On the Optimal Shape of Tree Roots and Branches

Alberto Bressan

Department of Mathematics, Penn State University

Center for Interdisciplinary Mathematics

bressan@math.psu.edu
Living organisms (plants, animals) come into an immense variety of shapes. Through evolution, driven by natural selection, one expects that “optimal shapes” should have emerged.

From a mathematical point of view, two main issues arise:

1. **Variational problems**
 - Identify functionals that measure the efficiency of various shapes.
 - Study the corresponding variational problems.
 - Compare these minimizers with the shapes observed in nature.

2. **Control problems**
 - Write suitable equations describing growth.
 - Understand what kind of feedback controls can achieve these optimal shapes.
Living organisms (plants, animals) come into an immense variety of shapes.
Through evolution, driven by natural selection, one expects that “optimal shapes” should have emerged.

From a mathematical point of view, two main issues arise:

1. **Variational problems**
 - Identify functionals that measure the efficiency of various shapes
 - Study the corresponding variational problems
 - Compare these minimizers with the shapes observed in nature

2. **Control problems**
 - Write suitable equations describing growth
 - Understand what kind of feedback controls can achieve these optimal shapes
Controlling the growth of living tissues

- Living organisms (plants, animals) come into an immense variety of shapes
- Through evolution, driven by natural selection, one expects that “optimal shapes” should have emerged

From a mathematical point of view, two main issues arise:

1. **Variational problems**
 - Identify functionals that measure the efficiency of various shapes
 - Study the corresponding variational problems
 - Compare these minimizers with the shapes observed in nature

2. **Control problems**
 - Write suitable equations describing growth
 - Understand what kind of feedback controls can achieve these optimal shapes
Two variational problems

- Optimal shape of tree branches
- Optimal shape of tree roots
Can we identify

- payoff functionals
- cost functionals
- constraints

which generate these shapes as optimal solutions?
An optimization problem for tree branches

\[\mathbb{R}^d_+ = \{ (x_1, x_2, \ldots, x_d); \; x_d \geq 0 \} \]

- **Basic object:** \(\mu = \) distribution of leaves
to be optimized among all positive Radon measures supported in \(\mathbb{R}^d_+ \)

- **Payoff functional:** \(S(\mu) \)
measuring the total amount of sunlight collected by the leaves

- **Cost functional:** \(I^\alpha(\mu) \)
describing the cost of building a network of branches which sustain the leaves and transport water and nutrients

- **Constraint:** \(\mu(\mathbb{R}^d_+) = \) total amount of leaves
An optimization problem for tree branches

$$\mathbb{R}^d_+ = \{(x_1, x_2, \ldots, x_d); \ x_d \geq 0\}$$

- **Basic object:** $\mu = $ distribution of leaves to be optimized among all positive Radon measures supported in \mathbb{R}^d_+

- **Payoff functional:** $S(\mu)$ measuring the total amount of sunlight collected by the leaves

- **Cost functional:** $I^\alpha(\mu)$ describing the cost of building a network of branches which sustain the leaves and transport water and nutrients

- **Constraint:** $\mu(\mathbb{R}^d_+) = $ total amount of leaves
An optimization problem for tree branches

\[\mathbb{R}^d_+ = \{(x_1, x_2, \ldots, x_d); \ x_d \geq 0\} \]

- **Basic object:** \(\mu \) = distribution of leaves to be optimized among all positive Radon measures supported in \(\mathbb{R}^d_+ \)

- **Payoff functional:** \(S(\mu) \)
 measuring the total amount of sunlight collected by the leaves

- **Cost functional:** \(\mathcal{I}^\alpha(\mu) \)
 describing the cost of building a network of branches which sustain the leaves and transport water and nutrients

- **Constraint:** \(\mu(\mathbb{R}^d_+) = \text{total amount of leaves} \)
An optimization problem for tree branches

$$\mathbb{R}^d_+ = \{(x_1, x_2, \ldots, x_d); \ x_d \geq 0\}$$

- **Basic object:** $\mu = \text{distribution of leaves}$
 to be optimized among all positive Radon measures supported in \mathbb{R}^d_+

- **Payoff functional:** $S(\mu)$
 measuring the total amount of sunlight collected by the leaves

- **Cost functional:** $I^\alpha(\mu)$
 describing the cost of building a network of branches which sustain the leaves and transport water and nutrients

- **Constraint:** $\mu(\mathbb{R}^d_+) = \text{total amount of leaves}$
A sunlight functional

Sunlight arrives parallel to the unit vector \mathbf{n} and is partly absorbed by the leaves.

