On the Multivariate Circulant Rational Covariance Extension Problem

C. Masiero

 joint work with A. Lindquist and G. PicciA. Lindquist is with KTH (Sweden) and Shanghai Jiao Tong University (P.R.C.)

Control Day 2013, September 20th, Padova

D DIPARTIMENTO

- DI INGEGNERIA
— DELL'INFORMAZIONE

Table of Contents

(1) Introduction
(2) Problem Statement
(3) Main Results
(4) Numerical Examples
(5) Conclusions and Future Work

Rational covariance extension

Ingredients

- Let $y=\left\{y(t) \in \mathbb{C}^{m}, t \in \mathbb{Z}\right\}$ be a zero-mean, multivariate, wide-sense stationary random process.
- We know its covariance lags

$$
C_{k}:=\mathbb{E}\left[y(t+k) y^{*}(t)\right] \in \mathbb{C}^{m \times m} \quad \text { for } k=0, \ldots, n
$$

and the Toeplitz matrix

$$
T_{n}=\left[\begin{array}{ccccc}
C_{0} & C_{1}^{*} & C_{2}^{*} & \cdots & C_{n}^{*} \\
C_{1} & C_{0} & C_{1}^{*} & \cdots & C_{n-1}^{*} \\
C_{2} & C_{1} & C_{0} & \cdots & C_{n-2}^{*} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
C_{n} & C_{n-1} & C_{n-2} & \cdots & C_{0}
\end{array}\right]
$$

is positive definite

Rational covariance extension

Problem statement

Multivariate rational covariance extension
Given the sequence C_{k}, for $k=0, \ldots, n$, find C_{n+1}, C_{n+2}, \ldots up to infinity such that

$$
\sum_{k=-\infty}^{+\infty} C_{k} e^{-j k \vartheta}, \quad C_{-k}=C_{k}^{*}
$$

converges for all $\vartheta \in \mathbb{T}$ to a positive definite spectral density $\Phi\left(e^{j \vartheta}\right)$ that has the rational form

$$
\Phi\left(e^{j \vartheta}\right)=P\left(e^{j \vartheta}\right) Q^{-1}\left(e^{j \vartheta}\right) .
$$

with $P(z), Q(z)$ are of the same kind as

$$
M(z)=\sum_{k=-n}^{n} M_{k} z^{-k}, \quad M_{-k}=M_{k}^{*}
$$

Circulant rational covariance extension

Covariance extension for periodic processes
Now assume y is a zero-mean, stationary m-dimensional process defined on $\mathbb{Z}_{2 N}$, i.e. periodic of period $2 N$.
Let

$$
\mathbf{y}:=\left[y(-N+1)^{\top}, \ldots, y(N)^{\top}\right]^{\top} .
$$

$\mathbb{Z}_{2 N}$ for $N=4$

Theorem

y is the restriction on $[-N+1, N]$ of a stationary, m-dimensional process \tilde{y} periodic of period $2 N$ if and only if its covariance matrix

$$
\Sigma:=\mathbb{E}\left[\mathrm{yy}^{*}\right]
$$

is Hermitian and block-circulant.

Preliminaries

Harmonic analysis in $\mathbb{Z}_{2 N}$

- DFT : Let $\zeta_{h}:=e^{j h \frac{\pi}{N}}$ and $\mathbf{g}:=\left\{\mathbf{g}_{k} \in \mathbb{C}^{m}, k=-N+1, \ldots, N\right\}$. Then DFT maps

$$
\mathbf{g} \mapsto \mathbf{G}\left(\zeta_{h}\right):=\sum_{k=-N+1}^{N} \mathbf{g}_{k} \zeta_{h}^{-k}, \quad h=-N+1, \ldots, N
$$

- Inverse DFT:

$$
\begin{aligned}
\mathbf{g}_{k} & =\frac{1}{2 N} \sum_{h=-N+1}^{N} \zeta_{h}{ }^{k} \mathbf{G}\left(\zeta_{h}\right), \quad k=-N+1, \ldots, N \\
& =\int_{-\pi}^{\pi} e^{j k \vartheta} \mathbf{G}\left(e^{j \vartheta}\right) d \nu(\vartheta), \quad d \nu(\vartheta):=\sum_{h=-N+1}^{N} \delta\left(e^{j \vartheta}-\zeta_{h}\right) \frac{d \vartheta}{2 \pi}
\end{aligned}
$$

Problem statement

Multivariate circulant rational covariance extension

Given the sequence C_{k} 's with values in $\mathbb{C}^{m \times m}$, for $k=0, \ldots, n$, for $n<N$, find a rational spectral density $\Phi=P Q^{-1}$ such that

$$
\int_{\pi}^{\pi} e^{j k \vartheta} \Phi\left(e^{j \vartheta}\right) d \nu(\vartheta)=\frac{1}{2 N} \sum_{h=-N+1}^{N} \zeta_{h}{ }^{k} \Phi\left(\zeta_{h}\right)=C_{k}, \quad k=0,1, \ldots, n
$$

