N(N,M). Then for ar,b; € R, the inner
product is defined by letting

( Z arer, Z bjey) = Z arby,

Ie \(N,M) JEN(N,M) IeEN(N,M)

and the norm is defined by
v] = V/(v,0),

for v e A, (RY).
If v is a simple M-vector, that is v = v; A --- A vy, then

[u| = vy A+ Aoyl
is the M-dimensional volume of the parallelepiped spanned by vy, ..., vy. In particular,
vy A Aoy | =0

if and only if vy, ..., vy are linearly dependent.
Once we have M-vectors, we can define the M-covectors by the following way.

Let A'(RY) denote the dual of RN (A'(RY) = (RV)*) and let da, ..., dzy denote
the dual basis of e1,...,ey. That is,

1, ifi=j;

dwi(e;) = 0y = {0 it 4

Then we define the vector space

AN ®) =N (A

as above by replacing e; with dz;. The elements

Z ail...ideil JANEIERIVAN dIZ‘M - Z a[dl'[

11 <-<im IeN(N,M)

1

(RY))

of AM(RYN) are called M-covectors. The space A\ (RY) has the induced inner product

10



defined by
< Z a]d.CE], Z de.l?J> = Z a[b],
IeN(N,M) JEN(N,M) IeEN(N,M)

such that the M-covectors dx; = dx;y N --- Ndx;,, 1 <13 < --- <1y < N, form an
orthonormal basis. We have the norm induced by this inner product.

wl = Vv {w,w),
for w € AM(RY).

AM(RY) is the dual space of A, (RY), A’(RY) =R, A'(RY) = RY and AM(RY) =
{0} if M > N.

11



Chapter 2

Currents in Euclidean space

2.1 Basic Facts

We start with the definition of an M-differential form.

Definition 2.1.1. Let U C R” be an open set and a;(z) be a function. The mapping
€U — /\ (RM)

v Y a

Te\(N,M)

is an M-vector field in U, and the mapping
M
a:U— /\ (R

T Z x)dry

TeN(N,M)

is an M-differential form (or M-covector field) in U.
We also define the norms on the spaces of M-vector fields and M-differential forms

by:

|I€1] = Sup \/ (§(@),&(x))
and

af = Sup v/ (a(2), (),
respectively.

If U ¢ RY is open and

a = Z ar(x)dxy,

TEA(N,M)

where the functions ay are C*°-smooth, we say that « is a C*°-smooth differential M-form
in U.
The space of all C*°-smooth differential M-forms in U will be denoted by EM(U).
Since \°(RY) = R, we have E9(U) = C®(U,R). If f: U — Ris C, f € EO(U), its
differential df : U — A'(RY) is a C* smooth differential 1-form such that at a point

12



r €U, df(r) : RY — R is the linear mapping defined by

df (x)v = (Vf(z),v), veRY,

that is N
of
df = ; a—ld

Moreover, dz; is the differential of the " coordinate function = — x;.

o= Z ardry

TEA(N,M)

Definition 2.1.2. Let

be a C*°-smooth differential M-form. The exterior derivative of « is the (M + 1)-form

do = Z doy Ndxr = Z Zaald%/\dm

TEN(N,M) TEN(N,M) i=j

In particular, df is the exterior derivative of a O-form f.

Using the facts that
82061 . 8206[
8@(9:@- N 8:1:]0331

and dz; A dz; = —dxz; A dx;, we obtain d*a = d(da) = 0.

Definition 2.1.3 (Pull-Back). Let U C RY and V' C RP be open sets and f =
(fY,..., fP): U — V a C*-smooth mapping. The pull-back of the differential M-form
ain 'V,

o = E Oéil.A.iMd.’L'il VANEEIVAY diL'Z'M,

1< <<ty <D

is the differential M-form f*« in U defined by

Fa= " > (g 0 HAf" A Adf™,

1<ii<-<ip <D
where
Yo
ox;

1=1

aff =S 2L,

Notice that we do not require a being smooth. The pull-back and the exterior
derivative commute for smooth «, that is

f(da) = d(f*a).

For U C RY, let DM(U) C EM(U) denote the space of all C*-smooth differential
M-forms in U with compact support, that is, if

o= E ardxy,

TEA(N,M)

13



then each oy is C'"*°-smooth and there exists a compact set K C U such that suppa; C K
for every I, i.e., af € C°(K).

The normed space (DM (U), | - |) is separable and the topology induced by the norm
is different from the locally convex topology which is defined by the following.

We endow DM (U) with the locally convex topology by saying that a sequence o €

DM(U), k € N,
of = Z aldx;
IEA(N,M)

converges to
a= > amdz € DY)

ITeN\(N,M)

if there exists a compact set K C U such that
supp o 1= U supp o/} C K Vk
TEN(N,M)

and
8“”&’; 8|J|0q
_>

8ZEJ a{L‘J

uniformly as k£ — oo for every multi-index J = j;--- jn.
Once we have the differential forms, we could define the currents.

Definition 2.1.4. An M-current T in an open set U C R¥ is a continuous(with respect
to the locally convex topology) linear functional on on DM (U):

T:DM(U) = R.
The space of M-currents in U is denoted by Dy (U), and the support of T is the set:
sptT =U \ U{V: V CRY open, T(w) =0 Yw € Dy (U),suppw C V'}

Each M-current T' € D), (U) is continuous with respect to the locally convex topology,
but not necessary continuous with respect to the norm topology of DM (U).

Definition 2.1.5. If M > 1, the boundary of an M-current 7' € Dy, (U) is the (M —1)-
current 0T € Dy;—1(U) defined by

T (w) = T(dw),

for all w € DM~1(U). Since d*> = 0, we have 9*°T = 9(9T) = 0, we also define IT = 0
for all T € Dy(U).

Definition 2.1.6. Let T € Dy, (U), if ¢ € E¥(U) and k < M, then we can define
TL¢ S 'DM,k(U)
by letting for all w € DM~K(U)

(T9)(w) =T(p Aw).

14



Now, let & be the a p-vector field with C'*°-coefficients on U. Then we define
TNE€E Dyyp(U)
by letting
(T A& (w) =T(E]w)

for all w € DMTP(U), where {|w € Dy (U) is the interior product, characterized by
(€|w,a) = (w,a A§) for each o € A\, (RY).

Since T is a linear functional on DM (U), we can define the partial derivatives of T
in the sense of distribution.

Definition 2.1.7. Let f € C°(U) and T'" € Dy(U), the partial derivatives D, T €
Dy (U) of T are defined by

D, T(fdxs) = —T[(Dy, f)day],

where I € A(N,M), 1 < j < N and D,,f is the classical partial derivative of the
function f.
Proposition 2.1.1. Suppose that ¢ and & have C*-coefficients on U, where ¢ is a
k-form and £ is a p-vector field. Then

(1) d(OT)=0 if dimT > 2;

(2) (97)¢ =T|do + (=1)"0(T|9);

N
(3) 0T == (D, T)|dz; if dimT > 1;
4) T= > [TldzjNes;
JEN(N,M

)
(5) Dy (T|p) = (Dy,T) ¢+ T|(0¢/0x;);
(6) Dy (T'NE) = (Do, T) NE+T N (06)05);
(7) (TANYlo=TNA(E|lp) if dimT =0 and k < p;

N
(8) AT AE=-TAdivE—) (D, T)A({dr;) if dimT =0 <p.

j=1

In the above, the partial derivatives 0¢/0x; of the form ¢ and 0§/0x; of the vector
field & are obtained by differentiating the coefficient functions and we say that dimT = M

One can easily verify the above proposition by linearity.

2.1.1 Currents Representable by Integration

We want figure out what kinds of currents could be represented by integration. Let
U € RY be an open set, we start from O-currents:

Lemma 2.1.1. Let T' € Dy(U), if for each open set W CC U there exists a positive real
number M < oo such that

T(0)] < M| (2.1)

15



holds for all ¢ € C°(U), then there exists a total variation measure pur, such that

T(4) = /U dyr. (2.2)

Proof. Since C2°(U) is dense in C.(U), by Hahn-Banach Theorem. T can be extended
to a continuous functional in C,.(U). Then by Theorem 1.1.1, the lemma holds. [

Next, we endow Dy, (U) with the mass-norm:

Definition 2.1.8. Let T € Dy, (U). We define the mass of 7" on the open set U by

M(T)= sup T(w).
weDM(U)
w|<1

If W C U is an open subset, then we have the local mass given by

Mw(T) = sup T(w).
|w|<1,weDM (W)
supp wCW
Since (DM ]| - |) is a normed space, its dual space {T" € Dy (U) : M(T) < oo} is a
Banach space. Now, we can prove the representation theorem for M-currents:

Theorem 2.1.1 (Representation theorem). If T' € Dy (U) and My (T') < oo for all open
W CC U, then there exists a Radon measure pr on U and a pr-measurable M-vector
field T : U — N\, (RY) such that |T| =1 pr-almost everywhere such that

T(w) = / (w(@), T())dur(x)

for allw € Dy (U). Moreover, the measure i, which we call the total variation measure
associated with T', is characterized by the identity

pr(W) = sup T(w) = Mw(T)
|w|<1,weDM (W)
supp wCW

in particular, pr(U) = M(T).
Proof. It My (T) < oo for all open W CC U, then, for each sequence J € A(N, M)

the 0-dimensional current T'|dz; satisfies the condition (2.1) and thus defines a total
variation measure p;, and function f; as in (2.2). Using the identity

T= > [TldejNey

JEN(N,M)

together the total variation measures py, and functions fe; and normalizing the re-
sulting function, we obtain the Radon measure pup and the pp-measurable vector field
T. O

The total variation measure p7 will also be denoted by ||T]| and the vector field T is
called the orientation function.
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Definition 2.1.9 (Restrictions of currents). If T € Dy(U), M(T) < oo, and A C R¥
is Borel, then the restriction of 7" to A is the m-current T'| A € Dy, (U),

(T A)(w) =A<f(x),w(x)>duT(w), w e DY(U),

where T and pr are as in the theorem above. Similarly, if g is a pp-integrable function,
we also define T'|g € Dy, (U), the interior multiplication by g, by

(TLQ)(W)Z/Ug(x)@(:v),ww))dw(w), w € DY(U).

2.1.2 Plateau’s Problem for Normal Currents

First, we say something about the topology induced by the mass.

Definition 2.1.10. A sequence {7} C Dy (U) is said to converge weakly to T' € Dy (U)
if
Tp(w) — T(w) for every w € DY(U), as k — +oo.

We write T}, — T
Notice that if T, T}, have finite mass, then this is just the weak-* convergence in the
dual space ({T' € Dy (U) : M(T) < oo}, M(-)).

A simple but important property is following:

Theorem 2.1.2. (Lower semicontinuity of mass). If a sequence {T}.} C Dy (U) con-
verges weakly to T € Dy (U), then

M(T) < liminf M(T}).

k—o00

Proof. For every w € DM(U) with |w| < 1 we have

T(w) = lim Ty(w) < liminf M (T})

k—o00 k—o0

and hence M (T') < liminf M(Ty). O

k—o0

We can now solve Plateau’s problem in a very weak sense.

Definition 2.1.11 (Normal currents). Let T' € Dy (U), we define N(T') = M(T) +
M (OT), the space {T" € Dy (U) : N(T) < oo} is denoted by Ny (U) and elements in
this space are called normal M-currents in U.

Theorem 2.1.3 (Plateau’s problem for normal currents). Let S € Ny (U), then there
exists T € Ny (U) such that 0T = 9S and

M(T) = inf{M(5') : §' € Nyy(U), 05’ = 0S}.

Proof. Let {Tx} C Np(U) be a mass minimizing sequence with 07}, = 05 for all k € N.
Thus
M(Ty,) — L :=inf{M(S"): 8" € Ny (U),05" = 9S}.
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By the Banach-Alaoglu Theorem 1.1.3, there exists a subsequence (T};) and T' € Ny (U)
such that
Tkj — T,

Since Ty, — T, it follows that T}, — 0T and hence 9T = 95, in particular, T' € Ny (U).
By the lower semi-continuity of mass, we have

M(T) < liminf M(T},) = L.

J]—00

]

Thus T is a mass minimizing current with boundary 0S. This theorem is not satisfy-
ing because normal M-currents are in general very far from M-dimensional submanifolds.

2.1.3 Association with Oriented Submanifold

Firstly, we fix some notation. For S > 0, we denote the S-dimensional Hausdorff
measure by H°. Let N € N, if the N-dimensional Lebesgue measure is denoted by £V,
then we have that HY = LV,

Not every normal M-current is associated with M-dimensional submanifold, see the
following example:

Example 2.1.1. The 1-current on R? given by

T(w) ::/[01]2(w,61>d£2(x)

Satisfies M(T) = 1 and M (9T) = 2 since

OT(f) = T(df) = / O (¢, y)dady = /0 F(Ly) — £(0,9)] dy,

[0,1]2 ox
So T € N;(R?), but this current is not associated with any 1-dimensional submanifold.

