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Controlling the growth of living tissues

Living organisms (plants, animals) come into an immense variety of shapes

Through evolution, driven by natural selection, one expects that
“optimal shapes” should have emerged

From a mathematical point of view, two main issues arise:

1. Variational problems

Identify functionals that measure the efficiency of various shapes
Study the corresponding variational problems
Compare these minimizers with the shapes observed in nature

2. Control problems

Write suitable equations describing growth
Understand what kind of feedback controls can achieve these optimal
shapes
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Two variational problems

Optimal shape of tree branches

Optimal shape of tree roots

Alberto Bressan (Penn State) optimal tree shapes 3 / 37



Can we identify

payoff functionals

cost functionals

constraints

which generate these shapes as optimal solutions?
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An optimization problem for tree branches

Rd
+ = {(x1, x2, . . . , xd) ; xd ≥ 0}

Basic object: µ = distribution of leaves

to be optimized among all positive Radon measures supported in Rd
+

Payoff functional: S(µ)
measuring the total amount of sunlight collected by the leaves

Cost functional: Iα(µ)
describing the cost of building a network of branches which sustain the
leaves and transport water and nutrients

Constraint: µ(Rd
+) = total amount of leaves
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A sunlight functional

Sunlight arrives parallel to the unit vector n and is partly absorbed by the leaves

y+sn

y

⊥

0

n

n
E

E⊥n = subspace orthogonal to n

Assume: µ has density f w.r.t. Lebesgue measure Ld

For y ∈ E⊥n , call Z (s) = amount of sunlight that reaches the point y + sn

Z ′(s) = f (y + sn) · Z (s), Z (+∞) = 1
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Z (s) = sunlight reaching the point y + sn = exp

{
−
∫ +∞

s

f (y + tn) dt

}

The total amount of light captured by the measure µ is

Sn(µ) =

∫
E⊥n

1 − exp

{
−
∫ +∞

−∞
f (y + tn) dt

}
dy

=

∫
E⊥n

(
1− exp

{
−Φn(y)

})
dy

Φn = density of the (absolutely continuous part of the) perpendicular projection µn

of µ onto E⊥n

⊥

n

n

n

0

ny + t

y

µ

µ

E
µn(A) = µ

({
x ∈ Rd ; πn(x) ∈ A

})
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Generalizations

1 - Light coming from different directions:

For n ∈ Sd−1, the unit sphere in Rd , call η(n) = amount of light arriving
from the direction n

Assume η ∈ L1(Sd−1). Then the total amount of sunlight captured by the
distribution of leaves µ is

Sη(µ)
.

=

∫
Sd−1

Sn(µ) η(n) dn
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Sunlight captured in the presence of additional vegetation:

A second measure ν on Rd
+ is given, absolutely continuous w.r.t. Lebesgue

measure Ld

A similar formula can be derived, describing the total sunlight Sη(µ; ν)
captured by the measure µ in the presence of additional vegetation with
distribution ν

µ

ν ν

µ
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Upper semicontinuity of the sunlight functional

Theorem (A.B., Qing Sun, 2017).

Consider a weakly convergent sequence of positive measures

µk ⇀ µ

with uniformly bounded support.

Then, for any positive, integrable function η ∈ L1(Sd−1) and any positive
measure ν, absolutely continuous w.r.t. Lebesgue measure on Rd , one has

Sη(µ; ν) ≥ lim sup
k→∞

Sη(µk ; ν)
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A payoff functional for tree roots

Rd
− =

{
(x1, x2, . . . , xd) ; xd ≤ 0

}
Basic object: µ = distribution of root hair cells,

to be optimized among all positive Radon measures supported in Rd
−

Payoff functional: H(µ)
measuring the total amount of water + nutrients harvested by the roots

Cost functional: Iα(µ)
describing the cost of building a network of roots, transporting water and
nutrients to the base of the trunk

Constraint: µ(Rd
−) = total amount of root hair cells
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A harvest functional

u(x) = density of water + nutrients in the soil

µ = distribution of root hair cells

At equilibrium, u satisfies the elliptic equation with measure coefficients

∆u + f (x , u)− uµ = 0

[diffusion] + [source] - [absorption] = 0

+ suitable boundary conditions
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∆u + f (x , u)− uµ = 0, µ = µ0 + µs

f

0

µ
s

u

µ

In the measure µ, the part which is singular w.r.t. capacity on Rd plays no role

L. Boccardo and T. Gallouët, and L. Orsina, Existence and uniqueness of entropy
solutions for nonlinear elliptic equations with measure data. Ann. Institut H. Poincaré
Nonlin. Anal. 13 (1996)

G. Dal Maso, F. Murat, L. Orsina, and A. Prignet, Renormalized solutions of elliptic
equations with general measure data Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999)
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Given a positive measure µ and a solution of

∆u + f (x , u)− uµ = 0 (+boundary conditions)

the total harvest is

H(u, µ)
.