- We require $P, Q \in \mathfrak{M}_{+}^{(m, n)}(N)$, i.e. the set of pseudo-polynomials

$$
M(\zeta)=\sum_{k=-n}^{n} M_{k} \zeta^{-k}
$$

such that $M_{-k}=M_{k}^{*}, M_{k} \in \mathbb{C}^{m \times m}$ and

$$
M\left(\zeta_{h}\right)>0, \text { for } h=-N+1, \ldots, N
$$

Circulant rational covariance extension

 In terms of matrices...- Covariance extension for periodic processes is equivalent to compute C_{n+1}, C_{n+2} up to C_{N} properly...
- It can be recast as a circulant matrix completion problem.
- Toy problem with $n=2, N=4$:
- Recall that block-circulant matrices are block-diagonalized by DFT.
- $\Sigma>0 \Leftrightarrow P, Q \in \mathfrak{M}_{+}^{(m, n)}(N)$

Circulant rational covariance extension

Our assumptions...

- First assume $P(\zeta)$ is fixed
- For technical reasons it has the form $P(\zeta)=p(\zeta) /$, with p scalar pseudo-polynomial in $\mathcal{P}_{+}^{(1, n)}(N)$
- The sequence $\left\{C_{k}\right\}_{k=0, \ldots, n}$ is such that

$$
C(\zeta):=\sum_{k=-n}^{n} C_{k} \zeta^{-k}, \quad C_{-k}=C_{k}^{*}
$$

belongs to $\mathfrak{C}_{+}^{(m, n)}(N)$, defined as the dual cone of $\mathfrak{M}_{+}^{(m, n)}(N)$, i.e. the set of all $C(\zeta)$ such that

$$
\langle C, M\rangle \geq 0, \quad \forall M(\zeta) \in \mathfrak{M}_{+}^{(m, n)}(N)
$$

Circulant rational covariance extension

Main Result

Theorem

If the previous assumptions hold

- There exists a unique $\hat{Q}(\zeta) \in \mathfrak{M}_{+}^{(m, n)}(N)$ such that $\hat{\Phi}(\zeta):=P(\zeta) \hat{Q}(\zeta)^{-1}$ maximizes the generalized entropy

$$
\mathbb{I}_{P}(\Phi)=\int_{-\pi}^{\pi} P\left(e^{j \vartheta}\right) \log \operatorname{det} \Phi\left(e^{j \vartheta}\right) d \nu(\vartheta)
$$

and solves the circulant covariance extension problem

$$
\int_{\pi}^{\pi} e^{j k \vartheta} \Phi\left(e^{j \vartheta}\right) d \nu(\vartheta)=C_{k}, \quad \text { for } k=0, \ldots, n
$$

- $\hat{Q}(\zeta)$ is the unique minimizer of

$$
\mathbb{J}_{P}(Q):=\langle C, Q\rangle-\int_{-\pi}^{\pi} P\left(e^{j \vartheta}\right) \log \operatorname{det} Q\left(e^{j \vartheta}\right) d \nu(\vartheta)
$$

over all $Q \in \mathfrak{M}_{+}^{(m, n)}(N)$

More on the computation of $\hat{Q}(\zeta)-1$

- DFT can be efficiently used in minimizing $\mathbb{J}_{P}(Q)$.
- Let

$$
\mathrm{M}=\operatorname{Circ}\left(M_{0}, M_{1}, \ldots, M_{N}, M_{N-1}^{*}, \ldots, M_{1}^{*}\right)
$$

We say that

$$
M(\zeta)=\sum_{k=-N}^{N} M_{k} \zeta^{-k}
$$

is the symbol of M .

More on the computation of $\hat{Q}(\zeta)-2$

- Circulant covariance extension can be recast in terms of matrices
- Let $C(\zeta), P(\zeta)$ be the symbols of the block-circulant matrices C and P, respectively. Then, we can compute $\hat{Q}(\zeta)$ by finding \hat{Q} which minimizes

$$
\mathbb{J}_{\mathbf{P}}(\mathbf{Q})=\frac{1}{2 N} \operatorname{tr}[\mathbf{C Q}]-\frac{1}{2 N} \operatorname{tr}[\mathbf{P} \log \mathbf{Q}]
$$

over all

$$
\mathbf{Q}=\operatorname{Circ}\left(Q_{0}, Q_{1}, \ldots, Q_{n}, 0, \ldots, 0, Q_{n}^{*}, \ldots, Q_{1}^{*}\right)
$$

which are positive definite

Determining P from logarithmic moments - 1

- Aim: estimate P based on data only
- Idea: look for the spectral density Φ which maximizes the entropy gain

$$
\int_{-\pi}^{\pi} \log \operatorname{det} \Phi\left(e^{j \vartheta}\right) d \nu(\vartheta)
$$

while satisfying the moment constraints which stem from the available covariance lags and the logarithmic moments

$$
\gamma_{k}=\int_{-\pi}^{\pi} e^{j k \vartheta} \log \operatorname{det} \Phi\left(e^{j \vartheta}\right) d \nu(\vartheta), k=1,2, \ldots, n
$$