Actually, we can construct a class of currents that are associated with oriented sub-
manifolds of RY. Suppose that S is a C! oriented M-dimensional submanifold. Here S
being oriented means that for each point x € S there is a set of M orthonormal tangent
vectors & (z), &(x), ..., Ear(x) such that

S(x) = &(x) A&(x) A Au(@)

defines a continuous vector field S : § — A y(RY). We define the current [|S]] €
Dy (RY) by setting

1501 (w) = / (o, Sy,

As a special case of this definition, we can take S to be a Lebesgue measurable subset
of RY and define

[1S]](w) = /S<w,el ANey A ... Nen)dLN,

for w € DV(RY).
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In case S is an oriented submanifold with oriented boundary, the classical Stokes’s
theorem tells us that

[15]}(dw) = [180:5]](w),
where 0,5 is the oriented boundary of S. By the definition of the boundary of a current

we have
[15]](dw) = (O[]S[])(w)-

Thus, we have [|0,5|] = 0[|S|]. The definition of boundary of a current is consis-
tent with the classical definition of oriented boundary. We also observe that the mass
generalizes the area of a submanifold:

M([IS]]) = HY(S).

2.2 Constancy Theorem

Treat LV as the 0-current that gives the value [, ¢dL" when applied to ¢ € D(RY).
If ¢ is an M-vector field with £¥-measurable coefficients, satisfying

/ éllacy < oo
K

for each compact subset K C RY then there is a corresponding current LYAE € Dy (RY)
given by

(LY NE () = /RN (¥, 6)dLN  for all » € DM(RY).

If ¢ € EF(U), with k < M, (LN N€)| ¢ € Dy« (U) is given by

(e¥ n)Lelw) = [ tonv.gac”

for ¢» € DM~F(RY). We can also write this as (LN AE)|¢ = LY A (€] @), where we define

the interior product £|¢ by requiring that (1, £ @) = (p A, E).
If € has C* coefficients, then (using the fact that when £V is treated as a current, all
its partial derivatives vanish) we have

Dy, (LN NE) = LY A (9E/0xy)
and
N N
LN NE) = Z (D, £ A€ [day = —LN N (0¢/0;) | ;.
=1 j=1

In case M =1, in which case ¢ is a 1-vector field, we see that

Z(ag/axj) |dz; = div €. (2.3)

Letting (2.3) define the divergence of an M-vector field for all 1 < M < N, we have

OLN NE) = —LN Adive.
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Let £ be an M-vector field on U. We define the differential form D,;& by setting

DMf = éJ (dxl AN /\de).

The differential form D& has degree N — M. Also, with each differential form ¢ of
degree M on U we associate the (N — M)-vector field

DM¢: (el/\---/\eN)qu.

If € DV~M and ¢ € DM, then we see that

[ aDY Mo w) = [ DY Moy
= /(qup,el A ANen)dL™.

Define EN € Dy(RY) by
ENZEN/\el/\"'/\GN

so, if ¢ € DV(RY), then

BY(0) = [(6(0).e1 hes e ex)al (o).
We see that
DszN =0 foreach j=1,...,N and OE™ =0.
We also see that for any Lebesgue measurable set A C RY,
EY[A = [|A]].

If T € Dy(U) and j € {1,..., N}, then, using the formula

N

0T = =Y (D, T)l|dx,

=1
and the fact that /\NJrl RY = 0, we can calculate that
(0T) ne; = (-1)VD,,T. (2.4)

Thus the vanishing of the boundary of an N-dimensional current is equivalent to the
vanishing of its partial derivatives. Accordingly, we expect that an N-dimensional current
with vanishing boundary should be given by integration. That intuition is confirmed by
the next proposition.

Theorem 2.2.1 (Constancy Theorem). If T € Dyn(U) with 0T = 0 and if U is a
connected open set, then there is a real number ¢ such that

T = c(BY|U) = ([|U]].

In order to prove the constancy theorem, we will need to introduce the notion of
smoothing currents. In what follows, we will use mollifiers in a standard manner.
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Definition 2.2.1. Let 7' € D'(R"), we define a new current T, € D'(RY) by
To(w) = T(ps * w).

Here the convolution of ¢, with w is defined by convolution of ¢, with the coefficient
functions of w, The process of forming 7, from T is called smoothing.

Lemma 2.2.1. The smoothing has the following properties:
1. T, weakly converges toT' as o | 0.
2. Dy, Ty = (Dy;T)y for j=1,2,...,N.

3. If M = N, then for each o > 0, there exists a real-valued function F, such that

T, (w) = /RN Folw,er A Aex)dly V€ DV(RY).

Proof.
1. For w € DM(RY), o, * w converges to w in the topology of DM (RY), so T, — T.
2. Fix j € {1,..., N} and w € DM(R"). We have

Yo * (Ow/0z;) = 0(ps * w)/0x;.
Then we can compute
(D, 15)(w) = =T5(0w/0z;) = =T'|po * (Ow/dz;)]
= —T[0(ps *w)/0x;] = Dy, T(po *w) = (D, T)o0(w).

3. Define the function F,(z) = T[p,(x — z)dx; A - - - dzy].
Let w = g(x)dxy A ---dxy, then

Ty(w) = T[/RN 9(2)po(x — 2)dLNdxy A - - - dy].

Denote I = [on 9(2)ps (2 — 2)dLN. Since the support of g is compact, there exists a
family of open balls {A;}7_, with the same radius 7, such that suppg C (J7_, Ax. Let
21, be the center of A; and denote

p

Sp =3 92w — 2)dLY (Ay).

k=1

Then we have limo Sy = I. By linearity, we also have
Tp—>

p
T(Spdwy A---doy) =Y Tlpo(x — z)dwy A+ dey]g(z) LY (Ar)
k=1

= Fy(2)g(z) LN (Ar)

= Y Fala){wan) en A Aew) LY (Ap)
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Passing to the limit, the result follows. O

Proof of the constancy theorem. Without loss of generality, assume U = RY. We need
to show that

T(w) = c/ (woer A~ Nex)dLY  Vw € DV(RM).
RN

From (2.4) we see D,;T = 0. By Lemma 2.2.1, we have that for each o > 0, there
exists a function F, such that

T, (w) = /RN Fylw,en A Aex)dCy Vo € DV(RY).

and
[DIjT]U =0= ijTg.

Let w = gf;‘?dxl A -+ -dxy, then
J

2
RN &%’j

thus F,, must be a constant. Selecting a subsequence o; | 0%, we complete the proof. [

We also have two following generalization of the constancy theorem

Proposition 2.2.1. Let U C RY be a bounded open set and T € Ny (U). Then there
ezists a function f € BV (U) such that T = [|U|]| f.

Proof. By Lemma 2.2.1, the smoothing T, of T' can be written as
T, = [IU]]Lfs-
By the definition of smoothing, we have that for all o,
follorwy < M(T;) < M(T) < 400

and
/ IDf,| < M(IT,) < M(OT) < +o0.
U

So, fo € BV(U) and then by Theorem 1.1.4, there exists a subsequence o; and a
function f € BV(U) such that f,, — f in LY(U) as 0; | 0, thus T,,, — T = [|U|]|f. O

Proposition 2.2.2. IfV is an M-dimensional plane, T € Dy (RY), T = 0 and spt T C
V', then there is a real number ¢, such that

T = [[V]],

ie. T(w) =c [, {(w, VVAHM | where V = vy A ... Avy is an orthonormal vector parallel
to V.

Proof. Without loss of generality, let

V= {(5131, ...,SL'N> Ml = T2 = o = IN = 0}



and choose an index 1 <13 <19 < ... <1y < N.
1) Assume iy, > M, let ¢ be an arbitrary smooth function with compact support,
w=(—1)M1¢(x)x;,, dx;, A ... Ndx;,, ,, then

0
dw:¢(x)dx“ /\/\$M+ Z —(éfEiMd.%j/\dl’il /\.../\dl'Mfl.

G {iting} 7
Since spt T C V, so
T(dw) = T(¢(x)dzi, A ... Ndzy,,) = 0T (w) =0
and thus
T|dxiy A ... Ndx;, =0

for every iy > M.
2) By the identity:

T = Z [T|dxs] A ey

JEN(N,M)

and from 1), we know that the only nonzero term is
T = (T'_dl’1 AL A dI‘M) VAN IVANAN EN -

We let T = (T|dzy A ... Adzy) Aey A ... Aey € ZZN(]RN), and we use the constancy
theorem to finish the proof: we have to check that 0T = 0.
Let Wy = (—1>j_1¢dl'1 VANAN d.%jfl A dijrl VANV diIZ'N.

If j < M, then
~ ~ 0 0
T (wj) = T(a—idzl A...Ndxy) = T(ﬁ_aidxl A ... Ndxyy)
= 3T[(—1)3_1¢d1‘1 N A d[Ej_l A dl‘j+1 VANPIRAN dCL’M] = 0.
If 7 > M, then
=~ =~ 09 99
0T (w;) = T(a_xjdxl A..Ndxy) = T(a_mjdxl A . Ndxpy)
“ t
— aT[(/ 9(t 22, ’xN)dt)d:cg A ... A daa]
— 50 8a:j
= 0.
Finally, by the Constancy Theorem 2.2.2, we have T' = ¢[|V]]. O

2.3 Further Constructions

2.3.1 Product of Currents

Definition 2.3.1. Suppose U; C RM T} € Dy, (Uy), and Uy C RN Ty € Dy, (Uy). We
define Ty X Ty € Dy, 401, (Uy x Us) as follows:
(1) We denote the basis covectors in RM by dx, and the basis covectors in R™2 by

dyg.
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Ul <o <a<- - <ay <N,1<p <pf<- -+ < fu, <Ny and
g € D(U; x Uy, R), then set

[Ty x To)(g dray, A~ ANdxay, Adys, N Adys,, )
=T\ (Talg(z,y)dys, A--- A dngQ]dxal ARREWA dxaMl)).

(3) If w € DMI(U,), wy € DM2(Uy) with M, + My = M| + M, but M! # M, and
Mé 7é MQ, then [Tl X TQ] (w1 N (A)Q) = 0.
(4) Extend Ty x Ty to DMi+M2 (U} x U,) by linearity.

Now it is immediate that

ATy x Ty) = (OTy) x Ty + (—1)M Ty x 9T,

In case either M; = 0 or M, = 0 then the last formula is still valid, provided the
corresponding terms are interpreted to be zero.

In the special case that T € Dy, (U) with U € RY and [|(0,1)|] is the 1-current in
R!, then the equation above becomes

O[1(0, 1)[] x T) = (61 = do) x T' = [|(0, 1)[] x 0T
=0 X T — 6o xT—1(0,1)|] x 9T,

where 6, denotes the O-current that is given by a point mass at p.

2.3.2 The Pushforward

Definition 2.3.2. Let U C RM be open sets and V € R™2, f: U — V be a smooth map
such that f|ser is proper. Let w € DM(U), and f*w be its pull-back. The pushforward
f+T of T € Dy (U) is defined by

[T (w) =T(C- ['w),

where ( € C°(U) and equals to 1 in a neighborhood of spt T'Nsupp f*w. The definition
is independent of (.

Here, we require f|spt7 to be proper, so that supp fx7 is compact. Observe that
OfyT(w) = f4T(dw) =T(C - frdw) = T(C - df'w) = fOT (w),

so we have 0f,T = f,OT.
Definition 2.3.3. Let U and V be open sets as above. For a linear mapping L : RM —

R¥2 | the linear map
. Nl N2
/\ML./\ (R )—>/\M(R )

/\ML<€1'1 VAN /\eiM) == Leil VAN /\LeiM

is defined by

for every (iy,...,1ia) € N(Ny, M).

If f:U — V is smooth, v is an M-covector, we see that

(fro(@),v) = (w(f @), \,, dfe(v),
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so the pushforward can be identified as

14T) = [ @U@\, AT @) dr

The next result is about vanishing of currents on sets that project to measure 0 in
all coordinate directions.

Lemma 2.3.1. Let a = (iy,...,ip) € NN, M) be a multi index, and let p, be the
orthogonal projection:
Po:RY - RM

such that pa (1, ...,xN) = (T4, ..., 15, ). Assume U CRY open, and let E C U be closed
and such that LY (p,E) = 0. Then for each T € Dy (U) with My (T) + Mw (9T) <
+o0, VW CC U, we have

T|E=0.

Proof. Let w € DM(U). Write

w = Z WadX s

a€N\N(N,M)

with w, € C2(U). Thus

T(w) =Y T(wadra) =Y (T|wa)dre = (T|wa)Pidy.