=

∫
Rd
−

u dµ

The same equation, for a fish harvesting problem, was studied in

A.B., G.M.Coclite, W.Shen, A multi-dimensional optimal harvesting problem with
measure valued solutions, SIAM J. Control Optim. 51 (2013), 1186–1202.
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Ramified transportation cost

Steiner problem. Given a well located at the origin, and houses locates at
P1, . . . ,PN ∈ Rd , construct a pipe of minimum length that connects the well to
all houses

Gilbert problem. Assume that the house at Pi requires an amount mi of water.
Given α ∈ [0, 1], assume that cost of a pipe = [length]× [flux]α

Minimize the total cost

α = 0 α = 1/2 α = 1

1

2

3

4

1

0

1

2

1
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The general irrigation problem

In the Gilbert problem, the water demand is an atomic measure, with masses mi

at points Pi , i = 1, . . . ,N.

Can this be extended to a general positive, bounded Radon measure µ on Rd?

A Lagrangian approach (F.Maddalena, J.M.Morel, and S.Solimini, 2003)

Define an “irrigation plan”, describing the trajectory of each water particle

00

µ µ

χ(ξ,  )t
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Irrigation plans

Assume: µ is a positive measure on Rd , with total mass M = µ(Rd) < +∞

the Lagrangian variable ξ ∈ [0,M] labels a water particle

χ(ξ, t) denotes the position of particle ξ at time t

particle speed = |χt(ξ, t)| ≡ 1 for all t ∈ [0, τ(ξ)]

For x ∈ Rd , the total amount of water particles that pass through x is

|x |χ
.

= meas
({
ξ ∈ [0,M] ; χ(ξ, t) = x for some t ≥ 0

})
The cost of the irrigation plan χ is defined as

Eα(χ)
.

=

∫ M

0

∫ τ(ξ)

0

[
|χ(ξ, t)|χ

]α−1
dt dξ

(coincides with the Gilbert cost, in the discrete case)
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Optimal irrigation plans

Theorem.

Fix α ∈ [0, 1] and let µ is a positive bounded Radon measure with bounded
support, concentrated on a set of dimension < dα

.
= 1

1−α . Then

There exists an optimal irrigation plan χ, with finite minimum cost

The minimum cost Iα(µ) is lower semicontinuous w.r.t. weak convergence
of measures:

µn ⇀ µ =⇒ Iα(µ) ≤ lim inf
n→∞

Iα(µn)

M. Bernot, V. Caselles, and J. M. Morel, Optimal transportation networks. Models and
theory. Springer Lecture Notes in Mathematics 1955, Berlin, 2009.
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Extension: a cost of ramified transport for branches

for a pipe laying on the ground (or underground, as a root), one can assume

cost = [length]× [flux]α

for a branch, even if the flux is constant, the lower portion must be thicker
in order to sustain the upper part

2

3 2

5

leads to a family of (infinitely many) ODEs with measure-valued right-hand
side, one for each branch
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Approximations of the thickness function by stopping times

irrigation plan: χ : [0,M]× R+ 7→ Rd

stopping time: τε(ξ)
.

= max
{
t ≥ 0 ; |χ(τ, ξ)|χ ≥ ε

}
Throwing away branches of size < ε, define an approximate irrigation plan

χε(t, ξ)
.

=

{
χ(t, ξ) if t < τε(ξ)

χ(t, τε(ξ)) if t ≥ τε(ξ)

µ
µ

ε

define an ODE on each branch, with data given at the tip

take the limit as ε→ 0
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Optimal shapes of tree branches ?

Optimization problem for tree branches: Given

constants α ∈ [0, 1] and M, c > 0

a function η ∈ L1(Sd−1), measuring the intensity of sunlight coming from
various directions

an absolutely continuous measure ν on Rd
+, measuring the density of

competing vegetation

find a positive measure µ, with µ(Rd
+) = M, which maximizes the functional

Sη(µ; ν)− cIα(µ) = [total sunlight]− c · [irrigation cost]

Alberto Bressan (Penn State) optimal tree shapes 22 / 37



Optimal shapes of tree branches ?

Optimization problem for tree branches: Given

constants α ∈ [0, 1] and M, c > 0

a function η ∈ L1(Sd−1), measuring the intensity of sunlight coming from
various directions

an absolutely continuous measure ν on Rd
+, measuring the density of

competing vegetation

find a positive measure µ, with µ(Rd
+) = M, which maximizes the functional

Sη(µ; ν)− cIα(µ) = [total sunlight]− c · [irrigation cost]

Alberto Bressan (Penn State) optimal tree shapes 22 / 37



An optimization problem for tree roots

Let constants α ∈ [0, 1] and M, c > 0 be given, together with a bounded function
f = f (x , u).

