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Optimal control problems - Value function

Consider the optimal control problem:

(PS,x0 )


Minimize g(x(T ))
over arcs x(.) ∈W 1,1([S,T ];Rn) satisfying
ẋ(t) ∈ F (t , x(t)) a.e. t ∈ [S,T ]
x(S) = x0,

Embed in a family of problems, parameterized by initial data

(Pt,x )

{
Minimize g(x(T ))
over trajectories x(.) s.t. ẋ(s) ∈ F (s, x(s)) x(t) = x .

Define V (t , x) = Inf(Pt,x ) Value Function
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Hamilton Jacobi equation

V (t , x) = Inf(Pt,x )

{
Minimize g(x(T ))
over trajectories x(.) s.t. ẋ(s) ∈ F (s, x(s)) x(t) = x

Principle of Optimality: it establishes some important monotonicity
properties of the Value Function

PDE of Dynamic Programming: V (., .) is a solution to

(HJE)

{
Vt (t , x) + min v∈F (t,x) Vx (t , x) · v = 0 ∀(t , x) ∈ (S,T )× Rn

V (T , x) = g(x) ∀x ∈ Rn .

→ Characterize the value function as solution to (HJE), in a
generalized sense.
Mainly employed techniques: viscosity solutions theory, nonsmooth
analysis, viability/invariance results,...
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Value function↔ Hamilton-Jacobi equation

→ Viscosity solutions theory:
- Crandall-Lions 1983 and 1989, Crandall-Evans-Lions 1984,...
- Ishii 1985, Barron-Jensen 1987, Lions-Perthame 1987:
dicontinuous/measurable time-dependent Hamiltonians
- Soner 1986 state constraints
- ..... cf. the books Barles 1994, Bardi & Capuzzo-Dolcetta 1997

→ Nonsmooth theory, invariance/viability results:
- Frankowska 1993, 1995
- Clarke-Ledyaev-Stern-Wolenski 1995,
- Frankowska-Plaskacz-Rzezuchowski 1995: dicontinuous/measurable
time-dependence problems
- Frankowska-Vinter 2000, Frankowska-Mazzola 2013: state constraints
- ..... cf. books Clarke-Ledyaev-Stern-Wolenski 1998, Vinter 2000, Clarke
2013

→ Colombo-Palladino, The minimum time function for the controlled
Moreau’s sweeping process, SICON 2016

→ Rampazzo, Faithful representations for convex Hamilton-Jacobi equations,
SICON 2005
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Our framework

V (t , x) = Inf(Pt,x )

{
Minimize g(x(T ))
over trajectories x(.) s.t. ẋ(s) ∈ F (s, x(s)) x(t) = x

→ g : Rn → R ∪ {+∞} is extended valued; incorporates an implicit
terminal constraint

x(T ) ∈ C ,

where C := {x ∈ Rn|g(x) < +∞} is a closed set.

⇒ It is necessary to consider lower semicontinuous solutions (lsc) to
(HJE)

→ we impose the dicontinuous time-dependent hypothesis:

(∗) the multifunction t → F (t , x) has everywhere left and right limits
and is continuous on the complement of a set of measure zero.

→We use analytical techniques based on the application of
invariance/viability results to a differential inclusion in a higher
dimensional space, solutions to which are required to evolve in the
epigraph set of V .
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The application of viability theory to characterize lsc value functions
for optimal control problems with extended valued terminal costs was
first achieved by Frankowska:

Theorem. [Frankowska, 1993 and 1995] F is required to be
continuous w.r.t. time. Then, V is the unique lsc function satisfying
the HJE, in the sense (→ Dini/contingent solution):

(i): infv∈F (t,x) D↑V ((t , x); (1, v)) ≤ 0,
for all (t , x) ∈ ([S,T )× Rn) ∩ dom V

(ii): supv∈F (t,x) D↑V ((t , x); (−1,−v)) ≤ 0,
for all (t , x) ∈ ((S,T ]× Rn) ∩ dom V

(iii): V (T , x) = g(x) for all x ∈ Rn.