« «

Here dy = dy; A --- A dyy; in the standard coordinates on R, So we have
T(w) = Pay(Twa)(dy). (2.5)

Since spt Tw, C supp w, is compact in U, so (2.5) makes sense.
Next we will show M (OpasT|wa) < 00, It is enough to show M (9T |w,) < oo. For
any 7 € DV7Y(U), we have
O(T'|wa)(7) = (Twa)(d7)
= T(wydT)
=T (d(waT)) — T(dws A T)
= 0T (waT) — T(dws A T),
thus
My (0(T|wa)) < My (0T) - sup |wa| + Mw (T') - sup |dw,| < +oc.
By Proposition 2.2.1, there exists 6, € BV (p,(U)) such that

Patt(T|wa) = [Pa(U)][Oa-

It follows that pas(T|wa)|pa(E) = 0 since LY (p,(E)) = 0. Assuming without loss of
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generality that E is closed, we now see that

M (po(T|wa)) < M(pap(T[wa) [(RY\ pa(E))) (2.6)
= M (pay (T |wa) LRV \ pg'pa(E))) (2.7)
< M((T|wa) LRV \ p'paE)) (2.8)
< Mw(T (R \ ;" E) - |wal (2.9)
< Myw(T (R \ B)) - |wal, (2.10)

for any open set W such that suppw C W C U. Now we combine (2.5) and (2.10) to
obtain
Miw(T) < cMiy(T|(RY \ E)).

Also, we have
My (T|E) < cMy (T[(RN \ E)). (2.11)

If K is any compact subset of E, then we can choose sets {IW,} such that

W, CCU, Wy CW,, [W,=K

q=1
By (2.11), with W = W, we conclude that M (7| K) = 0. Since K was arbitrary, we see
that M(T|FE) = 0.
O
2.3.3 The Homotopy Formula

Next we introduce the homotopy formula for currents, Let U C RM, V C RY? and
f,g : U — V be smooth mappings, and let h be a smooth homotopy from ¢ to h, i.e.
h:[0,1] xU =V, s.t. h(0,z) = f(x) and h(1,2) = g(x). For T' € Dy (U), if h|p1)xspt 7
is proper then hy([|(0,1)|] x T') is well-defined and we have

Oy ([1(0, D[} x T) = hy O([|(0, D] x T)
= hy (61 x T — 69 x T — hy([](0,1)]] x 9T))
= 94T — f4T = hy([[(0, D[] x 9T).

Then, the Homotopy Formula is the following:
9T — f4T = Ohy([I(0, [} x T) 4 hy([[(0,1)]] x OT) (2.12)
Remark 2.3.1. If we consider the linear homotopy

h(t,x) = tg(x) + (1 = 1) f ()
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then, for w € DM (V) we have:

B (10, D)) X T)(w) = / / (1# (@), ex A Tydprd.?
= /0 /U (w(h(t,x)),/\MH dhy o(ex A T))dprd !

:/0 /U<w(h(t,a:)),/\M+1[g(a:) — f(z) A (tdg + (1 = t)df)](er A T))dprdL
< sup [f — 9|§$rT>(I|Df|| +||Dg|)MM(T).

spt T’

So, we have

M (10 )1 7] < sup | =gl sup(IDF |+ IDgl) " M(T). (213)

Applications of the Homotopy Formula

The next lemma shows that the homotopy formula can be used to define f47" in case
f is only Lipschitz, provided that f|spt T is proper and both My (T"), My, (OT) are finite
forall W CcC U.

Lemma 2.3.2. Let T' € Dy (U) be such that YW CC U Mw (T) + Mw (0T) < +o0,
let f: U — V Lipschitz and assume f|spir is proper. Then for each w € DM(U), the
following limit exists:

foT(w) = tim f,yT(w).

Proof. Let o,7 > 0 and h be the affine homotopy from f. to f,. Then by the homotopy
formula and (2.13), for each w € DM (U) we have

| forT(w) — frpT (W) = [hg([[(0,1)[] X T)(dw) + hy([|(0, 1)[] x OT)(w)|
< ||dWI|SS£I;|fa — lefptig(HDfaH +|IDfANMM(T)
+ ol sup |, = f-|sup (DS, | + IS M1 (6T)
—0

as |0 — 7| — 0. Then the result follows. O

We also have
spt foT C f(sptT)
and
M(f4T) < (esssup |Df[M M1 (T))

forall W CC U.
Now we need the notion of a cone over a current 7" € Dy, (U). We first start from

the special case that T' = [|S|], where S is a submanifold of the sphere S¥~! C RY. In
this case, the cone over T is [|Cg|], where

Cs={dr:xeS0< A< 1}
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Then, let

e U be star-shaped with respect to the point 0 (i.e., tx € U, for each x € U and each
0<t<1);

e spt T be compact;
e h:R xRN — RY be defined by h(t,z) = tz.
The cone over T', denoted by dox T is given by
Sox T = hy([|(0, D[] x T).
It follows that dox T' € Dys41(U) and by the homotopy formula,
O(dox T) =T — 0gx OT.

Also, if spt T C {x : |x| = r} holds, then by
p0. D)% 1)) = [ [ttt A, dheter AT dr(@)ac' 1)
= /0 / tM(w(ta), 2 AT (x))dup(z)dL (1)

we have

M+1M<T)'

We can also define the cone over T with vertex p, which we denote by d,% T'. In this
case, we have

I(0px T) =T — 6, OT (2.14)
and, if spt T C {x : |x — p| = r} holds,

M(0,x T) <

M + 1M(T)'
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Chapter 3

Plateau’s Problem for Integral
Currents

3.1 Integral Currents

As already observed, general currents of finite mass have very little in common with
oriented submanifolds. In this section, we will introduce a subclass of currents which
are much closer to submanifolds called Integral Currents. Before that, we need some
preliminary tools.

Lipschitz Functions and Rectifiable Sets

Definition 3.1.1. Let X and Y be metric spaces with metrics distx and disty, respec-
tively. A function f : X — Y is said to be Lipschitz of order 1, or simply Lipschitz, if
there exists M < oo such that

disty [f(x1), f(z2)] < M distx [z, x2]

holds, for all x1, 29 € X. The least choice of M that makes the above inequality true is
called the Lipschitz constant for f and is denoted by Lip(f).

Definition 3.1.2. Let M be an integer with 1 < M < N. A set S C RY is said to be
countably M -rectifiable if

SC S Ul FRY),

J=1

where HM(Sy) = 0 and F; : RM — RY are Lipschitz functions.

Tangent Spaces and Approximate Tangent Spaces

Definition 3.1.3. An M-dimensional C' submanifold of R is a set S C R¥ for which
each point has an open neighborhood V' C RY such that there exists a one-to-one C*
map ¢ : U — RY where U C R™ is open, such that

1. D¢ is of rank M at all points of U,
2. o(U)=VnNS.
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Definition 3.1.4 (Tangent Spaces). Suppose that S is an M-dimensional C'' subman-
ifold of RY. Let x be a point of S and let ¢ be as above. Then the range of D¢(u),
u € U, is called the tangent space to S at x = ¢(u) and is denoted by T,S.

Definition 3.1.5. Let S C RY be HM-measurable with HM(S N K) < oo for every
compact K. We say that an M-dimensional linear subspace W of R¥ is the approximate
tangent space to S at x € RV if

hm-——/ﬁ fly)dHM (y ‘/(f YdHM (y
A0+ AM yeEA~1(S—2)

for all f € C.(RY). Here,
ye XS —2) «<= y=\"'z—z) for some z € S.

When the approximate tangent space to S at x exists, we will also denote it by 73,.S.
Here the dimension M should always be understood to be the Hausdorff dimension of S.

If S is an M-dimensional C' submanifold of R¥, then the approximate tangent space
coincides with the usual tangent space.

Theorem 3.1.1. If S is HM -measurable and countably M -rectifiable and if HM (SNK) <
oo holds for every compact K C RY, then T,S exists for HM -almost every x € S.

One can find the proof in Theorem 5.4.6 of [1].

Area and Co-area Formula

Definition 3.1.6. Let S C RY be HM-measurable and countably M-rectifiable with
HM(SNK) < oo for every compact K and f : RN — R be a Lipschitz function.
(1) The approximate tangential gradient of f is defined by

M
Vif(z) = Zavjf(w)vj, HM-ae xS
j=1
where (vi,...,va) is an orthonormal basis of T.,S and 0, f(z) denotes the directional

derivative of f in the direction v;. Note that we can also write

S:&UD&
j=1

where HM(S)) = 0 and S; C S;, with S; an M-dimensional C'-submanifold of R,
Then V?f(z) = V% f(x) whenever x € S; and f|g, is differentiable at = (which holds
HM-a.e. in S; by Rademacher’s theorem).

(2) Having defined V* f(z), we can define the linear map d°f, : TS — R by

d° fz(v) = (v, V* f(2)),

at all points where T,,S and V® f(x) exist. Above (-,-) is the standard inner product in
RV,
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K(3) If f=(f1,..., fx): RY — RE is Lipschitz, we define the linear map d°f, : T,,.S —
R* b
Y K
d°fo(v) = (v, V5 fi(x))e;,

j=1

where eq, ..., ex is the standard basis of R¥
(4) If K > M, we define the approximate Jacobian of f, denoted by J f(x) for HM
a.e. x € S by

T (@) = /det[(d5 £,)"(d5 f.)].
5) If K < M, we can define

T f(x) = /det[(d® f.)(d5 f.)1].
Theorem 3.1.2 (Area Formula). If K > M, f, S as above, then

/A TS F@dHM () = [ HOAN £ ()dHY (y),

REK
for every HM -measurable set A C S.

Theorem 3.1.3 (Co-area Formula). If K < M, f, S as above, then

/A TEf@)dHM (@) = [ HME (AN () dHE (y),

RK
for every HM -measurable set A C S.

Theorem 3.1.4. If K < M and f, S as above, then Jy f exists HM -almost everywhere

in S and
/ TS faHM = / / gdH" K aH (),
s RE Jsnf-1(y)

holds for every HM -measurable function g.

One can find more details in [2], [8] and [5].

3.1.1 Integer-Multiplicity Currents

We first introduce the Integer-Multiplicity currents. Integral currents are just the
Normal currents which have Integer-Multiplicity.

Definition 3.1.7 (Integer-Multiplicity current). Let M be an integer, 1 < M < N,
T € Dy(U) for U C RY open. T is an Integer-Multiplicity (rectifiable) M-current if
15,6, & such that

T(w) = / (), £(x))0(x)dH (2)
Vw € DM(U), where

1. Sis a HM-measurable and M-rectifiable subset of U with HM (SNK) < 400, VK C
U compact;

2. 0 is a locally HM-integrable, nonnegative, integer-valued function;
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3. £: 5 = A\, RY is a HM-measurable function such that for H*-almost every point
x € 8, &(x) is a simple unit M-vector in T,.S. ({(z) is simple if £(z) = 71 A ... AT,
we may choose {7;} to be an orthonormal basis of T,.S.)

The function 6 is called the multiplicity of T" and £ is the orientation of T', we can
write T'as T' = 7(5, 0, &).

For M = 0, we have the following definition:

Definition 3.1.8. T € Dy(U) is an Integer-multiplicity O-current if 35 C U,0 : S — Z,
such that for every K C U compact, S N K is finite, and

Tw)= Y 6w YweDyU).

z€SNsupp w

In this case, we write T' = 7(S5, 0, sign(0)).

We also introduce the notation

Iy (U) :={T € Dy(U) : T is Integer-multiplicity}
and
In(U) =Ty (U) N Ny (U).

Elements of I,(U) are called Integral M-currents.
Proposition 3.1.1. For Integer-multiplicity currents have the following properties:

1. If T1, Ty € Ty (U) and py,pa € N, then p1Ty + poTs € Ty (U).

2. If Ty =7(V1,01,&) € Iy (U) and Ty = 7(Va, 05,&) € I (V'), then

Ty x Ty = (Vi x Va,0005,61 N &) € Ty (U X V).

3. If f - U — V is Lipschitz, T = (5,0,¢) € Iy(U), and fl|sprr s proper, and
f+T € Dy (V) is defined by

PP = (@) A, d )@ (@), v e DY),

then we have fuT € Ly (V).

Proof. 1. and 2. are easy, now we prove 3. Note that

A, defé@)| = T5is (@),
We get from the area formula that

A 4o fE()

Ay dofe@) W) (3.1)

f4T(w) = /f ) b(x)

zef~1(y)NS+
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where S, = {z € S: J§;f(z) > 0}. Notice that fS is M-rectifiable, and therefore the
approximate tangent space T, fS exists at HM-a.e. y € fS. Hence at points y € fS
where T, fS exists and for which 7,5 and d,. f exist for all z € f~*(y) N S, we have

d
|Anr dafE(2)]
where 7, ..., 7, is an orthonormal basis of T, fS. Hence we obtain from (3.1)

) = [ (o) ) N @) ),
where 7(y) is an orientation of 7, fS and N(y) is a positive integer satisfying

Ny daf€(@)
wEf—;y)m W Ay o) ~ VW)

So f#T S IM(V) ]

3.1.2 The Slicing

Our goal in this section is to define the concept of the “slice” of an Integer-Multiplicity
current. Roughly speaking, we slice a current by intersecting it with the level set of a
Lipschitz function. Let’s start from the following lemma, which is a special case of
Theorem 3.1.4 and the Co-area Formula.