Optimization problem for tree roots: Find

a positive measure µ with µ(Rd
−) = M

a solution u to the elliptic equation with Neumann boundary conditions{
∆u + f (x , u)− uµ = 0, x ∈ Rd

−

uxd = 0, xd = 0

which maximize the functional

H(u, µ)− cIα(µ) = [total harvest]− c · [irrigation cost]
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Existence of optimal solutions, with fixed total mass
µ(Rd) = M

Theorem 1. (A.B., Qing Sun, 2017)

For any 1− 1
d−1 < α ≤ 1, the optimization problem for branches has a

nontrivial solution µ∗, with bounded support.

Theorem 2. (A.B., Qing Sun, 2017)

For any 1− 1
d−2 < α ≤ 1, the optimization problem for roots has a

nontrivial solution µ∗, with bounded support.

Main step: prove that there exists a maximizing sequence (µk)k≥1 where all
measures have support contained in a fixed ball B(0,R), then use semicontinuity.
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Unconstrained optimization problems (optimal tree sizes)

Unconstrained problem for branches

maximize: Sη(µ)− cIα(µ)

among all positive measures on Rd
+ (without the constraint µ(Rd

+) = M)

Unconstrained problem for roots

maximize: H(u, µ)− cIα(µ)

among all positive measures µ on Rd
−
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Existence results

Theorem 3. (A.B., M.Palladino, Q.Sun, 2018)

For any 1− 1
d−1 < α ≤ 1, the unconstrained optimization problem for branches

has a solution µ∗, with bounded support.

Assuming that either (i) d ≥ 3 or (ii) d = 2 and
√
5−1
2 < α ≤ 1, the optimal

measure µ∗ has finite total mass.

Theorem 4. (A.B., M.Palladino, Q.Sun, 2018)

For any 1− 1
d−2 < α ≤ 1, the unconstrained optimization problem for roots

has a solution (u∗, µ∗).
The optimal measure µ∗ has bounded support.
In dimension d ≥ 4, µ∗ has finite total mass.

Conjecture.

In dimension d = 3 the optimal measure is bounded: µ∗(R3
+) < +∞.

In dimension d = 2 the optimal measure is unbounded: µ∗(R2
+) = +∞.
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A naive estimate

maximize: Sn(µ)− Iα(µ)

2

0

µ
1

µ = µ  + µ

2
µ

R

1

Sn(µ1 + µ2)− Sn(µ1) ≤ µ2(Rd)

Iα(µ1 + µ2)− Iα(µ1) ≥ R · µ2(Rd) ·
[
µ(Rd)

]α−1

α < 1 =⇒ (economy of scale)
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Boundedness of the total mass

µ =
∑
j

µj

µj = χ{2−j−1<|x|≤2−j} · µ

0

µ

µ

µ

j

−j−1
2 2

−j
2

−j+1

j+1

j−1

r

µ̃
.

=
∑
j∈J

µj , J =

{
j ; µj(Rd) ≤ Cd 2

−j
(
d−1− 1

α

)}

Sn(µ̃)− Iα(µ̃) > Sn(µ)− Iα(µ)

µ̃(Rd) ≤
∑
j≥j0

Cd 2
−j
(
d−1− 1

α

)
< +∞

because 1− 1

d − 1
< α, d ≥ 3 =⇒ d − 1− 1

α
> 0

Alberto Bressan (Penn State) optimal tree shapes 28 / 37



Concluding remarks

Underlying question: What has been the primary goal in the evolution of
shapes of tree roots and branches?

Conjecture 1: For tree roots: maximize the amount of water+nutrients
collected from the soil, subject to a transportation cost.

Conjecture 2: For tree branches: maximize the amount of light collected by
the leaves, subject to the cost of constructing the branch structure.

Answers (provided by the mathematical analysis so far):

1) True 2) False
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An explicit solution: sunlight coming from a fixed direction

maximize: Sn(µ)− Iα(µ)

n

B

A

B

0

n

A

C

0

The optimal positioning of solar panels is very different from the
orientation determined by phototropism
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What is the advantage of phototropism?

1

γ
2

N S

γ

The distance from the Earth to the Sun is ≈ 90,000,000 miles

Getting a few inches closer cannot make a difference
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Guess: shapes may result from different selection criteria

maximizing internal efficiency

optimizing the response to external competition
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An extensive literature deals with computer codes which generate
tree-like shapes

H.Honda, Description of the form of trees by the parameters of the tree-like body
J.Theoretical Biology 31 (1971), 331–338.

M.Aono and T.L. Kunii, Botanical tree image generation. IEEE Computer Graphics and
Appl. 4, 5 (1984), 10–34.