$E_{\mathbf{n}}^\perp = \text{subspace orthogonal to } \mathbf{n}$

Assume: μ has density f w.r.t. Lebesgue measure \mathcal{L}^d

For $y \in E_{\mathbf{n}}^\perp$, call $Z(s) = \text{amount of sunlight that reaches the point } y + s\mathbf{n}$

$$Z'(s) = f(y + s\mathbf{n}) \cdot Z(s), \quad Z(+\infty) = 1$$
A sunlight functional

Sunlight arrives parallel to the unit vector \(\mathbf{n} \) and is partly absorbed by the leaves

\[
E_n^\perp = \text{subspace orthogonal to } \mathbf{n}
\]

Assume: \(\mu \) has density \(f \) w.r.t. Lebesgue measure \(\mathcal{L}^d \)

For \(y \in E_n^\perp \), call \(Z(s) = \text{amount of sunlight that reaches the point } y + s \mathbf{n} \)

\[
Z'(s) = f(y + s \mathbf{n}) \cdot Z(s), \quad Z(+\infty) = 1
\]
\[Z(s) = \text{sunlight reaching the point } y + sn = \exp \left\{ - \int_s^{+\infty} f(y + tn) \, dt \right\} \]

The total amount of light captured by the measure \(\mu \) is

\[
S^n(\mu) = \int_{E_n^\perp} 1 - \exp \left\{ - \int_{-\infty}^{+\infty} f(y + tn) \, dt \right\} \, dy \\
= \int_{E_n^\perp} \left(1 - \exp \{-\Phi^n(y)\} \right) \, dy
\]

\(\Phi^n = \text{density of the (absolutely continuous part of the) perpendicular projection } \mu^n \text{ of } \mu \text{ onto } E_n^\perp \)

\[\mu^n(A) = \mu \left(\{ x \in \mathbb{R}^d ; \, \pi_n(x) \in A \} \right) \]
\[Z(s) = \text{sunlight reaching the point } y + sn = \exp \left\{ - \int_s^{+\infty} f(y + tn) \, dt \right\} \]

The total amount of light captured by the measure \(\mu \) is

\[
S^n(\mu) = \int_{E_n^\perp} 1 - \exp \left\{ - \int_{-\infty}^{+\infty} f(y + tn) \, dt \right\} \, dy \\
= \int_{E_n^\perp} \left(1 - \exp \{-\Phi^n(y)\} \right) \, dy \\
\]

\(\Phi^n = \text{density of the (absolutely continuous part of the) perpendicular projection } \mu^n \text{ of } \mu \text{ onto } E_n^\perp \)

\[
\mu^n(A) = \mu\left(\{ x \in \mathbb{R}^d ; \pi_n(x) \in A \} \right)
\]
Generalizations

1 - Light coming from different directions:

- For $n \in S^{d-1}$, the unit sphere in \mathbb{R}^d, call $\eta(n) =$ amount of light arriving from the direction n

- Assume $\eta \in L^1(S^{d-1})$. Then the total amount of sunlight captured by the distribution of leaves μ is

$$S^\eta(\mu) \doteq \int_{S^{d-1}} S^n(\mu) \eta(n) \, dn$$
Sunlight captured in the presence of additional vegetation:

- A second measure ν on \mathbb{R}_+^d is given, absolutely continuous w.r.t. Lebesgue measure \mathcal{L}^d.
- A similar formula can be derived, describing the total sunlight $S^\eta(\mu; \nu)$ captured by the measure μ in the presence of additional vegetation with distribution ν.
Sunlight captured in the presence of additional vegetation:

- A second measure \(\nu \) on \(\mathbb{R}_+^d \) is given, absolutely continuous w.r.t. Lebesgue measure \(\mathcal{L}^d \).
- A similar formula can be derived, describing the total sunlight \(S^n(\mu; \nu) \) captured by the measure \(\mu \) in the presence of additional vegetation with distribution \(\nu \).
Theorem (A.B., Qing Sun, 2017).