Lemma 3.1.1. Let S C RN be M-rectifiable and f : RY — R Lipschitz. Then for
L'-a.e. t €R:

1. Sy = f7H(t) NS is (M — 1)-rectifiable and

2. for HM=1-q.e. x € S, the tangent spaces T,S; and T,S exist, T,S; C TS, and
T,S = {y+ A\V°f(z) : y € T,S;, ) € R}.

3. For every nonnegative HM -measurable function g : S — R, we have (co-area for-

mula)
/ /gd’HM—ldt:/WSﬂg dHM.
—oo J St S

Replacing g by g * X{s:7(2)<y- Then 3 becomes

t
/ |v5f|dHM=/ /dHM—ldﬁl(u).
Sn{z: f(z)<t} —oo J Sy

Hence the left-hand side is an absolutely continuous function of ¢ and we have

d

— V5 flaHM :/ dHM™' for a.e. t € R.
dt Sn{z: f(z)<t}

St
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Let T' = 7(5,0,¢) be an Integer-Multiplicity current in U, with U an open set in
RM+K_ Let f be a Lipschitz function on U and let

_)o if Vof(z) =
i) = {9(@ it VS f(x) £ 0

For £'-almost every t € R with T[S, T, |S; existing for H™~1-almost every x € S,
and such that 3. of Lemma 3.1.1 holds, we define & (z) by

Vo f(x
&) =€ (g5 ) 32)
where v }CE g‘ is regarded as a 1-form. We observe that & (x) has the following properties:
e {(x) is simple;
o &i(x) Lies in Ay (T [S1) © Apya (Tel5);
e & () has unit length for H¥~-almost every x € S;.

Now, we can define the slice of a current as follows.

Definition 3.1.9. Assume that S C RY be M-rectifiable, let T = 7(S,60,¢) € Iy (U)
and f : RV — R be Lipschitz. For £!-almost every t € R, we know that 7,5, T,S,
exist and 3 of Lemma 3.1.1 holds for H™~!-almost every z € S,. Then we can define
the Integer-Multiplicity current (T, f,t) € Zp_1(S;) by

<Ta f7 t) = T(Sta Qta gt):

where &(z) is as in (3.2) and
et = 9-"—}515'

We call (T, f,t) the slice of the current T' by the function f at t.

Lemma 3.1.2. Let S C RY be an M-rectifiable set, T = 7(S,0,&) € Iy (U) and
f:RY = R is Lipschitz. Then the slices have the following properties:

1. For each open set W C U,
[ papacie = [ v fioan
R Snw
< (ess sup|VSf|) Mw (T).
Snw
2. If My (9T) < oo for all W CC U, then for L'-a.e. t € R, we have

(T, f,t) = 0(T[{z - fz) <t}) = (OT)[{z : f(x) <t}
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3. If My (T) + My (9T) < oo for all W CC U, then for L'-a.e. t € R, we have
1
My (T, f,t) <esssup|Df|liminf — My, (T[{z :t < f(x) <t+ h}) (3.3)
SNW h—0t h
1
MwAT, f,t) <esssup|Df|liminf — My (T|{zx :t — h < f(x) < t}) (3.4)
SAW h—0t h

and

/ My (T f.0)dt < esssup| DS Mw(T {0 < fla) <B)) (35)

4. If OT is of Integer-Multiplicity in Dyr_1(U), then for L'-a.e. t € R, we have

(0T, f,t) = =o(T, f,t).

Proof. 1. Follows from 3 of Lemma 3.1.1.
2. Since S C R¥Y is M-rectifiable, so we can write

S = G Sj.
j=0

with S; N'S; = 0 when ¢ # j, HM(Sp) = 0 and each S; C V; with V; embedded C*
submanifold of RM+X_ For h : RM*+*X — R Lipschitz map, let h, be its mollification.
Then as ¢ — 0, we have

v - Vh, converges to v - V°h (3.6)

for any fixed, bounded HM-measurable function v : RM+K — RM+K - that is, V°h,
converges to V h weakly in L?(ur). To check 2., one need only check that (3.6) holds
with the C' submanifolds V; replacing S; and with v vanishing on RM*™% \ S;; one
approximates v by a smooth function and uses the fact that the h, converge uniformly
to h.

Now let € > 0 and let v be the unique piecewise linear, continuous function satisfying

1 ifs<t—e
7(3):{

0 ifs>t.

Then ~ is Lipschitz and let h = v o f. For w € DM (U), we have

OT (how) = T(d(h,w))
= T(dh, ANw) + T'(hedw).
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Now, applying the integral representation of 0T, we see that

(OT [h)(w) = / (heo, O dpior

= lim [ (how,dT)dpor

o—0t U

= lim 0T (h,w)

o—0t

= lim T'(dh, Aw) + (T'|h)(dw).

o—0t

Since £(z) orients 7,5, let AT be the orthogonal projection of A*(RM*X) onto AY(T,.9).
we have

(dhe Nw,&(@)) = ((dho(x))" Aw",&(x))
= ((dho())" Aw,€(x)).

Then

T(dh, Aw) = /g((dhg(x))T Aw, E(x))0dHM

— [ @ gV ha o) pan.
s
Thus letting 0 — 07 and using (3.6), we have

lim T(dh, Aw) = /S (w, &(2) | VOh(x))0dHM. (3.7)

o—07t
By the definition of V°h and the chain rule for Lipschitz functions, we have
Voh =/ (f)V®f for HM-almost every point of S. (3.8)

Here we assume +/(f) = 0 when f = ¢ or f =t — & for which ~ is not differentiable.
Notice also that
Voh(z) = Vif(z) =0

for HM-almost every point in {x € S : f(x) = ¢}, ¢ is a constant. Now we have

0T [h)(w) = /S (w, (@) [V h(2))0dH™ + (T h)(dw)

1

_: w s M w
N € /Sﬂ{ts<f<t}< ,ftv fwdH +(Tth)(d )

=A+B
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Let ¢ — 0, consider A, and choose g = (w, §L|st|>|VSf|9 Then

1 Vo f
lim A = lim — Vo fl0dHM
€0 e~0¢ Sm{tfs<f<t}< L|VS]C| 4 |
1
— lim gV flan = [ v flant)
208 Jon{f<t} Sn{f<t—e}
=— g|V® flaHM
dt Jsnir<iy | |
= / gdHM !
St
= (T, f,t)(w)
Consider B:
liH(l)B = lir% T |h)(w)=0(T[{z: f(x) <t}),
e—> e—
and

lim (DT [ h)(w) = (OT) [ {x : f(x) < t}.

Since DM (U) is separable, then by considering a countable dense set of w € DM (U), we
see that the previous computation is applicable with this choice of g except on a set F
of points having measure 0, with F’ independent of w. That completes the proof of 2.

3. For (3.3), we approximate the characteristic function X(s.f)>¢} by a sequence of
C functions {gs} such that gn(x) = 0if f(x) <t, gn(z) =1if f(z) >t +h,

Dg < 55,
where X\ > 1 but close to 1. Using 2 and Proposition 2.1.1, we have

My ((9T)Lgn — (T gn)) = Mw (T Dgn)
< esssup|Df]| - % My (T[{z:t < f(x) <t+h}).
SAw

Letting h — 07, we get (3.3). The proof of (3.4) is similar.
For (3.5), we just need to integrate (3.3).
4. Since 9% = 0, so

(OT, f,t) = 90T | {x - f < t}]
O[T {=z: f <t}] (T f.1)]
= _a<T7 fv t>

then 4 follows. O

Remark 3.1.1. The right-hand side of the equation in part 2 of Lemma 3.1.2 makes
sense when 7" and 07T are representable by integration, without the necessity of assuming
that T is an Integer-Multiplicity current. Thus we may consider slicing for an arbitrary
current T € Dy (U) that together with its boundary has locally finite mass in U. So
suppose that My (T) + My (0T) < oo for all W CC U. Initially, we define two types of
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slices by
(T, fit) =0T {z : f(x) <t}] = (OT){x: flz) <t}
and
(T, f,t4) = =0[T{x : f(x) > t}] + (OT)[{x : f(z) > t}.
Claim. Let f : RY — R be a Lipschitz function. We have the following result
(1) For only countably many values of t does it holds that
M[T|{z: f(z) =t} + M[(OT)|{x : f(z) =t}] > 0. (3.9)

Thus, for all other values of t, we have

(T, f,t-) = (T, f,ty) = O[T {w - f(x) # t}] = (OT) [{x : f(x) # t} = 0.

Then we could denote the common value of (T, f,ty) and (T, f,t_) by (T, f,1).
(2) Moreover, we have

spt(T', f,t) CsptT N{z: f(z) =1). (3.10)
(3) 8 of Lemma 8.1.2 is also valid for (T, f,t).

Proof of the Claim.
(1) Let {W;}2, cC U such that U = | W;, and let
i=1

Aw, ={t e R: My [T|{z: f(x) =1t} > 0};
A, = {t e R: My [T|{z: f(x) =t} > %}.

Then we have Ay, = Ej Al Since {z = f(z) = t1}N{x: f(x) =ta} = 0 for t; # Lo, we
k=i
get

00 > My, (T) > Mw,(T|{z : f(z) =t,t € A}, })
= > (Tl{z: fla)=1})
teAY,
1

> HO(AI%@) T

thus A}, is a finite set, and the result follows.
(2) First consider the case that f is C'' and let v be any smooth, increasing function
from R to RT. We have

ATy o )W)~ (OT) |y 0 N)w) = (T]y o f)(dw) — (OT)y 0 f)(w)
= T(yo f dw) = T(d(yo fu))
= Ty (f)df Aw).
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Now let € > 0 be arbitrary and select ~y piece-wise linear such that

(1) = 0 fort<a,
= 1 fort >b.

We also suppose that 0 < +/(¢) < [1+¢]/[b — a] for a <t < b. Then

{0(Tyo /) =(OT)yo )} = (T fay) asbla.

Hence (3.10) follows because supp+y’ C [a,b]. For a general Lipschitz function f, we just
approximate f by f,, where f, is a mollifier, and let o | 0 to obtain the conclusion.
(3) Using similar argument as in the proof of Lemma 3.1.2, the result follows. O

We conclude this section with a discussion about slicing a current by a general Lips-
chitz function.

Definition 3.1.10. Let T € Z (RMT5) F: RM+*K — RE be a Lipschitz function where
2 < L < M. Then the slice of T by F' at (t1,...,t1) is defined by

<T, F, (tl,. .. ,tL)> = << .. <<T, F17t1>,F2,t2>,. . .>,FL7tL>
where F, Fy, ..., F}, are the components of F.

Next we will see the slicing of an Integer-Multiplicity current by the orthogonal
projection onto a coordinate M-plane.
Let

p: RV 5 RY

(@1, Bagr) = (T, ).

be the orthogonal projection and T = 7(S, 0, &) € Ly (RMTEK) be an Integer-Multiplicity
current. Proceeding in a manner similar to Lemma 3.1.1, we define S, to be the set
of z € S for which 7,.S and Dgp(z) exist and for which rank Dgp(z) = M. Then for
LM_almost every t = (ty,...,ty) we have

(T.p,ty= > o(2)0(x)d,, (3.11)

zep~1(t)NS+

where o(z) = sgn(a) when A, d,p&(z) = adxy A--- ANdxy.
The next proposition is an application of (3.11).

Proposition 3.1.2. Let T € Iy; be an Integer-Multiplicity current and p : RM+K — RM
be the projection as above.

(1) If h : RM — RE A CRM s LM -measurable, and H : RM™ — RM+E s given by
H(t) = (t,h(t)), then
(Hy[|All,p,t) = duc).
(2) For continuous ¢ : RMTE — R and ¢ : RM — R and if at least one of the two
functions is compactly supported, then

/ BT, p, )(6) ALY (t) = [T (4 0 p) der A -+ A diras) ().
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3.2 The Deformation Theorem

The deformation theorem is one of the fundamental results of the theory of currents
and provides a useful approximation of a normal current 7" by a polyhedral chain P
lying on a certain M-skeleton such that the error is of the form T"— P = OR + S. The
main error term is OR, where R is the (M + 1)-dimensional surface through which 7" is
deformed to P. The other error term S arises in moving 97 into the skeleton.

There are both scaled and unscaled versions of this result. The scaled version of
the theorem is obtained by applying homotheties to the unscaled version, so we will
concentrate on the unscaled version.

Some Notation

First we need some notation that will be particular to this treatment:
e For 1 < M, K € Z, we will consider currents in Ny, (RM+K);
e C=10,1] x[0,1] x -+ x [0,1] is the standard unit cube in RM*+X;

o ZMYE = {(21,29,...,2m4K) : zj € Z} is the integer lattice in RMTK;

For j = 0,1,...,M + K, we will use £; to denote the collection of all the j-
dimensional faces in the cubes.