Determining P from logarithmic moments - 2

- Let $\Gamma(\zeta)$ be the pseudo-polynomial

$$
\Gamma(\zeta):=\sum_{k=-n}^{n} \gamma_{k} \zeta^{-k}
$$

- By duality theory this problem is problem can be solved by minimizing

$$
\begin{aligned}
\mathbb{J}(P, Q):=\langle C, Q\rangle & -\int_{-\pi}^{\pi} P\left(e^{j \vartheta}\right) \log \operatorname{det} Q\left(e^{j \vartheta}\right) d \nu(\vartheta) \\
& -\langle\Gamma, P\rangle+\int_{-\pi}^{\pi} P\left(e^{j \vartheta}\right) \log \operatorname{det} P\left(e^{j \vartheta}\right) d \nu(\vartheta)
\end{aligned}
$$

over all the $(P, Q) \in \hat{\mathfrak{M}}_{+}^{(m, n)}(N) \times \mathfrak{M}_{+}^{(m, n)}(N)$, where

$$
\hat{\mathfrak{M}}_{+}^{(m, n)}(N):=\left\{M(\zeta)=m(\zeta) / \mid m(\zeta) \in \mathfrak{M}_{+}^{1, n} m_{0}=1\right\}
$$

Bilateral ARMA models

- After solving the rational circulant covariance extension problem we end up with a bilateral ARMA model:

$$
\sum_{k=-n}^{n} Q_{k} y(t-k)=\sum_{k=-n}^{n} P_{k} e(t-k), \quad t \in \mathbb{Z}_{2 N}
$$

- Open problem: do bilateral ARMA models generalize standard models for reciprocal processes?

Multivariate AR case

MVAR model of order 8

Estimation error

Multivariate ARMA case

Comparison between

AR
($\mathrm{N}=64$,
$\mathrm{n}=12$)
and
ARMA
($\mathrm{N}=32$,
$\mathrm{n}=6$)

Conclusions and Future Work

Conclusions

- A first step towards rational covariance extension for multivariate periodic processes
- Fast approximation of regular multivariate rational covariance extension

Future work

- Extension to rational models with general $P(\zeta)$
- Connection with reciprocal models
- Application to image processing (textures)

Thank you for your attention!

chiara.masiero@dei.unipd.it
http://automatica/people/chiara-masiero.html

References

(1. Lindquist and G. Picci

The circulant rational covariance extension problem: the complete solution. IEEE Trans. Aut. Control, Vol. AC-58, November 2013.
(A. Lindquist, C. Masiero and G. Picci
On the Multivariate Circulant Rational Covariance Extension Problem To appear in Proceedings of 52nd IEEE Conference on Decision and Control, Florence, Italy, 2013
R F.P. Carli, A. Ferrante, M. Pavon and G. Picci
A Maximum Entropy Solution of the Covariance Extension Problem for Reciprocal Processes
IEEE Trans. Aut. Control, Vol. AC-56, September 2011.
(A. Chiuso, A. Ferrante and G. Picci
Reciprocal Realization and Modeling of Textured Images Proceedings of 44rd IEEE Conference on Decision and Control, Seville, Spain, 2005

Interpretation of bilateral ARMA models - 1

- After solving the rational circulant covariance extension problem we end up with a bilateral ARMA model:

$$
\sum_{k=-n}^{n} Q_{k} y(t-k)=\sum_{k=-n}^{n} P_{k} e(t-k)
$$

- Note that $e(t)$ is not white noise.
- Is there any connection with reciprocal processes?

Interpretation of bilateral ARMA models - 2

Reciprocal processes

A reciprocal process y of order n defined on $[-N+1, N]$ is characterized by the following property:

$$
\begin{aligned}
& \hat{\mathbb{E}}\left[y_{\left(t_{1}, t_{2}\right)} \mid y(s), s \in\left(t_{1}, t_{2}\right)^{c}\right] \\
& \quad=\hat{\mathbb{E}}\left[y_{\left(t_{1}, t_{2}\right)} \mid y_{\left[t_{1}-n, t_{1}\right)} \vee y_{\left(t_{2}, t_{2}+n\right]}\right]
\end{aligned}
$$

for $t_{1}, t_{2} \in[-N+1, N]$.

Interpretation of bilateral ARMA models - 3

- Consider the case of bilateral AR models.
- Σ is the covariance matrix of a reciprocal process of order n the discrete group if and only if Σ^{-1} is a positive-definite, Hermitian, block-circulant matrix which is banded of bandwidth n. [Carli, Ferrante, Pavon and Picci, 2011]
- Idea: bilateral ARMA models somewhat generalize reciprocal processes. This point is the subject of current research.