Consider a weakly convergent sequence of positive measures

\[\mu_k \rightharpoonup \mu \]

with uniformly bounded support.

Then, for any positive, integrable function \(\eta \in L^1(S^{d-1}) \) and any positive measure \(\nu \), absolutely continuous w.r.t. Lebesgue measure on \(\mathbb{R}^d \), one has

\[S^n(\mu; \nu) \geq \limsup_{k \to \infty} S^n(\mu_k; \nu) \]
A payoff functional for tree roots

\[\mathbb{R}^d_- = \{(x_1, x_2, \ldots, x_d); \ x_d \leq 0\} \]

- **Basic object:** \(\mu = \) distribution of root hair cells, to be optimized among all positive Radon measures supported in \(\mathbb{R}^d_- \)

- **Payoff functional:** \(\mathcal{H}(\mu) \)
 measuring the total amount of water + nutrients harvested by the roots

- **Cost functional:** \(\mathcal{I}^\alpha(\mu) \)
 describing the cost of building a network of roots, transporting water and nutrients to the base of the trunk

- **Constraint:** \(\mu(\mathbb{R}^d_-) = \) total amount of root hair cells
A payoff functional for tree roots

\[\mathbb{R}_d^d = \{(x_1, x_2, \ldots, x_d); \ x_d \leq 0\} \]

- **Basic object:** \(\mu = \) distribution of root hair cells, to be optimized among all positive Radon measures supported in \(\mathbb{R}_d^d \)

- **Payoff functional:** \(\mathcal{H}(\mu) \) measuring the total amount of water + nutrients harvested by the roots

- **Cost functional:** \(\mathcal{I}_\alpha(\mu) \)
describing the cost of building a network of roots, transporting water and nutrients to the base of the trunk

- **Constraint:** \(\mu(\mathbb{R}_d^d) = \) total amount of root hair cells
A payoff functional for tree roots

\[\mathbb{R}^d_+ = \{(x_1, x_2, \ldots, x_d); \ x_d \leq 0\} \]

- **Basic object:** \(\mu = \) distribution of root hair cells, to be optimized among all positive Radon measures supported in \(\mathbb{R}^d_+ \)

- **Payoff functional:** \(\mathcal{H}(\mu) \)
 measuring the total amount of water + nutrients harvested by the roots

- **Cost functional:** \(\mathcal{I}^\alpha(\mu) \)
 describing the cost of building a network of roots, transporting water and nutrients to the base of the trunk

- **Constraint:** \(\mu(\mathbb{R}^d_+) = \) total amount of root hair cells
A payoff functional for tree roots

\[\mathbb{R}_d^d = \{(x_1, x_2, \ldots, x_d); \ x_d \leq 0\} \]

- **Basic object:** \(\mu = \) distribution of root hair cells, to be optimized among all positive Radon measures supported in \(\mathbb{R}_d^d \)

- **Payoff functional:** \(\mathcal{H}(\mu) \) measuring the total amount of water + nutrients harvested by the roots

- **Cost functional:** \(\mathcal{I}^\alpha(\mu) \) describing the cost of building a network of roots, transporting water and nutrients to the base of the trunk

- **Constraint:** \(\mu(\mathbb{R}_d^d) = \) total amount of root hair cells
A harvest functional

- $u(x) = \text{density of water} + \text{nutrients in the soil}$
- $\mu = \text{distribution of root hair cells}$

At equilibrium, u satisfies the elliptic equation with measure coefficients

$$\Delta u + f(x, u) - u \mu = 0$$

[diffusion] + [source] - [absorption] = 0

+ suitable boundary conditions
A harvest functional

- \(u(x) \) = density of water + nutrients in the soil
- \(\mu \) = distribution of root hair cells