A.Runions, B.Lane, and P.Prusinkiewicz, Modeling Trees with a Space Colonization
Algorithm, Eurographics Workshop on Natural Phenomena, 2007.
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A. Runions, B. Lane & P. Prusinkiewicz / Modeling Trees with a Space Colonization Algorithm

Figure 8: A tree generated using continuously added attraction points.

The proposed method is particularly useful in simulating
irregular forms of temperate-climate deciduous trees. These
forms are difficult to capture with older modeling meth-
ods, which emphasize recursive aspects of tree structure.
The models generated with the space colonization algorithm
are visually plausible even as bare trees and shrubs, with-
out leaves that could potentially mask shortcomings of the
branching structures. In particular, branch intersections are
prevented by the nature of the algorithm. When needed, the
generated branching structures can be complemented with
leaves, flowers, buds, and fruits.

Although the space colonization algorithm has been for-
mulated in abstract geometric terms, it is biologically justifi-
able. In nature, the competition for space is likely mediated
by quantity and quality of light. It has been previously postu-
lated [SN95,Tak94,MP96,GMPVG00] that this competition
has a significant impact on plant form, and therefore should
be incorporated into plant models. Our results amplify this

postulate: the competition for space appears to play the dom-
inant role, overriding other factors in determining the overall
branching structure of temperate-climate trees and shrubs.

Many problems remain pleasantly open for future re-
search. One is the acceleration of computation. It takes be-
tween a few seconds and a few minutes to generate a tree
on the current generation of desktop computers with a 3GHz
processor. This time strongly depends on model parameters,
especially the segment size D used as the unit of length in the
models. At present, we do not have an algorithmic criterion
for choosing the optimal value of D. From the visual per-
spective, it is important to further explore the role of details,
such as the distribution of buds and short shoots, on the final
appearance of the models. The use of generalized cylinders
to model branches does not allow for precise shaping of the
branching points; our models could benefit from alternative
methods addressing this issue [GMW04]. To quantitatively
validate the space colonization algorithm, it would be useful

c� The Eurographics Association 2007.
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Figure 3: Impact of the number of attraction points N and
the kill distance dk on the tree form. The kill distance is
expressed as a multiple of D, the distance between adja-
cent nodes of the tree skeletons. a) N = 12000,dk = 2D;
b) N = 1500,dk = 2D; c) N = 12000,dk = 20D; d) N =
375,dk = 20D.

dividual points matter less, and smoothly curved branches
result.

Figures 4 and 5 illustrate the role of the third numerical
parameter of the algorithm, the radius of influence di. As
its value decreases, branch tips tend to meander between at-
traction points, coming into, then leaving their zones of in-
fluence; this results in a wiggly or gnarly appearance. The
same figures also illustrate the impact of the envelopes on
the crown shape: the shrubs in Figure 4 were generated us-
ing fan-shaped envelopes, whereas the trees in Figure 5 were
generated using conceptually infinite envelopes (the simu-
lations were stopped after a prescribed number of steps).
Further examples of the impact of the envelopes are given
in Figure 6, which shows two trees generated using highly
elongated cylindrical and conical envelopes. A comparison
of Figures 5 and 6 also shows that narrower trees have a
clearly delineated trunk, whereas in widely spread trees even
the main limbs are highly ramified. This correlation between

ba

Figure 4: Impact of the radius of influence di on the form of
shrubs. a) di = 1; b) di = 17D.

a

b

Figure 5: Impact of the radius of influence di on the form of
trees. a) di = 1; b) di = 8D.

the overall form of the trees and their branching habits is an
emergent property of the algorithm, and captures the defin-
ing properties of excurrent (with the main stem) and decur-
rent (without a distinct main stem) tree forms [Rem99].

In all examples considered so far, attraction points had
uniform distribution within the tree crowns, resulting in ap-
proximately uniform branch densities. In many trees and
shrubs, however, the density of branches increases near the
crown surface due to better access to light. We generate the
resulting forms by increasing the density of attraction points
near the envelope. For example, Figure 7 shows a shrub gen-
erated with attraction points located exclusively near the en-

c� The Eurographics Association 2007.

The algorithms producing the most realistic pictures are based on the
idea of “conquering space”

Can one devise a game-theoretical model, showing the advantage of
space-conquering strategies?
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A competition model (unsatisfactory)

Assume: three types of grass grow in a field, all with the same length

Type 1: bending toward the sun

Type 2: growing straight upward

Type 3: bending away from the sun

SN

- If the density is high, the stems growing straight up collect the most light

- If the density is low, the stems bending away from the sun collect the most
light
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Concluding remarks

Apparently, plant shapes have evolved by competing with each other, rather
than by optimizing sunlight

Is there a good mathematical model for such competition?

In absence of competition, could plants be engineered more efficiently?

apple trees
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Happy Birthday, Giovanni and Franco !!!
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