Let t, : RM+K 5 RM+K denote the translation by z € RMTX 5o that

t,(x) =z + 2.
Then the translation of the cube ¢,(C) is
t.(C) = [z1,21 + 1] X [20,20 + 1] X -+ X [20a k0, 20k + 1,
where z = (21, 22, ..., 2y i) € ZMTE ranges over the integer lattice.

Each M-dimensional face F' € £, corresponds (once we make a choice of orientation)
to an Integer-Multiplicity current [|F'|]. The precise statement of the theorem is as
follows.

Unscaled Deformation Theorem

Theorem 3.2.1 (Unscaled Deformation Theorem). Suppose that T € Ny (RMTE) is an
M -dimensional normal current. Then we have

T—-P=0R+ S,

where P € Dy (RMTK) R € Dy (RMTE), and S € Dy (RMTE) are such that

P = Z prl|F|], where pr € R for F' € Ly, (3.12)
FeLy
M(P) < e M(T), M(OP) < ¢M(T), (3.13)
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M(R) <c¢M(T), M(S)<cM(OT). (3.14)
The constant ¢ depends on M and K. Further,

spt PUspt R C {:1: s dist(x, spt T) < 2\/M—|—K},

spt OP Uspt S C {x s dist(z, spt T < 2\/M+K}.

Moreover, if T' is an integral current, then P and R can be chosen to be integral currents.
Also, in this case, the numbers pr in (3.12) are integers. If in addition OT is an integral
current, then S can be chosen to be an Integral current.

Proof: Unscaled Version

The proof of the unscaled deformation theorem is based on a retraction to deform
the current 7" onto the M-skeleton L,;. The first step is to construct the retraction. For
this construction, we introduce additional notation.

e For j=0,1,.... M + K, set
Li=|JF

FeLl;

Thus L; is the j-skeleton of the cubical decomposition

U (z+C)

2€ZM+K

of RM+K;

o for j =0,1,..., M + K, set

Clearly we have
]RM+K = LMJ,-K 2 LM+K_1 2 LM+K—2 2 e 2 Lo,

and similar results hold for the Zj.
Observe that

Lo N Lyyx—1 =0, Lin Lyyg—2=10,-- ,ZK—1 N Ly = 0;

these identities hold because

e a point in Ly x—;—1 must have j + 1 integral coordinate values,

e a point in Ej must have M + K — j coordinate values that are multiples of 1/2.

Similarly we see that, for any face F' € Lyyx—j, the center of F'is the point of
intersection of F' and L;. Thus the nearest-point-retraction

&t Lsx—; \ Lirsx—j1 = L
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is well-defined. We define the retraction
Wi Lns—5 \Lj = Lagik—j1
by requiring that
o Yi(z)==x,ifx € Lyyyx—_j1;

e the line segment connecting v;(z) and &;(x) contains x if © € Lyyxr—; \ [ZJ U
Larr—j-1].

In fact, 1; radially projects the points in F' € Ly x—; from the center of F' onto the
relative boundary of F', so of course 1; cannot be defined at the center of F' and still be
continuous.

We also define the retraction

¢ RMYEN Lo — Ly,

by
Y =1Yg_10YPg_g0---01y.

Let Ag ={x = (21, .., 2p1k) 0 <21 < .. < Tppag < %} and x € Ap, and consider
1ol a,- The line segment that connect x and (%, e %) is denoted by [, and

1 1
I, = {y Y= (1 )G g) 1, maa) € R}.

By definition, ¢g(x) € F N1, for F' € Ly k-1, s0 Po(x) has a coordinate z; that equals
to 0. We find ¢y(z) by finding t,,;, such that

1

Then tmin = 2; and

xr1—1
bo(x) = =——(0 ) VacA
o\T) = 2y — 1 y L2 — X1y ooy TMAK — X1 x 0-
Similarly,
1 1
Yy o ho(x) (0,0,23 — 22, ..., Tarrx — Z2),

T 12z —a1) 1 - 21,
and proceeding in this way, for o = 0 we get

K-1

v =1 =

Jj=0

1

Tj+1 — T

>(0,...,0,.CEK+1—$K,...,$M+K—$K) € L. (315)

Example 3.2.1. For M = 1 and K = 2, consider a curve in the unit cube, then ¢, maps
it onto the faces of the cube by radially projecting from the center of the cube, then 1,
maps that projected curve onto the edges of the cube by radially projecting from the
centers of the faces.
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Next, we want to estimate the norm of D, which is a crucial pint to prove the
theorem. We need the following lemma.

Lemma 3.2.1. If0<ag<a; <---<aji; <1/2, then

J

1
[]0+ 20 —2000) ' < ——.
i:O( e 1) T 1—-2a4

Proof. We prove the lemma by induction. For j = 0 and j = 1, the results are obvious.
Assume that the inequality holds for j = k, we check the result for j = k£ + 1, by using
the result for 7 = 1, we have

k+1
H(l —+ 2@1' — 2&1'_._1)_1 S (1 — 2ak+1)_1(1 + 2ak+1 — 2ak+2)_1
=0
1
< —7
1= 2ap4
then we finish the proof. O

Lemma 3.2.2. There is a constant C = C(M, K) such that

1< |Dp(x)] <

= |Q

holds for LYTE —q.e. x € RMJFK\ZK,l, where p = dist(z, EK,l).

Proof. 1If 6 is the composition of reflections through the planes {z : e; - = = %}, ke Z,
translation ¢,, z € ZM+X  and permutations of coordinates, then |Df| = 1 and fopof =
1, so it is sufficient to consider the case that x € Aj. Let

Y(z) = (@' (@), ..., v (2)

and using Lemma 3.2.1 to compute the absolute value of the partial derivative of ¢(x) =

K-1
1
(@i = i) 11 1=y we gt

‘&Pi T 1 (2 — ) — 4z + 21)

- i LMK
Orj| 25 1= 2(j0 — 7)) (1 —2(x; —2j-1))(1 = 21 — 25))

2
- 1- 2$M—|—K

fori > K+1,j5#14,k, and

o 4

8xi (I)‘ - 1- 2$M—|—K’

o'

4
<
90 P

- 1- 2ZL‘M+K

The nearest point of Ly_; t0  is (1,0, T 1,1/2,...,1/2), so

ALERS 1/2
pzé(Zu—za:j)?) >

=K

TM+K,

N —
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thus |Dvy| < ¢, and for each %, we have ‘gi‘ > 1, so
P i

1§|D¢|§g
P

Remark: Here the norm of D% is the Hilbert-Schmidt norm. O

Proof of the unscaled deformation theorem. We divide the proof into four steps.
Step 1. We claim that

/éerxﬂMch*% < o0,

where C = 34 x =3, 4] x o x [-4, 1]

Using the estimate in Lemma 3.2.2, we see that

DY) dLM K (@) < [
A /

pr dEMJrK — / IB’*M d£M+K7
C

C

where p(x) is the distance from a point in RM*+X to the union of the (K — 1)-dimensional
coordinate planes. Since p(x) is the minimum of the distances from z to each of the
individual (K — 1)-dimensional coordinate planes, if we write x = (2/,2”) € RMTEK
where 2/ € R and 2" € RE™! then p(z) < p(a/,0) = |2/|, so it will suffice to estimate
Ja 12! |TM dLMTE (). Let
1 1
= {2’ e RM™:|2/| < 5\/M+ 1}, By={2" e RF 1 2"| < 5\/[(— 1}.

We have C' C Bi x By, and then

/~’x/|—Md£M+K($) S/ ’QS’| Md£M+1( )dﬁK 1( )
C B;
RM+1n{g:|¢|= r}
= LEY(By) - HM(RM“ Nn{¢: ¢ = 1})§\/M +1 < oo
Step 2. There exists a point a € C such that
[ 1D0@) M dltap Tl @) < eM(T),
[ 1D0@) M dltap0T | (2) < ch(OT).

Above, ¢ = ¢(M, K) is a constant and |[t,4T|| denotes the total variation measure i, 7
of the current ¢,47".
Set

024/5\D1/J(x)\ ALY ().
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By the symmetry in the construction of ¢ we have, Vo € RM+X

/ |DY(z + a)[MdLM T (a) / | D (a)MdLME (a) = /4.

By Fubini theorem, we have

C

() = [ [ 1Dvta+ @M @i
= [ [ 1pite + M aimi@ac < o)
Set
G = {a el /C D+ o) M| T (z) < cM(T)} ,
H =C\G, = {a eC: /5|D¢(x—|—a)]Md||T||(x) > cM(T)} .
We have
[ [1puta+ aaizeac o)

> /H / DY+ a)[Md||T||(2)dLM (a)
> cM(T)LM 5 (H)y),

so if LMTK(Hy) > 1/3 held, then we would have (¢/4)M (T
contradiction. So we have LM (H;) < 1/3 and LY T5(Gy)
Also set

> (¢/3)M(T). That is a
2/3.

)
>

Gy = {a eC: /5|D¢(ac + a)|Md||oT||(z) < CM(aT>} .

Similarly, we have LM+K(Gy) > 2/3. So LM*E(Gy N Cy) > 0, and there exists a €
G1 N 5. Finally, again by the symmetry in the construction of 1, we observe that

[ 1D0@ dltus 1) = [ 100G +a) M| )

and

/ Dy ()] M ]ty 0T () / Dy(a + )M d||oT|(2).

Then the result follows. B B
Step 3. Now we fix an a € C' as in Step 2 above and write T = ¢,47T. Applying the
homotopy formula (2.12) we have

T =T + 0hy([|(0,1)[] x T) + hy([(0,1)]] x OT), (3.16)
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where h is the affine homotopy
h(t,z) =t + (1 — t)y(z)
between the identity map and ¢,. Then by (2.13) we have the following estimates

MThy([1(0, D[] x T)] < [a]M(T),
MThy([1(0, D[] x OT)] < |a| M(OT).

Let k(t,z) = tx + (1 — t)¥(z) be another homotopy, again by the homotopy formula, we
have

T = 0T + Ok 1100, )] x T) + ke (110, D] x 7). (3.17)
Since |Dip(z) — x| < 1/2v/M + K, we also have the following estimates.
Mk (0.0 x D] < 12V 5 K [ Do) d Tl (z)
<1/2VM + K - eM(T);

Mk (0, D)) x 0)) < /2VATF K [ [Duta) a7 )
<12VAT K [ Do) dloT|(z)
<1/2VM + K - eM(9T);

M) < [ Do)l F@) < eM(D);

M (0T < [ IDu@) 1o (2)
< [1Dv@)MajoT(x) < M),
Combining (3.16) and (3.17), we have
T — 0T =0 [hy (10, )] x T) + ke (1100, 1)1) < T)

e (110, 1)]] x OT) + ke (110, )] x OT) .

We set
R = hy (100, 1)) % T) + kg (110, 1)) x )
and
St = hae (1100, 1)) x OT) + ke (110, )] x OT) .

Note that R is of Integer-Multiplicity if T is, and S; is of Integer-Multiplicity if 0T
is. Also we have

spt R C {:c s dist(x, spt T') < 2V M + K} ,spt S; C {:1: : dist(x, spt 0T) < 2v M + K} .
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Step 4. Let Q = @D#TV, then spt Q C Ly and T'— Q = OR — S;. We will show that
() can be used to construct
P=%" prlF|.

FeLly

as in (3.12). Let F € Ly and F be the interior of F. Suppose that F C RM x
{0} € RM*K and let p be orthogonal projection onto RM x {0}, then pot = in a
neighborhood of any point y € F. Thus we have

p4(QLF) = Q|F.

Identifying RM x {0} with RM and applying Proposition 2.2.1, we get that there
exists 0 € BV (RM) such that

M(QLF) = /F 6L (2) (3.18)
and
M((OQ)|F) = / DO | (3.19)
holds, and such that
QLF)(w) = /F (@) ex Aes A Aex) () dLM () (3.20)

holds for all w € DM (RM).
In addition, by (3.20), we have

(QLE — BIFI)(w) = / (br — B)(w(x)er A Ae)dLV(z),  (3.21)

F

for some constant 5. Thus we have

M(@QLE = BIIFY) = [ 167~ BldC¥ a), (322)
M@QLF = BIFID) = [ | 1D(ce(0r = ). (323)

Now, since LM(F) = 1, we can take 8 = Bp such that
- M - M : 1
min {/j {r e F:0p(x)>p}, LY {x e F:0p(x) < ﬁ}} > 3
Also we may take Sr € Z whenever 0 is integer-valued.
Then by Theorem 1.1.7, Theorem 1.1.8, (3.18), (3.19), (3.22), and (3.23), we have

M(QLE - BIIF|) < c / DOs| = ¢ M(0QLF), (3.24)

MO(QLE - BIF|)) < ¢ / DO = ¢ M(DQLE), (3.25)
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for some constant c. Also we have QL@ﬁ =0, so

M (Q—QL U F) = 0. (3.26)

FeLy

Now, summing over F' € L), and using (3.24), (3.25), and (3.26), with

P=3 BellF,

FeLy
we see that
M(Q — P) < cM(9Q), (3.27)
M(0Q — OP) < cM(0Q). (3.28)
Our choice of Br also tells us that
2 [Jelac =2 [ jselact > gl (329
F {z€F:0p(z)>6}
Thus, again using (3.22), and since M (P) = > |Br|, we see that
Fely
M(P) < cM(Q). (3.30)

We also know, from (3.28) above (and the triangle inequality), that
M(OP) < cM(0Q).
Finally, by setting S := S; + (@ — P) and pg := fr, we obtain
T—-P=0R+ S, (3.31)
and the deformation theorem follows. O
Scaled Deformation Theorem
Let the map 7; be defined by

N RMJrK N RMJrK

T — tx Vt € R.