At equilibrium, \(u \) satisfies the elliptic equation with measure coefficients

\[
\Delta u + f(x, u) - u\mu = 0
\]

[diffusion] + [source] - [absorption] = 0

+ suitable boundary conditions
\[
\Delta u + f(x, u) - u\mu = 0,
\]
\[
\mu = \mu_0 + \mu_s
\]

In the measure \(\mu\), the part which is singular w.r.t. capacity on \(\mathbb{R}^d\) plays no role

Given a positive measure μ and a solution of

$$\Delta u + f(x, u) - u\mu = 0 \quad (+\text{boundary conditions})$$

the total harvest is

$$\mathcal{H}(u, \mu) \doteq \int_{\mathbb{R}^d} u \, d\mu$$

The same equation, for a fish harvesting problem, was studied in

Ramified transportation cost

Steiner problem. Given a well located at the origin, and houses locates at $P_1, \ldots, P_N \in \mathbb{R}^d$, construct a pipe of **minimum length** that connects the well to all houses.

Gilbert problem. Assume that the house at P_i requires an amount m_i of water. Given $\alpha \in [0, 1]$, assume that the **cost of a pipe** = [length] \times [flux]$^\alpha$.

Minimize the total cost

\[
\alpha = 0 \quad \quad \quad \quad \quad \alpha = 1/2 \quad \quad \quad \quad \quad \alpha = 1
\]
Ramified transportation cost

Steiner problem. Given a well located at the origin, and houses located at $P_1, \ldots, P_N \in \mathbb{R}^d$, construct a pipe of minimum length that connects the well to all houses.

Gilbert problem. Assume that the house at P_i requires an amount m_i of water. Given $\alpha \in [0, 1]$, assume that the cost of a pipe $= \text{[length]} \times [\text{flux}]^\alpha$.

Minimize the total cost

$$\alpha = 0 \quad \alpha = 1/2 \quad \alpha = 1$$
The general irrigation problem

In the Gilbert problem, the **water demand** is an atomic measure, with masses m_i at points P_i, $i = 1, \ldots, N$.

Can this be extended to a general positive, bounded Radon measure μ on \mathbb{R}^d?

Define an “irrigation plan”, describing the trajectory of each water particle.

![Diagram of irrigation plans](image-url)
The general irrigation problem

In the Gilbert problem, the **water demand** is an atomic measure, with masses m_i at points P_i, $i = 1, \ldots, N$.

Can this be extended to a general positive, bounded Radon measure μ on \mathbb{R}^d?

Define an “irrigation plan”, describing the trajectory of each water particle
Assume: \(\mu \) is a positive measure on \(\mathbb{R}^d \), with total mass \(M = \mu(\mathbb{R}^d) < +\infty \)

- the Lagrangian variable \(\xi \in [0, M] \) labels a \textbf{water particle}
- \(\chi(\xi, t) \) denotes the position of particle \(\xi \) at time \(t \)
- particle speed \(= |\chi_t(\xi, t)| \equiv 1 \) for all \(t \in [0, \tau(\xi)] \)

For \(x \in \mathbb{R}^d \), the total amount of water particles that pass through \(x \) is

\[
|x|_x \doteq \text{meas}\left(\{\xi \in [0, M]; \chi(\xi, t) = x \text{ for some } t \geq 0\}\right)
\]

The cost of the irrigation plan \(\chi \) is defined as

\[
\mathcal{E}^\alpha(\chi) \doteq \int_0^M \int_0^{\tau(\xi)} \left|\chi(\xi, t)|_x\right|^{\alpha-1} dt d\xi
\]

(coincides with the Gilbert cost, in the discrete case)
Assume: μ is a positive measure on \mathbb{R}^d, with total mass $M = \mu(\mathbb{R}^d) < +\infty$

- the Lagrangian variable $\xi \in [0, M]$ labels a water particle
- $\chi(\xi, t)$ denotes the position of particle ξ at time t
- particle speed $= |\chi_t(\xi, t)| \equiv 1$ for all $t \in [0, \tau(\xi)]$