D↑V denotes the lower Dini directional derivative (also called contingent epi-derivative):

D↑ϕ(x̄ ; d) = lim inf
h↓0, e→d

h−1 [ϕ(x̄ + he)− ϕ(x̄)]

Rmk. Equivalent conditions involving generalized solutions to HJE in a Frêchet
subgradient sense were also given in [Frankowska 1995]

P. Bettiol Discontinuous time-dependent HJE



Subsequently, in refined ‘proximal subgradient’ form,

Theorem. [Clarke-Ledyaev-Stern-Wolenski, 1995] F is required to
be continuous w.r.t. time. Then, V is the unique lsc function
satisfying the HJE, in the sense (→ proximal solution):

(i) for all (t , x) ∈ ((S,T )× Rn) ∩ dom V , (ξ0, ξ1) ∈ ∂PV (t , x)

ξ0 + inf
v∈F (t,x)

ξ1 · v = 0,

(ii) for all x ∈ Rn,

lim inf
{(t′,x′)→(S,x):t′>S}

V (t ′, x ′) = V (S, x)

and

lim inf
{(t′,x′)→(T ,x):t′<T}

V (t ′, x ′) = V (T , x) = g(x).

∂Pϕ(x̄) := {ξ | (ξ,−1) ∈ NP
epi ϕ(x̄ , ϕ(x̄))}.
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Discontinuous time-dependent problems
Generalized solution to HJE in an ‘almost everywhere w.r.t. time’
sense?
Example. Consider

Minimize g(x(1)) := x(1)
over arcs x(.) ∈W 1,1([t0,1];R) s.t.
ẋ(t) = 0 a.e. t ∈ [0,1]
x(0) = x0 ,

The value function is V (t , x) = x for all (t , x). However

W (t , x) :=

{
x − 1 if t ≤ 1

2
x if t > 1

2

is also an lsc function that satisfies the conditions (i) and (ii) above in
the ‘almost everywhere’ sense: we exclude consideration of the
troublesome point 1

2 at which W (t , x) fails to satisfy conditions (i) and
(ii).
⇒ the value function is not the unique lsc function satisfying
conditions (i), (ii) and (iii) in the almost everywhere sense.
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The non-uniqueness issue

This issue can be circumvented by restricting candidate solutions
V (., .) to (i), (ii) and (iii) to have the following regularity property
Frankowska-Plaskacz-Rzezuchowski 1995:

(EPI) t → epi V (t , .) is absolutely continuous.

Here epi V (t , .) := {(α, x) |α ≥ V (t , x)} and ‘absolute continuity’
means that there exists an integrable function γ(.) : [S,T ]→ R such
that

dH(epi V (s, .),epi V (t , .)) ≤
∫

[s,t]
γ(σ)dσ , for all [s, t ] ⊂ [S,T ] .

(dH(., .) denotes the Hausdorff distance.)
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A question was: necessary to impose (EPI)?

The ‘almost everywhere’ HJE theory of Frankowska et al. covers a
broad class of optimal control problems for which t → F (t , x) is
discontinuous. But it leaves open the following question:

For the special case, when t → F (t , x) has everywhere
one-sided limits and is continuous on the complement of a
zero-measure subset of [S,T ], can we provide a
characterization of the value function as a unique lsc function
V (., .) satisfying conditions similar to (i) and (ii), and also (iii),
without imposing the a priori regularity condition (EPI) on V (., .)?
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Hypotheses

The following hypotheses will be imposed:

(H1): g(.) : Rn → R ∪ {+∞} is lsc, F : [S,T ]× Rn ; Rn takes closed,
convex, non-empty values, F (., x) is L(S,T )-measurable for all
x ∈ Rn,

(H2): (i) there exists c(.) ∈ L1(S,T ) such that

F (t , x) ⊂ c(t)(1 + |x |) B for all x ∈
Rn and for a.e. t ∈ [S,T ] ,

and

(ii) for every R0 > 0, there exists c0 > 0 such that

F (t , x) ⊂ c0 B for all (t , x) ∈ [S,T ]× R0B ,
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Hypotheses...

(H3): (i) for every R0 > 0, there exists a modulus of continuity
ω(.) : R+ → R+ and kF (.) ∈ L1(S,T ) such that

dH(F (t , x ′),F (t , x)) ≤ ω(|x − x ′|) for all x , x ′ ∈ R0B ,

and

(ii) F (t , x ′) ⊂ F (t , x) + kF (t)|x − x ′| B for all x , x ′ ∈
R0B and a.e. t ∈ [S,T ] ,

(H4): (i) for each s ∈ [S,T ), t ∈ (S,T ] and x ∈ Rn the following
one-sided set-valued limits exist and are non-empty:

F (s+, x) := lims′↓s F (s′, x) and F (t−, x) :=
limt′↑t F (t ′, x) ,

and

(ii) and for a.e. s ∈ [S,T ) and t ∈ (S,T ] we have

F (s+, x) = F (s, x) and F (t−, x) = F (t , x) , for all x ∈ Rn .
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Characterization of lsc Value Functions

Theorem 1. [P.B.-Vinter]
Take a function V : [S,T ]×Rn → R∪ {+∞}. Then, assertions (a)–(c)
below are equivalent:

(a) V is the value function for (PS, x0).