The scaled deformation theorem is the following.

Theorem 3.2.2 (Scaled Deformation Theorem). Fiz p > 0. Let T € Ny (RMTE) be an
M -dimensional normal current, then we have

T—-—P=0R+S,
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where P € Dy (RMTE) R € Dyt (RMHE) and S € Dy (RMHEY are such that

P= 3" prngllFl] (3.32)
FeLly
with pr € R for F € Ly, and
M(P) <c¢M(T), M(OP) < c¢M(OT), (3.33)
M(R) < cpM(T), M(S) <cpM(T). (3.34)

The constant ¢ depends only on M and K. Further,

spt PUspt R C {x : dist(z,spt T") < 2v M + Kp},
spt OP Uspt S C {z : dist(x,spt 9T) < 2v M + Kp}.

Moreover, if T is an integral current, then so are P and R, pr € Z. If OT is an integral
current, then so is S.

Proof. Applying the Unscaled Deformation Theorem 3.2.1 to 1,/,41 and then applying
N to P, R and S, the result follows. n

Some Applications

Theorem 3.2.3 (Isoperimetric Inequality). Let M < 2. Suppose that T € Ly, (RMFTE),
spt T is compact and OT = 0. Then there is a compactly supported T' € Ty (RETE) such
that OR =T and

M(R)M-Y < eM(T),

where ¢ = ¢(M, K) is a constant.

Example 3.2.2. Let T € D;(R?) be a current given by integration on a simple, closed
curve v in R?%. Then M(T) is the length of . Let the current R € Dy(R?) be the region
in the plane whose boundary is 7' . The conclusion of the theorem is that the square
root of the area of R is bounded by a constant times the mass of 7" this is the classical
isoperimetric inequality.

Proof. For T' = 0, the result is trivial. We consider the case that T" # 0. Let P,S €
Ty 1 (RMTEY and R € Ty (RMTE) also for each p > 0 let n,(z) = pz. Then by Theorem
3.2.2 we have

T—P=0R+S.

But 0T = 00R =0, so M(S) =0, and
M(npy(|Fl) = HY " (pF) = pM 1.
So, M(P) = N(p)p™~ for some N(p) € N. Now, choose p = [2¢M (T)]*/M=1 then
M(P) = N(p)p"~" = 2N(p)eM(T) < cM(T);
thus 2N(p) < 1,50 N(p) =0 and P = 0. Then T = OR for some R € Iy (RM+X) and

M(R) < ep M(T) = 2/ M/ [ () /M),
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Theorem 3.2.4 (Weak Polyhedral Approximation). Let T € Zy(U) be am Integer-
Multiplicity current with My (0T) < oo for all W CC U. Then there is a sequence {P,}
of currents of the form

[ l
=" pnlFll, Y ez, (3.35)
FEﬁM

such that P, and 0P, converge weakly to T and 0T, respectively, in U as p; | 0.

Proof. First consider the case U = RMTK and T' € Z,(RM*K). For any sequence p; — 0,
by Theorem 3.2.2 we have
T—P =0R,+5

for some Ry, S; such that
M(R) <cpM(T)— 0, M(S)) <cpM(OT)— 0,
and
M(P) < cM(T), M(OF) < cM(OT).

Thus we have P(w) — T'(w) for all w € DM(RM*K) also 0P, = 0 if 9T = 0.

For the general case, let ¢ be a Lipschitz function on RM*+X such that ¢ > 0 in
Uand ¢ = 0 on RMTE\ . Also assume that {z : ¢(z) > \} CcC U for all A > 0.
Letting Ty = T|{z : ¢(x) > A}, then for L£'-almost every A > 0, Lemma 3.1.2 implies
that T} is such that M (9T)) < co. Since spt Ty CC U, we can use the above argument
to approximate T) for any such A. Then, for a suitable sequence A\; — 0, the required
approximation is an immediate consequence. O

3.3 The Compactness Theorem

In this section, we will prove the compactness theorem for Integer-Multiplicity currents
with finite local mass and finite boundary local mass. The compactness theorem for
integral currents will be a simple corollary.

Theorem 3.3.1 (Compactness Theorem for Integer-Multiplicity Currents). Let U C
RM+E be an open set. Let {T;} C Dpr(U) be a sequence of Integer-Multiplicity currents
such that

sup [Mw (T;) + Mw (0T})] < oo VW CC U.

Jj=1

Then there is an Integer-Multiplicity current T € Dy (U) and a subsequence {Tj} such
that T; — T" weakly in U.

The proof of this theorem is complicate, but the idea is to use induction, We first
start from integer multiplicity O-currents.

3.3.1 Integer-Multiplicity 0-Currents

We first fix some notation.

20



1. Let Ro(RM+E) denote the space of finite-mass Integer-Multiplicity O-currents in
RM+K notice that Ro(RME) = [((RMFEK),

2. A nonzero current 7' in Ro(RM*X) can be written
T=Y ¢y, (3.36)
=1

where « is a positive integer, p; € R¥™¥ for each 1 < j < o, p; # p; for 1 <i #
J < a, 0y, is the Dirac mass at p;, and ¢; € Z \ {0} for each 1 < j < a.

Next, we prove the compactness theorem for Ro(RMK).

Proof. Suppose that T; € Ro(RM ) j =1,2,..., and that

L=supM(T;) < oo, LeZ*.

j>1

By the Banach-Alaoglu theorem there is a T' € Do(RM**) such that a subsequence

of the T} converges weakly to T, still denoting the subsequence by 7;. What we must
prove is that T' € Ro(RM+E).

Let B(z,7) denote the standard open ball in RM** centered in 2 with radius r. Choose

0 < m < oo large enough such that T|B(0,m) # 0. We can write each T;|B(0,m) €
Ro(RMTEY ag

where A ' o
cgj) €eZ, —-L< cgj) <L, pgj) € B(0,m).
We now allow cgj ) = 0 because it is possible that M [T B(0,m)] < L holds.
By the Bolzano-Weierstrass theorem, we can pass to a subsequence (without changing
the notation) so that for j =1,2,..., L,
pl(-j) — p; € B(0,m) as j — oo

and ,
cz(»J) — ¢ € 7.
If ¢ € DO(RM+E) with supp ¢ C B(0,m) then we have

L

Ty(6) = T, B0, m)(6) = 3 ci(py)

1=1

and we have T(¢) — T'(¢) because T; converges weakly to 7. Thus we can write

T|B(0,m) = Zcidpi,
i=1

where a < L is a positive integer, p; € B(0,m) each 1 <i < a,p; #ppforl <j#h<q,
and ¢; € Z\{0}, for each 1 <i < a. Since M(T) < oo, then for m large enough, we can
write T|B(0,m) =T, so T € Ro(RM+K), O
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Definition 3.3.1. We have the following definitions:
1. Form (3.36), we see that if T' € Ro(RM+X) and ¢ € DO(RM*+X) then

T@)z}jqwm)

Now we also define T'(¢) in the same way for ¢ € C(RMTX) is only continuous.

2. Endow Ro(RM+K) with the metric dy defined by
do(T1, T>) = sup{(Th — T2)(#) : ¢ is Lipschitz, |[¢[|oc < 1, |[¢']|o < 1}

3. We let FM*+E denote the space of nonempty finite subsets of R¥*X metrized by
the Hausdorff distance. The Hausdorff distance between A and B, denoted by
HD(A, B), is defined by

HD(A, B) = max {sup dist(a, B), sup dist (A, b)}

a€A beB

for A, B € FM+K,
4. Define -
0: Ro(RY+E) 5 R
by
o(T) = inf{|p —q| : p,q € spt T, p # q}.
Note that if either 7= 0 or H(spt T') = 1, then o(T) = +occ.
Lemma 3.3.1. If Tj € Ro(RM™K) and T; — T € Ro(RM) weakly as j — oo, then
H°(spt T) < liminf H%(spt T}).
j—00
If additionally
HO(spt T) = HO(spt Tj), 5 =1,2,...,
then
o(T) = lim o(T}).

J—00

Proof. For each p € sptT we can find ¢, € D°(RMTX) for which ¢,(p) = 1, ¢,(z) < 1
for © # p, and ¢,(q¢) = 0 for ¢ € sptT with g # p. The existence of such a function
¢p implies that p is a limit point of any set of the form |J,.,spt7},, and the result
follows. N O]

Lemma 3.3.2. If T,T € Ro(RMTE) satisfy 0 < M(T) = M(T), then it holds that
1 - ~
min {1, gg(T), HD(spt T, spt T)} < do(T,T).

Proof. Write T =37, ¢;0,, and T = > gespt T Yadq- Set

-~ uin {1, Lom).
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and assume that dy(7T), Tv)~< T
Because M (T") = M(T') holds, we have

Zlcﬂ = Z 7ql-

gespt T

For j =1,2,...,, define ¢; by setting

sgn(c;) - |[r — |z —p;|] if |z —p;| <,
b;(z) = (¢j) - [r — o — ps] | |z — pj
0 if [x —pi| >

Since |¢;] < r < 1 and |¢}| < 1 hold, we have (T' — T)(¢;) < do(T, T).

(3.37)

If there were 1 < j < « for which sptf NB(p;,r) = 0 held, then we would have

do(T,T) > (T = T)(¢;) = T() = rle;| > m,
contradicting the assumption that do(T,T) < r. We conclude that

Sptfﬂ]B%(pj,r)#@, forj=1,2,...,«

(3.38)

Now define ¢ = Z?:l ¢;. Since the ¢; have disjoint support, we see that |¢| <r <1

and |¢'| <1 hold. Setting
Aj=sptTNB(p;,r), B=sptT\|JA;,
=1

and using (3.37), we have
do(T.T) 2 (T = T)(¢) = T(¢) — T(9)

:TZ‘le_ZZSgn ci)lr = la — pillg

j=1 qeA;
=r > |l- Z > sen(ey)r = lg — pillvg
qespt(T) J=1 qeA;

=" rhul + 30 3 bl = sen(e))lr — g = p,l)

qeEB 7j=1 quj

Note that each (r|y,| — sgn(c;)[r — |¢ — p;l]7,) is nonnegative.
If there existed ¢ € B, then we would have

dO(Ta j:) Z T|'Yq| Z r,

contradicting the assumption that do(T,T) < r. We conclude that

(03
spt(T U (pj, 7

J=1

23

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)



Now we consider ¢, € spt(7') and 1 < j, < « such that ¢, € A;,. Looking only at
the summand in (3.42) that corresponds to j, and g., we see that

]

do(T, T) = r|y.| = sen(e;)lr = a. = p . (3.44)

holds.

In assessing the significance of (3.44) there are two cases to be considered according
to the sign of ¢;,v,,.

Case 1. In case sgn(c;,7,. ) = —1 holds, we have

Sgn(cj*),}/Q* = Sgn(cj*)sgn(ry(]*) ’YC]* = Sgn(cj*,y(I*) /y(]* = _h/q*

The fact that sgn(c;, )y, = —|7,.| holds implies

do(T,T) > 7|y, —sgn(c)[r —|q — p;l]vgl
=(r+r—|¢—pi.Del >

and this last inequality contradicts the assumption that do(7), T ) <r.
Case 2. We see that sgn(c;,7v,. ) = +1, thus sgn(c;, )7, = |74/, then

dO(T,T) >(r—r+|q¢g—pj

WYal = g — pj.l-

By (3.43), for ¢. € spt(T), there exists j. such that ¢. € A;,. Similarly, by (3.38),
for 1 < j, < «, there exists g, € spt(7') such that ¢, € A; . Thus we conclude that
do(T,T) > HDI[spt T, spt T. O

Theorem 3.3.2.

1. If ACRM and f: A— FMTE s a Lipschitz function, then

U f) (3.45)

€A

is a countably M -rectifiable subset of RMTE,

2. If ACRM and g: A — Ro(RMTE) is a Lipschitz function, then

| sptlg(2)] (3.46)

TEA

is a countably M -rectifiable subset of RM*K
Proof.