For $x \in \mathbb{R}^d$, the total amount of water particles that pass through x is

$$|x|_\chi \equiv \text{meas}\left(\{\xi \in [0, M]; \ \chi(\xi, t) = x \ \text{for some} \ t \geq 0\}\right)$$

The cost of the irrigation plan χ is defined as

$$\mathcal{E}^\alpha(\chi) \equiv \int_0^M \int_0^{\tau(\xi)} \left[|\chi(\xi, t)|_\chi\right]^{\alpha-1} dt \ d\xi$$

(coincides with the Gilbert cost, in the discrete case)
Optimal irrigation plans

Theorem.

Fix $\alpha \in [0, 1]$ and let μ is a positive bounded Radon measure with bounded support, concentrated on a set of dimension $< d_\alpha \equiv \frac{1}{1-\alpha}$. Then

- There exists an optimal irrigation plan χ, with finite minimum cost.
- The minimum cost $I_\alpha(\mu)$ is lower semicontinuous w.r.t. weak convergence of measures:

$$\mu_n \rightharpoonup \mu \implies I_\alpha(\mu) \leq \liminf_{n \to \infty} I_\alpha(\mu_n)$$

for a pipe laying on the ground (or underground, as a root), one can assume

\[\text{cost} = \text{[length]} \times \text{[flux]}^\alpha \]

for a branch, even if the flux is constant, the lower portion must be thicker in order to sustain the upper part

leads to a family of (infinitely many) ODEs with measure-valued right-hand side, one for each branch
Approximations of the thickness function by stopping times

irrigation plan: \(\chi : [0, M] \times \mathbb{R}_+ \mapsto \mathbb{R}^d \)

stopping time: \(\tau_\varepsilon(\xi) \doteq \max \left\{ t \geq 0 ; \ |\chi(t, \xi)|_\chi \geq \varepsilon \right\} \)

Throwing away branches of size \(< \varepsilon \), define an approximate irrigation plan

\[
\chi_\varepsilon(t, \xi) \doteq \begin{cases}
\chi(t, \xi) & \text{if } t < \tau_\varepsilon(\xi) \\
\chi(t, \tau_\varepsilon(\xi)) & \text{if } t \geq \tau_\varepsilon(\xi)
\end{cases}
\]

- define an ODE on each branch, with data given at the tip
- take the limit as \(\varepsilon \to 0 \)
Optimal shapes of tree branches?

Optimization problem for tree branches:

- Given
 - constants $\alpha \in [0, 1]$ and $M, c > 0$
 - a function $\eta \in L^1(S^{d-1})$, measuring the intensity of sunlight coming from various directions
 - an absolutely continuous measure ν on \mathbb{R}_+^d, measuring the density of competing vegetation

find a positive measure μ, with $\mu(\mathbb{R}_+^d) = M$, which maximizes the functional

$$S^\eta(\mu; \nu) - cI^\alpha(\mu) = \text{[total sunlight]} - c \cdot \text{[irrigation cost]}$$
Optimal shapes of tree branches?

Optimization problem for tree branches: Given

- constants $\alpha \in [0, 1]$ and $M, c > 0$
- a function $\eta \in L^1(S^{d-1})$, measuring the intensity of sunlight coming from various directions
- an absolutely continuous measure ν on \mathbb{R}^d_+, measuring the density of competing vegetation

find a positive measure μ, with $\mu(\mathbb{R}^d_+) = M$, which maximizes the functional

$$S^n(\mu; \nu) - cI^\alpha(\mu) = \text{[total sunlight]} - c \cdot \text{[irrigation cost]}$$
An optimization problem for tree roots

Let constants $\alpha \in [0, 1]$ and $M, c > 0$ be given, together with a bounded function $f = f(x, u)$.