(b) V is lsc on [S,T ]× Rn and

(i) for all (t , x) ∈ ([S,T )× Rn) ∩ dom V

inf
v∈F (t+,x)

D↑V ((t , x); (1, v)) ≤ 0,

(ii) for all (t , x) ∈ ((S,T ]× Rn) ∩ dom V

sup
v∈F (t−,x)

D↑V ((t , x); (−1,−v)) ≤ 0,

(iii) for all x ∈ Rn

V (T , x) = g(x).
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Characterization of lsc Value Functions...

(c) V is lsc on [S,T ]× Rn and
(i) for all (t , x) ∈ ((S,T )× Rn) ∩ dom V ,

(ξ0, ξ1) ∈ ∂PV (t , x) ∪ ∂∞P V (t , x)

ξ0 + inf
v∈F (t+,x)

ξ1 · v ≤ 0,

(ii) for all (t , x) ∈ ((S,T )× Rn) ∩ dom V ,
(ξ0, ξ1) ∈ ∂PV (t , x) ∪ ∂∞P V (t , x)

ξ0 + inf
v∈F (t−,x)

ξ1 · v ≥ 0,

(iii) for all x ∈ Rn,

lim inf
{(t′,x′)→(S,x):t′>S}

V (t ′, x ′) = V (S, x)

and

lim inf
{(t′,x′)→(T ,x):t′<T}

V (t ′, x ′) = V (T , x) = g(x).

The asymptotic proximal subdifferential of ϕ at x̄ ∈ domϕ:

∂∞P ϕ(x̄) := {ξ | (ξ, 0) ∈ NP
epi ϕ(x̄ , ϕ(x̄))}.
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Exchange the limits of F?
Example. Consider the optimal control problem

Minimize g(x(1)) := x(1)
over arcs x(.) ∈W 1,1([t0,1];R) s.t.
ẋ(t) ∈ F (t) a.e. t ∈ [t0,1]
x(t0) = x0 ,

where t0 ∈ [0,1], x0 ∈ R and

F (t) :=

{
[− 1

2 ,
1
2 ] if 0 ≤ t ≤ 1

2

[−1,1] if 1
2 < t ≤ 1 .

The value function V : [0,1]× R→ R is

V (t , x) :=

{
x + t

2 −
3
4 if 0 ≤ t ≤ 1

2
x + t − 1 if 1

2 < t ≤ 1 .

We have, as the result of a routine calculation:

D↑V ((1/2,0); (1, v)) = 1+v and D↑V ((1/2,0); (−1,−v)) = −1
2
−v .

P. Bettiol Discontinuous time-dependent HJE



Exchange the limits of F?...
Consistent with conditions (b)(i) and (b)(ii) in Thm. above, V satisfies

inf
v∈F ( 1

2
+

)
D↑V ((1/2,0); (1, v)) = inf

v∈[−1,1]
(1 + v) = 0 (≤ 0) ,

sup
v∈F ( 1

2
−

)

D↑V ((1/2,0); (−1,−v)) = sup
v∈[− 1

2 ,
1
2 ]

(−1
2
− v) = 0 (≤ 0) .

On the other hand, switching roles of F ( 1
2
−

) and F ( 1
2

+
) in these

calculations would give:

inf
v∈F ( 1

2
−

)
D↑V ((1/2,0); (1, v)) = inf

v∈[− 1
2 ,

1
2 ]

(1 + v) =
1
2

(> 0) ,

sup
v∈F ( 1

2
+

)

D↑V ((1/2,0); (−1,−v)) = sup
v∈[−1,1]

(−1
2
− v) =

1
2

(> 0) .

This example shows that condition (b)(i) must involve the right limit
F (t+, x) and (b)(ii) must involve the left limit F (t−, x) (similarly for
condition (c)).
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Proof structure

(a)⇒ (b). Apply the Optimality Principle of the value function,
and the definition of Dini/continget derivative

(b)⇒ (c). Use standard properties of Dini/continget derivative
and proximal normal cone

(c)⇒ (a) (the key step) This involves showing that, for an
arbitrary point (t , x) in the domain of a function V satisfying
condition (c),

(A): V (t , x) is the cost of some state trajectory originating from
(t , x) and

(B): V (t , x) is a lower bound on the cost of an arbitrary state
trajectory.