1. Let Lip(f) = m be a Lipschitz bound for f, then Lip(f(x)/m) = 1. Thus, without
loss of generality, we may suppose that Lip(f) = 1.

In this proof, we will need to consider open balls in both R and in RM+X  Accord-
ingly, we will use the notation B (z,r) for the open ball in RM and BM X (z, r) for the
open ball in RM+X,

For £ =1,2,...,set Ay = {z € A: H°[f(z)] = £}. Note that |J,.,, f(x) is the image
of the Lipschitz function u : Ay — RM*E defined by requiring f(z) = {u(x)}.
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Now consider ¢ > 2 and = € A,. Write f(x) = {p1,p2,...,p¢} and set r(x) =
min; |p; — pj-
If 2 € Ay N BM(x, T(m)), then for each i = 1,2,...,¢ there is a unique ¢ € f(z) N

4
BYHE (i, Tf)) and we define u;(z) = q.

The functions uq, us, . .., u, are Lipschitz because, for
r(x
21,20 € A, NBM (x,%) ,
we have

HD[f(21), f(22)] = max{|ui(z1) —ui(z2)| : i =1,2,...,¢}.

Since

y4
U @ =z 4nB @ =),

zeAgﬂBM(ac,%)

we see that UzeAmBM(z o) f(2) is a countably M-rectifiable subset of RM*K,
)4

As a subspace of a second countable space, A, is second countable, so it has the
Lindelof property; that is, every open cover has a countable subcover. Thus there is a

countable cover of A, by sets of the form A, N BM (x, @), x € A;. We conclude that

U.ca, f(2) is a countably M-rectifiable subset of RM** and hence (J;2; U.c4, f(2) is
also countably M-rectifiable.
2. Without loss of generality, also suppose that Lip(¢g) = 1. For i and j positive
integers, set
Aij={x € A: Mlg(z)] = j and 27" < ry},

where
oo = min {1, 3olo(o)}.
Fix x € A; ;. For 21,2 € A;; N B(x,27"71), we have
M[g(z1)] = Mg(22)] = j and do[g(21), g(22)] < 27" < ryay)-
So, by Lemma 3.3.2, HD[spt(g(z1)),spt(g(22))] < do[g(z1), g(22)] holds. Thus
fiAiNB(z, 277 —» FME

defined by f(z) = spt[g(z)] is Lipschitz. By part 1. we conclude that

U sptlg(2)]

ZEAZ',]'Q]B(I,Q_Z._I)

is a countably M-rectifiable subset of RM™X . As in the proof of 1., we observe that A, ;
has the Lindelof property, and so the result follows. n
Rectifiability Criterion

The next theorem provides a criterion for guaranteeing that a current is an Integer-
Multiplicity rectifiable current. Later we shall use this criterion to complete the proof of
the compactness theorem.
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Before stating this theorem, we first need some tools.
Definition 3.3.2. Let u be a measure on RY. Fix a point p € RY and fix 0 < m < oo.

1. The m-dimensional upper density of x at p is denoted by ©*™(u, p) and is defined
by setting

B
0" (u,p) = liIr?}fOup sl b [QSZ"’: )

2. The m-dimensional lower density of y at p is denoted by ©7"(u, p) and is defined
by setting

. u[B(p, )]
m = lim inf 2
O (1, p) I

3. If ©*(u,p) = ©*(u, p), we call their common value the m-dimensional density of
i at p and denote it by ©™(u, p).

Here ), is the the m-dimensional volume of the unit ball in Euclidean m-space.

Theorem 3.3.3. Fizt > 0. If p is a Borel reqular measure on RY and A C C C RY,
then
t <OM(u|C,2), for all x € A, implies t - SM(A) < u(C).

Here SM™ is the M-dimensional spherical measure.
For the proof, see Theorem 4.3.7 in [1].

Theorem 3.3.4 (Rectifiability Criterion). If T € Dy (RM+E) satisfies the following
conditions:

1. M(T)+ M(0T) < oo,
2. ||T|| = HM |0, where 6 is integer valued and nonnegative,
3. {z : 0(x) > 0} is a countably M -rectifiable set,

then T is an Integer-Multiplicity rectifiable current.

Proof. Set S = {x : 0(x) > 0}. We need to show that for H*-almost every point in S,
f(x) =v1 A+ Avy, where vy, ..., vy is an orthonormal system parallel to 7.,.S.

Of course, HM-almost every point x of S is a Lebesgue point of # and is a point
where T'(z) and T,S both exist. By Theorem 3.3.3, we see that ©*M(||0T|,z) < oo
holds for HM-almost every z € S. Hence ©M~1(||0T||, z) = 0 also holds for H-almost
every xr € S.

Without loss of generality, suppose that o = 0. Let 5, : RM+*K — RM+K giyen by
n-(2) = r~1z be a rescaling. Consider a sequence r; | 0, passing to a subsequence but
without changing notation, we have that

nul — R and 1,200 = 0R, asr;]0
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for some R € Dy (RM+E) that is

Jim g 76) = T [, T (), (o ()R @)

:/Tsmo),w( ))0(0)dHM (y)
= (w) :/TS<R'7W>d,U/R

for all w € Dy (RM+E) and

mMﬂM=AmKAMw&T O ()T |

Sr ||OT||[B(0,7; - )] = 0 as i — +o0

for all ' € DM-1(B(0,7')). Then we have R(0) = T(0), dR = 0, and spt R C T,S.
By Proposition 2.2.2, we have R(z) = v A --- A vy = T(0), where vq,..., vy is an
orthonormal system parallel to 75S. [

3.3.2 MBYV Functions

In this subsection, we introduce a class of metric-space-valued functions of bounded
variation.

Definition 3.3.3.

1. A function u : RM — Ro(RMTK) can be written as
u(y) = Zci<y)6pi(y) (3.47)
i=1

where for any y € RM | p;(y) € RM*X and only finitely many ¢;(y) are nonzero.

2. If uis as in (3.47) and ¢ : RMTK — R then we define uQ¢ : RM — R by setting

[e.9]

(uQo)(y Z ¢y (3.48)

=1

for y € RM; thus the value of (u0¢)(y) is the result of applying the 0-current u(y)
to the function ¢.

3. A Borel function u : RM — R(RM+K) is a metric space valued function of bounded
variation (MBV) if for every bounded Lipschitz function ¢ : RM+*X — R the
function uQ¢ is locally BV in the traditional sense (see for instance Section 3.6 in

[10]).
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4. If u : RM — Ry(RM+E) is MBV, then we denote the total variation measure of
by V, and define it by

V) =sup{ [ Do) 0 BRI S R ol < 1 Jaol < 1}
—sup{ [ (w00 divg aL s suppg € Algl < 116l < Lldoi <1},
A

for A C RM open.

For us the most important example of an MBV function will be provided by slicing
a current. That is the content of the next proposition.

Proposition 3.3.1. Let p : RMTE = RM x RE 5 RM be the projection onto the first
factor. If T € Iyy(RMTE) s an integral current, then u : RM — Ro(RMTE) defined by

u(z) =(T,p,x), x€ RM.

is MBV and
Vu(A) < M||0T([(A) + | T[I(A)]

holds for each open set A C RM.
Proof. Fix an open set A C RM. Let g = (gq, -+ ,9m) € CHRM,RM) satisty |g] <1
and suppg C A. Let ¢ : RM+X — R be such that |¢| < 1 and |d¢| < 1. Pick i with
1 <i< M and set

di\'l:dﬂfl/\/\dl'l_l/\d$1+1/\/\dl’M
Using (2) of Proposition 3.1.2 and

we have

’/Dmgi<T’p,fC>(¢)dﬁM(:€) = [(T[(Dz,9:) o pldxy A+ -+ ANdrpr) ()]
=T (¢ [(Da,9:) o P dxy A -+~ Ndxag)|
= |T [¢d(g; o p) A dZi]|
= |(0T)[#(gi o p)dzi| — T[(gi o p)de A dy]|
< [|oT'[|(A) + I T]|(A),

SO

[ wosang dzM\ _ \ [T p.modtgict@)| < Mijoria) + T A

Then the result follows. O

Theorem 3.3.5. Let p : RM*E = RM x RE — RM be the projection onto the first
factor and fix 0 < L < oo. If for £ = 1,2,..., we have that T, € L (RMTE) 4s an
integral current with M(Ty) + M(9T,) < L and if T, — T weakly, then for LM -almost
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every x € RM it holds that (T, p, x) is an Integer-Multiplicity current. Furthermore, the
function u : RM — Ro(RMTEY) defined by

u(z) = (T,p, )

1s MBV, and
Vu(A) < ML

holds for each open set A C RM,

Proof. Since T, — T weakly, so (T;,p,x) — (T,p,x) weakly for LM-almost every z €
RM  then by the same argument as in the previous proof, and passing to the limit, the
result follows. O]

Definition 3.3.4. For a measure p on RY, we define the maximal function for i, denoted

by M, by X
i (B

Lemma 3.3.3. If v is a real-valued BV function and 0 is a Lebesque point for f, then

we have
Sy g UC ST
B(0,r)

QurM ||

M, (x) = sup

r>0 QM

Tr)

! 1
< / _ / | Do()|dLM (2)dL () < My (0).
0 QM( B(0,77)
Proof. For a function v € C*°(RM), we have

o) =) = | | Zo(ra)ac’(z

T

/O(DU(Tx),x)dﬁl(T) < |$|/O |Dv(rx)|dC (7).

So
QerM /B . Iv(l’)|;’v(0)l acM (z)
< /B y /0 1 QerM |\ Do(ra)|dL ()AL ()
- /01 /MO’T) QerM |Du(ra)|dCM (x)d LY (r)
_ /0 1 W /B o De@ac @ac' (),
then by a smoothing argument in Theorem 1.1.5, the result follows. ]

Theorem 3.3.6. Ifv: RM — R is a BV function and y and z are Lebesque points for
v, then

[v(y) = v(2)] < [Mipy(y) + My (2)] ly — 2l.
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Proof. Suppose that y # z. Let p be the mid point of the segment connecting y and z

and set r = “’—gz‘ For x € B(p, r) we have
[v(y) —v()| _|oly) —v(@)] | |o(@) — v(=)]
ly—z = ly—2 ly—=z
|z —yl <y -zl
|z — 2| < |y — 2|,
SO
[v(y) —v()| _ |oly) —v(@)] | |o(@) = v(2)]
=z = ly—= |y — 2|
Srﬂw—vﬁﬂ+h@9—ﬂﬁﬂ
ly — x| |z — 2]
As a result,

CORTCTS Sy gy 0 EUTCI

|y—2| B QMTM B(p,r) |y—2|
< 1 _ / lv(y) —7J($)|d:er M/ lv(r) — U(Z)|dx
Qur™ Jepr 1y — 7| QurM Jgpr v — 2|

< Mip|(y) + Mpu(2).
0

Lemma 3.3.4. Ifu: RY — Ro(RMTE) s an M BV function, then there is a set E with
LM(E) = 0 such that, for y,z € RM\ E, it holds that

dofu(y), u(2)] < My, (y) + My, (2)] |y — =]

Proof. Let ¢3,i = 1,2,..., be a dense set in DY(RM) and let E; be the set of non-Lebesgue
points for uo@;. Then we set E = Uf; FE; and the result follows from Theorem 3.3.6. [

Lemma 3.3.5. For each A > 0, it holds that
M . Bu M
Lz My(x) > A} < TM(R );

where By is the constant for RM from the Besicovitch covering theorem which is stated
as follows.

Theorem 3.3.7 (Besicovitch’s Covering Theorem).

Let RM be the M-dimensional Euclidean space, then there exists a constant By,
depending only on the dimension M, with the following property:

If F is any collection of nondegenerate closed balls in RM with

sup{diam(B) : B € F} < oo

and if A s the set of centers of balls in F, then there exist By; countable collections

60



Gi,...,Gp,, of disjoint balls in F such that

The proof of this theorem is in section 1.5.2 of [8].

Proof of Lemma 3.53.5. Set
L={x: M,(z) > A}

For each x € L, choose a ball B(z,,) such that

Since L € |J B(x,r,), we can apply Theorem 3.3.7 to find families Gi,...,Gp,, of
z€eL

pairwise-disjoint balls B(z,7,),z € L, such that L C [J2 Upeg, B- Then we have

SCEEI(VIVEIE s or e il

i=1 BG; i=1 Beg;
1M Bu
M
< XZ > uB) < TM(R ).
i=1 Beg;

O

We also aobserve that if we apply Lemma 3.3.5 to the measure V, for some MBV
function u, since V,, is finite, then My, (y) < 400 for LM-a.e. y.

Theorem 3.3.8. If u : RM — Ro(RM*TE) is an M BV function, then there is a set E;
with LM (Ey) = 0 such that
M= |J sptluy)
yeRM\ Fq

is a countably M -rectifiable subset of RM*K,

The idea of the proof is to consider points lying over the set { My, < %} for each 1.