Optimization problem for tree roots: Find

- a positive measure μ with $\mu(\mathbb{R}^d) = M$
- a solution u to the elliptic equation with Neumann boundary conditions

\[
\begin{aligned}
\Delta u + f(x, u) - u\mu &= 0, \quad x \in \mathbb{R}^d \\
u_{\partial} &= 0, \quad x_d = 0
\end{aligned}
\]

which maximize the functional

\[
\mathcal{H}(u, \mu) - c\mathcal{I}^\alpha(\mu) = \text{[total harvest]} - c \cdot \text{[irrigation cost]}
\]
Existence of optimal solutions, with fixed total mass
\[\mu(\mathbb{R}^d) = M \]

Theorem 1. (A.B., Qing Sun, 2017)

For any \(1 - \frac{1}{d-1} < \alpha \leq 1 \), the optimization problem for branches has a nontrivial solution \(\mu^* \), with bounded support.

Theorem 2. (A.B., Qing Sun, 2017)

For any \(1 - \frac{1}{d-2} < \alpha \leq 1 \), the optimization problem for roots has a nontrivial solution \(\mu^* \), with bounded support.

Main step: prove that there exists a maximizing sequence \((\mu_k)_{k \geq 1} \) where all measures have support contained in a fixed ball \(B(0, R) \), then use semicontinuity.
Existence of optimal solutions, with fixed total mass $\mu(\mathbb{R}^d) = M$

Theorem 1. (A.B., Qing Sun, 2017)

For any $1 - \frac{1}{d-1} < \alpha \leq 1$, the optimization problem for branches has a nontrivial solution μ^*, with bounded support.

Theorem 2. (A.B., Qing Sun, 2017)

For any $1 - \frac{1}{d-2} < \alpha \leq 1$, the optimization problem for roots has a nontrivial solution μ^*, with bounded support.

Main step: prove that there exists a maximizing sequence $(\mu_k)_{k \geq 1}$ where all measures have support contained in a fixed ball $B(0, R)$, then use semicontinuity.
Existence of optimal solutions, with fixed total mass
\[\mu(\mathbb{R}^d) = M \]

Theorem 1. (A.B., Qing Sun, 2017)

For any \(1 - \frac{1}{d-1} < \alpha \leq 1 \), the optimization problem for branches has a nontrivial solution \(\mu^* \), with bounded support.

Theorem 2. (A.B., Qing Sun, 2017)

For any \(1 - \frac{1}{d-2} < \alpha \leq 1 \), the optimization problem for roots has a nontrivial solution \(\mu^* \), with bounded support.

Main step: prove that there exists a maximizing sequence \((\mu_k)_{k \geq 1} \) where all measures have support contained in a fixed ball \(B(0, R) \), then use semicontinuity.
Unconstrained optimization problems (optimal tree sizes)

Unconstrained problem for branches

maximize: \(S^n(\mu) - cI^n(\mu) \)

among all positive measures on \(\mathbb{R}^d_+ \) (without the constraint \(\mu(\mathbb{R}^d_+) = M \))

Unconstrained problem for roots

maximize: \(H(u, \mu) - cI^n(\mu) \)

among all positive measures \(\mu \) on \(\mathbb{R}^d_- \)
Unconstrained optimization problems (optimal tree sizes)

Unconstrained problem for branches

\[
\text{maximize: } \quad S^n(\mu) - cI^\alpha(\mu) \\
\text{among all positive measures on } \mathbb{R}^d_+ \quad (\text{without the constraint } \mu(\mathbb{R}^d_+) = M)
\]

Unconstrained problem for roots

\[
\text{maximize: } \quad \mathcal{H}(u, \mu) - cI^\alpha(\mu) \\
\text{among all positive measures } \mu \text{ on } \mathbb{R}^d_-
\]
Existence results

Theorem 3. (A.B., M.Palladino, Q.Sun, 2018)

For any $1 - \frac{1}{d-1} < \alpha \leq 1$, the unconstrained optimization problem for branches has a solution μ^*, with bounded support.

Assuming that either (i) $d \geq 3$ or (ii) $d = 2$ and $\frac{\sqrt{5} - 1}{2} < \alpha \leq 1$, the optimal measure μ^* has finite total mass.