For both (A) and (B) we use the weak invariance theorem. The
proof of (A) is standard. The proof of (B) employs techniques
based on the Steiner representation of ẋ ∈ F as a controlled
differential equation, taking account of the possible
discontinuities of F (., .) w.r.t. time.
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Add an integral term in the cost

(PS,x0 )


Minimize g(x(T )) +

∫ T
S L(t , x(t), ẋ(t)) dt

over arcs x(.) ∈W 1,1([S,T ];Rn) satisfying
ẋ(t) ∈ F (t , x(t)) a.e. t ∈ [S,T ]
x(S) = x0,

(H5): (i) L : [S,T ]× Rn × Rn −→ R is lower semicontinuous.
(ii) L is locally bounded
(iii) For every t ∈ [S,T ], x ∈ Rn, L(t , x , ·) is convex.
(iv) L is coercive: for all (t , x , v) ∈ [S,T ]× Rn × Rn,

L(t , x , v) ≥ Θ(|v |)− α|x |, for some α ∈ R+ and some
convex function Θ : R+ → R+ such that

lim
r→+∞

Θ(r)

r
= +∞.

(H6): L is continuous w.r.t. x ; L(t+, x , v) and L(t−, x , v) exist for every
t , and L(t+, x , v) = L(t , x , v) = L(t−, x , v) for a.e. t .
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Characterization of lsc Value Functions - integral
term

Theorem 2. [Bernis-P.B.]
Take a function V : [S,T ]×Rn → R∪ {+∞}. Then, assertions (a)–(c)
below are equivalent:

(a) V is the value function for (PS, x0).

(b) V is lsc on [S,T ]× Rn and

(i) for all (t , x) ∈ ([S,T )× Rn) ∩ dom V

inf
v∈F (t+,x)

[D↑V ((t , x); (1, v)) + L(t , x , v)] ≤ 0,

(ii) for all (t , x) ∈ ((S,T ]× Rn) ∩ dom V

sup
v∈F (t−,x)

[D↑V ((t , x); (−1,−v))− L(t−, x , v)] ≤ 0,

(iii) for all x ∈ Rn

V (T , x) = g(x).
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Characterization of lsc Value Functions - integral
term...

(c) V is lsc on [S,T ]× Rn and
(i) for all (t , x) ∈ ((S,T )× Rn) ∩ dom V ,

(ξ0, ξ1,−λ) ∈ NP
epi V ((t , x),V (t , x))

ξ0 + inf
v∈F (t+,x)

[ξ1 · v + λL(t , x , v)] ≤ 0,

(ii) for all (t , x) ∈ ((S,T )× Rn) ∩ dom V ,
(ξ0, ξ1,−λ) ∈ NP

epi V ((t , x),V (t , x))

ξ0 + inf
v∈F (t−,x)

[ξ1 · v − λL(t−, x , v)] ≥ 0,

(iii) for all x ∈ Rn,

lim inf
{(t′,x′)→(S,x):t′>S}

V (t ′, x ′) = V (S, x)

and

lim inf
{(t′,x′)→(T ,x):t′<T}

V (t ′, x ′) = V (T , x) = g(x).
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Proof structure

introduce an auxiliary Lagrangian

(a)⇒ (b). Apply the Optimality Principle of the value function,

(b)⇒ (c). Use standard properties of Dini/continget derivative
and proximal normal cone

(c)⇒ (a) (the key step) This involves showing that, for an
arbitrary point (t , x) in the domain of a function V satisfying
condition (c),

(A): V (t , x) is the cost of some state trajectory originating from
(t , x) and

(B): V (t , x) is a lower bound on the cost of an arbitrary state
trajectory.

For both (A) and (B) we use a NEW weak invariance theorem
(linear growth is violated for the differential inclusion). Invoke the
Steiner representation argument.
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Example. Consider the optimal control problem

(Pt0,x0 )


Minimize g(x(1)) +

∫ 1
0 L(t , x(t), ẋ(t))t

over arcs x(.) ∈W 1,1([t0,1];R) such that
ẋ(t) ∈ F (t) for a.e. t ∈ [t0,1],
x(t0) = x0 ,

where t0 ∈ [0,1], x0 ∈ R,

F (t) :=

{
[− 1

2 ,
1
2 ] if 0 ≤ t ≤ 1

2

[−1,1] if 1
2 < t ≤ 1 ,

g(x) :=

{
1 + x if x > 0

x if x ≤ 0 ,

and

L(t , x , v) :=

{
1 + (v + 1)2 if 1

2 < t ≤ 1

(v + 1
2 )2 if 0 ≤ t ≤ 1

2 ,
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The value function V : [0,1]× R→ R is

V (t, x) :=


x + t

2 + 3
4 if 0 ≤ t ≤ 1

2 and x + t/2− 3
4 > 0

x + t
2 −

1
4 if 0 ≤ t ≤ 1

2 and x + t/2− 3
4 ≤ 0

x + 1 if 1
2 < t ≤ 1 and x + t − 1 > 0

x if 1
2 < t ≤ 1 and x + t − 1 ≤ 0 .