Proof. Let A; = {y € RM : My, (y) < %}, we apply Lemma 3.3.5 to write RM as the
union of sets A;. By Lemma 3.3.4, there is a set E; C A; of measure zero such that u
is Lipschitz on A4; \ E;. So we can apply Theorem 3.3.2 to see that (J,c 4, g, sptlu(y)] is
countably M-rectifiable. m

Lemma 3.3.6 (Slicing Lemma). Let U C RMTK be an open set and {T;} C Iy (U)
Suppose that f: U — R is Lipschitz. If T; converges weakly to T € Dy (U) and

sup (Mw (T;) + Mw (9T;)) < oo

for every open set W CC U, then, for L'-almost every r, there is a subsequence i; such
that
(Ti,, f,r) converges weakly to (T, f,r) (3.49)
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and
sup (M [(T,. £.7)] + Mw 0T, £.7)]) < o0

holds for W CcC U.
If additionally Wy CC U s such that

lim (MWO (TZ) + MWo(aTZ)) =0,

1—00

then the subsequence can be chosen so that

lim (MWOKCBJ'? I 7“)] + MWO [8<TZJ7 I 7,>]) =0.

1—00

Proof. Passing to a subsequence for which ||Tj, || + [|0T;, || converges weakly to a Radon
measure 4, we see that (3.49) holds, except possibly for the at most countably many r
for which p{z : f(x) = r} has positive measure.

The remaining conclusions follow by passing to additional subsequences and using
(3.5) in Lemma 3.1.2 and the fact that O(T;, f,r) = —(9T;, f,r). O

Lemma 3.3.7 (Density Lemma). Suppose that T € Dy (U). For B(z,r) C U, set
Az, r) =inf{M(S): 0S5 = 90[T|B(z,r)],S € Dn(U)}.
(1) If My (T) + Myw (0T) < oo holds for every W CC U, then

lim A, )

T8 (3.50)

holds for ||T||-almost every x € U.
(2) If
1. 0T =0,
2. O[T |B(x,r)] is Integer-Multiplicity for every x € U and almost every r > 0,
3. My (T) 4+ My (0T) < oo holds for every W CC U,
then there exists & > 0 such that

0 (Il ) > o

holds for ||T||-almost every x € U.

Proof.

(1) We argue by contradiction. Since A(z,7) < ||T||(B(z,7)) is true by definition, we
suppose that there is an ¢ > 0 and £ C U with ||T||(E) > 0 such that for each = € F
there exist arbitrarily small » > 0 such that

Az, ) < (1 =) T|(B(z,7)).

We may assume that £ C W for an open W CcC U.
Consider p > 0. Cover ||T|-almost all of E' by disjoint balls B; = B(x;,r;), where
x; € E and r; < p. For each i, let S; € Dy, (U) satisfy
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Set

T,=T-> T|B+>» S

For any w € DM (U), using (2.14) we get

_ Z (0, % (T | B; — S;)) + 6, (T | B; — S;))(w)

= Z 0u % (T 5i))(dw) +0
<ZM (02, % (T'| B; — S;)) - sup |dw|
< pZM ) - sup |dw|

< QpZM ) - sup |dw|

< ZpM(T) - sup |dw|.

Thus we see that T, converges weakly to T" as p decreases to zero. By the lower semi-
continuity of mass, we have

p

On the other hand, we have

My (T,) < My (T - ZTLBZ) +Y " M (S))

< My/(T)—¢) _ Mw(T|B
< Mw/(T) — | T|(E),

a contradiction. (2) Let x be a point at which (3.50) holds. Set f(r) = M(T|B(x,r)).
For sufficiently small r we have
f(r) < 2X(z, 7). (3.51)

To be specific, we suppose that (3.51) holds for 0 < r < R.
Let g(y) = |y — | then B(z,r) = {y : g(y) < r}, thus we have

(T,g,m) =0[T[{y:9(y) <7} —(OT){y : g(y) <7}
=0[T'{y : g(y) <7} -0,

and by (3.3) we have
M((T,g,r)) = M[O(TB(x,7))] < f(r).
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holds for £!-almost every r. Applying the isoperimetric inequality, we have
A, r) MM < oo (1),

where ¢y is a constant depending only on the dimensions M and K. So, by (3.51), we
have
F)MDM <o f'(r) (0 <7 <R),

where ¢; is another constant. Thus we have

d

LN = /M) F )= 1 e

Since f is a nondecreasing function, we have

o0 = [ P = [ 1adte) = pfe

0 0

We conclude that f(r) > (r/c;)™ holds for 0 < r < R. O

3.3.3 The Proof of The Compactness Theorem

Now, we can start to prove the Compactness Theorem 3.3.1.

Theorem. Let U C RMTK be an open set. Let {T;} C Iy (U) be a sequence of Integer-
Multiplicity currents such that

sup [Mw (T;) + Mw (0T})] < oo VW CC U.
Jj=1
Then there is an Integer-Multiplicity current T € Dy (U) and a subsequence {1y}
such that T; — T weakly in U.

Proof. Assume {T;} C Dy (U) is a sequence of Integer-Multiplicity currents such that

sup [Mw (T;) + Mw (0T;)] < oo VW CC U.

Jjz1

Then by Banach-Alaoglu Theorem 1.1.3 and passing to a subsequence if necessary,
but without changing notation, there exists 7' € Dy, (U) such that T; — T and 07; — 0T
in U. Next, we need to show that T" is an Integer-Multiplicity current.

First we show that it is enough to consider the case U = RM+X_ Assume the Com-
pactness Theorem is valid for U = RM*5 and spt 7; C K for some fixed compact set K.
Then there exists a point a € supp7Tj for all j.

Consider the function f(z) = |x — al, by Lemma 3.3.6, there exists a subsequence of
Tj, still denoted by Tj such that for £ — a.e. r, (T}, f,r) — (T, f,r) weakly in K, that
is

[0(T;B(a,r)) = (9T;)[B(a, r)] = [0(T|B(a, 7)) — (OT)|B(a, )]
and My [0(T;|B(a,r)) — (0T;)|B(a, )] < oc.

Then Mw[T;|B(a,r)] + Mw[0(T;|B(a,7))] < 0o, so we have

T;|B(a,r) = T|B(a, ).
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Then the Compactness Theorem is valid for arbitrary open set U C RM+V,

Without loss of generality, assume U = RM+¥ we use the induction to complete the
proof.

1) For M = 0, the Compactness Theorem is already shown in Section 3.3.1.

2) Assume that for Dy, (RM+5) the Compactness Theorem is valid.

3) For Tj € Iy (RM+K) then by Weak Polyhedral Approximation Theorem 3.2.4,
there exists a sequence { P/} of currents of the form

[ l
Pl= " p@n,llFll, ¥ €z, (3.52)
FEﬁM

such that P]l and 8Pj converge weakly to 7 and O7Tj, respectively, in U as p; | 0.
Since OP} € Tp—1(RM*X), by assumption in 2) we have that 0T; € Zy_i(RM*5),
then OT € Ty (RMTEK). This result is called the boundary rectifiability theorem. By
Proposition 3.1.1, dpx 0T} and dpx 01" are also Integer-Multiplicity currents.

Next we show that without loss of generality, we can assume that 07; = 0. If 9T} # 0,

letting YN’] =T, — dox 0T}, we have

T = 9T; — OBy OT})
= OT; — T} — dox O°T;
= 0.

So, if TJ is an Integer-Multiplicity current, 7; is also an Integer-Multiplicity current.
Then it is enough to consider the case that 07; = 0 and obviously 97" = 0.

We also observe that 0[T;|B(x,r)] is an Integer-Multiplicity current, by assumption
in 2), O[T |B(x,r)] is also an Integer-Multiplicity current. This allows us to use the
Density Lemma 3.3.7: there exists d > 0 such that

oM(|T||,») = limignf | >0

holds for ||T||-almost every x € RM+X. By Lemma 2.3.1, we see that ||T|| is absolutely
continuous with respect to H™ on RM+X By Radon-Nikodym Theorem, we conclude
that there exists a real-valued function 6 > ¢ such that ||T|] = H*|6. (One can find
more details in Remark 2.37, Theorem 3.24 and Theorem 8.1 in [3].)

Next let A = {x € R™TK . g(x) > 0}. Since||T||(A) < oo, we have HM(A) < cc.
Consider o a multi-index with

1<y < <ay<M+K. (353)
Let

po : RYH — RY

(X1, s i) =T (Tayy ooy Tayy )

be the orthogonal projection. By Theorem 3.3.5, we see that u(y) = (T, pa,y) is an
MBYV function. By Theorem 3.3.8, we see that there is a set £, C RM with LY (E,) =0
such that
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Se= | sptlul)

ye]RIM\Ea

is a countably M-rectifiable subset of RM*5_ Also set
B, = ANp, (E,).

We have A C S, U B,.
Letting I denote the set of all the multi-indices as in (3.53), we see that

ACSaUB.] € SUB,

acl
where
S=[JS., B=[)B.
ael ael

By Lemma 2.3.1, T|B=0,s0 T =T|S.

We may suppose that A C S. By Theorem 3.3.5 we know that, for each o € I and for
LM_almost every x € RM (T, pq, x) is an Integer-Multiplicity 0-current. So we conclude
that 6 is integer-valued.

Finally, Theorem 3.3.4 tells us that 7" is an Integer-Multiplicity current. O]

3.4 Minimizing Mass and Plateau’s Problem

Thanks to the Compactness Theorem, we can now easily reach our final goal: prove
the existence of solutions to the Plateau’s problem for Integral currents. Using the
argument in Section 2.1.2, by compactness, any minimizing sequence of Integral currents
with a fixed boundary admits a weakly convergent subsequence. Combined with the
weak lower semicontinuity of mass and the continuity of the boundary operator, the
limit current inherits both the prescribed boundary and minimality. This framework
bridges geometric intuition with the abstract measure-theoretic tools.

The next definition of mass-minimizing formalizes the goal in Plateau’s problem,
where solutions represent surfaces of “least area” constrained by fixed boundaries.

Definition 3.4.1. Suppose that U C RY is open and T € Zj(RY) is an Integer-
Multiplicity current. For a subset B C U, we say that T is mass-minimizing in B
if

My [T] < My 5] (3.54)

holds whenever S € Zy;(RY) and

W ccU, 0S=09T,
spt[S — T is a compact subset of BN W.

Remark 3.4.1. In case B = R, we say simply that T is mass-minimizing. If, addi-
tionally, T" has compact support, then Definition 3.4.1 reduces to the requirement that

MI|T] < M[S]
hold whenever 05 = 0T
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If R is a nontrivial (M — 1)-dimensional current that is the boundary of some Integer-
Multiplicity current, then it makes sense to ask whether there exists a mass-minimizing
Integer-Multiplicity current with R as its boundary. The next theorem tells us that
indeed, such a mass-minimizing current does exist.

Theorem 3.4.1 (Plateau’s Problem). Suppose that 1 < M < N. If R € Dy;_1(RY) has
compact support and if there exists an Integral current Q € I (RYN) with R = 0Q, then
there exists a mass-minimizing Integral current T € I (RY) such that 0T = R.

Proof. Let {T;}2, € Iy (RY) be a sequence of Integral currents with 9T; = R, for
1 =1,2,..., and with

lim M[T;] = inf{M[S]: S = R, S € Z;(RV)}.

1—00

Set m = dist(spt R, 0) and let f : RY — B(0,m) be the nearest-point retraction:

fla) = { z if x € B(0,m)

y if x ¢ B(0,m)
where y € B(0,m) is the unique point such that dist(x,y) = dist(z,B(0,m)). Because
the boundary operator and the pushforward operator commute, we have

O(f4Ti) = f4(0T;) = fyR=R
for i =1,2,.... Noting that Lip(f) = 1, we conclude that
M[f4Ti] < M[T}] < oo

holds, for ¢« = 1,2,.... Thus, by replacing 7; with f4T; if need be, we may suppose that
spt T; € B(0,m) holds for i = 1,2,.. ..

Now we consider the sequence of Integral currents {5;}°, defined by setting S; =
T; — @, for each © = 1,2,.... Noting that 05; = 0 for each i, we see that the sequence
{Si}s2, satisfies the conditions of the Compactness Theorem 3.3.1. We conclude that
there exists a subsequence {S; }?2; of {S;}3°, and an Integral current S* such that
Si, — S* as k — 0o. We conclude also that 95* = 0.

Setting T = S* + @), we see that T;, = 5;, + Q — S* +@Q =T as k — oo and that
OT = 0(S*+ Q) = 05"+ 0Q = 0Q = R. By the lower semicontinuity of the mass, we
have

M[T] =inf{M[S] : 0S = R, S € Tpy(R™)}.

Then, T € I;(RY) is the desired mass-minimizing. O
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