Theorem 4. (A.B., M.Palladino, Q.Sun, 2018)

For any $1 - \frac{1}{d-2} < \alpha \leq 1$, the unconstrained optimization problem for roots has a solution (u^*, μ^*).

The optimal measure μ^* has bounded support.

In dimension $d \geq 4$, μ^* has finite total mass.

Conjecture.

In dimension $d = 3$ the optimal measure is bounded: $\mu^*(\mathbb{R}^3_+) < +\infty$.

In dimension $d = 2$ the optimal measure is unbounded: $\mu^*(\mathbb{R}^2_+) = +\infty$.
Existence results

Theorem 3. (A.B., M.Palladino, Q.Sun, 2018)

For any $1 - \frac{1}{d-1} < \alpha \leq 1$, the unconstrained optimization problem for branches has a solution μ^*, with bounded support.

Assuming that either (i) $d \geq 3$ or (ii) $d = 2$ and $\frac{\sqrt{5}-1}{2} < \alpha \leq 1$, the optimal measure μ^* has finite total mass.

Theorem 4. (A.B., M.Palladino, Q.Sun, 2018)

For any $1 - \frac{1}{d-2} < \alpha \leq 1$, the unconstrained optimization problem for roots has a solution (u^*, μ^*).

The optimal measure μ^* has bounded support.

In dimension $d \geq 4$, μ^* has finite total mass.

Conjecture.

In dimension $d = 3$ the optimal measure is bounded: $\mu^*(\mathbb{R}^3_+) < +\infty$.

In dimension $d = 2$ the optimal measure is unbounded: $\mu^*(\mathbb{R}^2_+) = +\infty$.
Existence results

Theorem 3. (A.B., M.Palladino, Q.Sun, 2018)

For any \(1 - \frac{1}{d-1} < \alpha \leq 1 \), the unconstrained optimization problem for branches has a solution \(\mu^* \), with bounded support.

Assuming that either (i) \(d \geq 3 \) or (ii) \(d = 2 \) and \(\frac{\sqrt{5} - 1}{2} < \alpha \leq 1 \), the optimal measure \(\mu^* \) has finite total mass.

Theorem 4. (A.B., M.Palladino, Q.Sun, 2018)

For any \(1 - \frac{1}{d-2} < \alpha \leq 1 \), the unconstrained optimization problem for roots has a solution \((u^*, \mu^*) \).

The optimal measure \(\mu^* \) has bounded support.

In dimension \(d \geq 4 \), \(\mu^* \) has finite total mass.

Conjecture.

In dimension \(d = 3 \) the optimal measure is bounded: \(\mu^*(\mathbb{R}_+^3) < +\infty \).

In dimension \(d = 2 \) the optimal measure is unbounded: \(\mu^*(\mathbb{R}_+^2) = +\infty \).
A naive estimate

$$\text{maximize: } S^n(\mu) - I^\alpha(\mu)$$

$$\mu = \mu_1 + \mu_2$$

$$S^n(\mu_1 + \mu_2) - S^n(\mu_1) \leq \mu_2(\mathbb{R}^d)$$

$$I^\alpha(\mu_1 + \mu_2) - I^\alpha(\mu_1) \geq R \cdot \mu_2(\mathbb{R}^d) \cdot [\mu(\mathbb{R}^d)]^{\alpha-1}$$

$$\alpha < 1 \implies \text{ (economy of scale)}$$
Boundedness of the total mass

\[\mu = \sum_j \mu_j \]

\[\mu_j = \chi\{2^{-j-1} < |x| \leq 2^{-j}\} \cdot \mu \]

\[\tilde{\mu} = \sum_{j \in J} \mu_j, \quad J = \left\{ j; \mu_j(\mathbb{R}^d) \leq C_d 2^{-j\left(d-1-\frac{1}{\alpha}\right)} \right\} \]

\[S^n(\tilde{\mu}) - I^\alpha(\tilde{\mu}) > S^n(\mu) - I^\alpha(\mu) \]

\[\tilde{\mu}(\mathbb{R}^d) \leq \sum_{j \geq j_0} C_d 2^{-j\left(d-1-\frac{1}{\alpha}\right)} < +\infty \]

because \(1 - \frac{1}{d-1} < \alpha, \quad d \geq 3 \quad \implies \quad d-1-\frac{1}{\alpha} > 0 \)
Underlying question: What has been the primary goal in the evolution of shapes of tree roots and branches?