4

3

2


t
x

4

1

2


t
x

1x

x

2

1

x

t

4

3

10

Take the point (t0, x0) = ( 1
2 ,

1
2 ). For every (ξ0, ξ1,−λ) ∈ NP

epi V (( 1
2 ,

1
2 ), V ( 1

2 ,
1
2 )):

ξ
0 + inf

v∈F ( 1
2

+
)

[
ξ

1 · v + λL
( 1

2
,

1

2
, v
)]
≤ 0,

and

ξ
0 + inf

v∈F ( 1
2
−

)

[
ξ

1 · v + λL

(
1

2

−
,

1

2
, v

)]
≥ 0.

The information provided by the ‘asymptotic’ vectors (proximal subdifferentials)
(ξ0, ξ1, 0) ∈ NP

epi V (( 1
2 ,

1
2 ), V ( 1

2 ,
1
2 )) says how the epigraph of the value function bends at the point

(t0, x0) = ( 1
2 ,

1
2 ).
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Consider now

W (t, x) :=


x + t

2 + 3
4 if 0 ≤ t ≤ 1

2 and x + t − 1 > 0
x + t

2 −
1
4 if 0 ≤ t ≤ 1

2 and x + t − 1 ≤ 0
x + 1 if 1

2 < t ≤ 1 and x + t − 1 > 0
x if 1

2 < t ≤ 1 and x + t − 1 ≤ 0 .

4

3

2


t
x

4

1

2


t
x

1x

x

2

1

x

t1

1

0

Taking just vectors (ξ0, ξ1,−1) ∈ NP
epi W ((t , x),W (t , x)) all the

‘restricted conditions’ (c)(i)-(ii)-(iii) would be satisfied.

(c)(i) is clearly violated when we check the inequality for the
asymptotic vector (1,1,0) ∈ NP

epi W ((t , x),W (t , x)), for
t ∈ (0,1/2) and x + t = 1:

ξ0 + inf
v∈F ( 1

2
+

)

[
ξ1 · v + 0

]
= 1− 1/2 > 0 .

→ asymptotic vectors cannot be neglected...
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Enter state constraints

(SCS,x0 )


Minimize g(x(T ))
over arcs x ∈W 1,1([S,T ];Rn) satisfying
ẋ(t) ∈ F (t , x(t)) a.e. t ∈ [S,T ]
x(t) ∈ A for all t ∈ [S,T ] ← state constraint
x(S) = x0 .

Impose the additional ‘bounded variation w.r.t time’ condition:

(BV): For each R0 > 0, F (., x) has bounded variation uniformly over
x ∈ R0B, in the following sense: there exists a bounded variation
function η(.) : [S,T ]→ R such that, for every [s, t ] ⊂ [S,T ] and
x ∈ R0B,

dH(F (s, x),F (t , x)) ≤ η(t)− η(s) .
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Characterization of Value Functions for State Constrained Problems (I):
Outward-Pointing Condition

Theorem 3. [P.B.-Vinter]
Assume (H1), (H2), (H3) and (BV). Suppose in addition that

(CQ)outward : for each s ∈ [S,T ), t ∈ (S,T ] and x ∈ ∂A,

F (t−, x) ∩
(
− int TA(x)

)
6= ∅ and F (s+, x) ∩

(
− int TA(x)

)
6= ∅ .

Take aV : [S,T ]× Rn → R ∪ {+∞}; (a)–(c) are equivalent:

(a) V is the value function for (SCS,x0
).

(b) V is lsc on [S,T ]× Rn, V (t , x) = +∞ if x /∈ A, and

(i) for all (t , x) ∈ ([S,T )× A) ∩ dom V

inf
v∈F (t+,x)

D↑V ((t , x); (1, v)) ≤ 0,

(ii) for all (t , x) ∈ ((S,T ]× int A) ∩ dom V

sup
v∈F (t−,x)

D↑V ((t , x); (−1,−v)) ≤ 0,

(iii) for all x ∈ A

lim inf
{(t′,x′)→(T ,x):t′<T ,x′∈int A}

V (t ′, x ′) = V (T , x) = g(x).
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(c) V is lsc on [S,T ]× Rn, V (t , x) = +∞ if x /∈ A, and

(i) for all (t , x) ∈ ((S,T )× A) ∩ dom V ,
(ξ0, ξ1) ∈ ∂PV (t , x) ∪ ∂∞P V (t , x)

ξ0 + inf
v∈F (t+,x)

ξ1 · v ≤ 0,

(ii) (t , x) ∈ ((S,T )× int A) ∩ dom V ,
(ξ0, ξ1) ∈ ∂PV (t , x) ∪ ∂∞P V (t , x)

ξ0 + inf
v∈F (t−,x)

ξ1 · v ≥ 0,

(iii) for all x ∈ A,

lim inf
{(t′,x′)→(S,x):t′>S}

V (t ′, x ′) = V (S, x)

and

lim inf
{(t′,x′)→(T ,x):t′<T , x′∈int A}}

V (t ′, x ′) = V (T , x) = g(x).
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Characterization of Value Functions for State Constrained Problems (II):
Inward-Pointing Condition

Theorem 4. [P.B.-Vinter]
Assume (H1), (H2), (H3) and (BV). Suppose in addition that g(.) is continuous on A
and

(CQ)inward : for each s ∈ [S,T ), t ∈ (S,T ] and x ∈ ∂A,

F (t−, x) ∩ int TA(x) 6= ∅ and F (s+, x) ∩ int TA(x) 6= ∅ .

Take a function V : [S,T ]× Rn → R ∪ {+∞}. Then assertions (a)–(c) below are
equivalent:

(a) V is the value function for (SCS,x0
).

(b) V is lsc on [S,T ]× Rn, V (t , x) = +∞ if x /∈ A, and

(i) for all (t , x) ∈ ([S,T )× A) ∩ dom V

inf
v∈F (t+,x)

D↑V ((t , x); (1, v)) ≤ 0,

(ii) for all (t , x) ∈ ((S,T ]× int A) ∩ dom V

sup
v∈F (t−,x)

D↑V ((t , x); (−1,−v)) ≤ 0,

(iii) for all x ∈ A, V (T , x) = g(x).
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(c) V is lsc on [S,T ]× Rn, V (t , x) = +∞ if x /∈ A, and

(i) for all (t , x) ∈ ((S,T )× A) ∩ dom V ,
(ξ0, ξ1) ∈ ∂PV (t , x) ∪ ∂∞P V (t , x)

ξ0 + inf
v∈F (t+,x)

ξ1 · v ≤ 0,

(ii) (t , x) ∈ ((S,T )× int A) ∩ dom V ,
(ξ0, ξ1) ∈ ∂PV (t , x) ∪ ∂∞P V (t , x)

ξ0 + inf
v∈F (t−,x)

ξ1 · v ≥ 0,

(iii) for all x ∈ A,

lim inf
{(t′,x′)→(S,x):t′>S}

V (t ′, x ′) = V (S, x)

and V (T , x) = g(x).
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Enter state constraints and integral cost

(SCS,x0 )


Minimize g(x(T )) +

∫ T
S L(t , x(t), ẋ(t)) dt

over arcs x ∈W 1,1([S,T ];Rn) satisfying
ẋ(t) ∈ F (t , x(t)) a.e. t ∈ [S,T ]
x(t) ∈ A for all t ∈ [S,T ] ← state constraint
x(S) = x0 .

Theorem 5 [Bernis-P.B.]
Impose additional assumptions guaranteeing neighbouring feasible
trajectories results with W1,1-estimates: Then assertions (a)-(c) are
equivalent.
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Rmk. Neighbouring feasible trajectories theorems are
useful/important analytical tools to obtain results for state constrained
problems:

L∞ estimates used for problem: Minimize g(x(T )

W 1,1 estimates used for problem:

Minimize g(x(T )) +
∫ T

S L(t , x(t), ẋ(t)) dt

→ Rampazzo-Vinter IMA 1999, Rampazzo-Vinter SICON 2000,
Frankowska-Rampazzo JDE 2000:
L∞ and W 1,1 estimates, assuming ‘standard’ inward pointing
condition

→ Colombo-Khalil-Rampazzo, in preparation,
estimates assuming ‘second order’ inward pointing condition
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