Conjecture 1: For tree roots: maximize the amount of water+nutrients collected from the soil, subject to a transportation cost.

Conjecture 2: For tree branches: maximize the amount of light collected by the leaves, subject to the cost of constructing the branch structure.

Answers (provided by the mathematical analysis so far):

1) True
2) False
Concluding remarks

Underlying question: What has been the primary goal in the evolution of shapes of tree roots and branches?

Conjecture 1: For tree roots: maximize the amount of water+nutrients collected from the soil, subject to a transportation cost.

Conjecture 2: For tree branches: maximize the amount of light collected by the leaves, subject to the cost of constructing the branch structure.

Answers (provided by the mathematical analysis so far):

1) True 2) False
Concluding remarks

Underlying question: What has been the primary goal in the evolution of shapes of tree roots and branches?

Conjecture 1: For tree roots: maximize the amount of water+nutrients collected from the soil, subject to a transportation cost.

Conjecture 2: For tree branches: maximize the amount of light collected by the leaves, subject to the cost of constructing the branch structure.

Answers (provided by the mathematical analysis so far):

1) True 2) False
Concluding remarks

Underlying question: What has been the primary goal in the evolution of shapes of tree roots and branches?

Conjecture 1: For tree roots: maximize the amount of water+nutrients collected from the soil, subject to a transportation cost.

Conjecture 2: For tree branches: maximize the amount of light collected by the leaves, subject to the cost of constructing the branch structure.

Answers (provided by the mathematical analysis so far):

1) True 2) False
An explicit solution: sunlight coming from a fixed direction

maximize: $S^n(\mu) - I^\alpha(\mu)$

The optimal positioning of solar panels is very different from the orientation determined by phototropism.
What is the advantage of phototropism?

- The distance from the Earth to the Sun is \(\approx 90,000,000 \) miles.
- Getting a few inches closer cannot make a difference.
What is the advantage of phototropism?

- The distance from the Earth to the Sun is \(\approx 90,000,000 \) miles
- Getting a few inches closer cannot make a difference
Guess: shapes may result from different selection criteria

- maximizing internal efficiency
- optimizing the response to external competition
• An extensive literature deals with computer codes which generate tree-like shapes

The algorithms producing the most realistic pictures are based on the idea of “conquering space”

Can one devise a game-theoretical model, showing the advantage of space-conquering strategies?
The algorithms producing the most realistic pictures are based on the idea of “conquering space”

Can one devise a game-theoretical model, showing the advantage of space-conquering strategies?
Assume: three types of grass grow in a field, all with the same length

- Type 1: bending toward the sun
- Type 2: growing straight upward
- Type 3: bending away from the sun

- If the density is high, the stems growing straight up collect the most light
- If the density is low, the stems bending away from the sun collect the most light
A competition model

Assume: three types of grass grow in a field, all with the same length

- Type 1: bending toward the sun
- Type 2: growing straight upward
- Type 3: bending away from the sun

- If the density is high, the stems growing straight up collect the most light
- If the density is low, the stems bending away from the sun collect the most light
Concluding remarks

- Apparently, plant shapes have evolved by competing with each other, rather than by optimizing sunlight.

- Is there a good mathematical model for such competition?

- In absence of competition, could plants be engineered more efficiently?
Concluding remarks

- Apparently, plant shapes have evolved by competing with each other, rather than by optimizing sunlight.

- Is there a good mathematical model for such competition?

- In absence of competition, could plants be engineered more efficiently?

apple trees
Concluding remarks

- Apparently, plant shapes have evolved by competing with each other, rather than by optimizing sunlight.

- Is there a good mathematical model for such competition?

- In absence of competition, could plants be engineered more efficiently?
Happy Birthday, Giovanni and Franco !!!