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Controllability

Given
X =(Xi,...,X,) vector fields.

on some open set 2 C R".

X — trajectory := concatenation of a finite no. of integral

curves of Xi,...,X,, —Xi,...,—-X,.

X controllable in Q
if Vx,y € Q 4X — trajectory &: [t1, 1] — Q
s.t. &(ty) = x, &(tp) = .
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Definition
Given two vector fields X, Y

X, Y] =XY-YX=DY - X-DX-Y.
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Definition
Given two vector fields X, Y

X, Y] =XY-YX=DY - X-DX-Y.

Main fact needed here
e oe™®oeoe™(x) = x+ P[X, Y](x,) + o)

as (t,x) — (0, x,).
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Iterated Lie brackets

Iterated brackets of a family X, ..., X, of vector fields:

o degree 1

pe theorem
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Iterated Lie brackets

Iterated brackets of a family X, ..., X, of vector fields:

o degree 1
o degree 2 ( Lie Bracket or Commutator )
[Xi, Xj] := XiXj — XX = VXjX; - VXX

@ degree 3
|, %71, X

o degree 4
(X6 X1, Xe ], Xel oo (X6 X1, [Xi, Xel
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Iterated Lie brackets

Iterated brackets of a family X, ..., X, of vector fields:

o degree 1

o degree 2 ( Lie Bracket or Commutator )

[Xi, Xj] := XiXj — XX = VXjX; - VXX

@ degree 3
[E®amed
o degree 4
(X, X5, Xl Xel ... [[X, X5, [ Xk, Xell
@ et cetera....
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LARC, Chow-Rashevski’s theorem and other deep
results

Theorem

Assume X, ..., X, satisfy Lie Algebra Rank Condition or
Hormander’s Condition or, that is,

span{itemted Lie brackets at x} =R". (LARC)
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LARC, Chow-Rashevski’s theorem and other deep
results

Theorem

Assume X, ..., X, satisfy Lie Algebra Rank Condition or
Hormander’s Condition or, that is,

span{iterated Lie brackets at x} =R". (LARC)

Then
@ (Chow-Rashevski) Any two points can be connected by an
X-trajectory: T(y,x) < Cly — x|'/*
@ (Hormander)
P
L= Z:X]2 is hypoelliptic
=1

@ (Bony) L satisfies the strong maximum principle.
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A set-valued-bracket (Franco and Hector)

If X1, X, are C%! ,we set

[X1, X2 ]set(X) := E{V = jlirilo[Xl,Xz](Xj), }

where
1. xj € Diff (X1) N Diff (X3) for all j,

2. limj_m Xj =X
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[X1, X2 ]set(X) := E{V = jlirilo[Xl,Xz](Xj), }

where
1. xj € Diff (X1) N Diff (X3) for all j,

2. limj_m Xj =X

Properties: x — [X|, X2]5(x) u. s.c., comp. convex valued; robust
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If X1, X, are C%! ,we set

[X1, X2 ]set(X) := E{V = jlirilo[Xl,Xz](Xj), }

where
1. xj € Diff (X1) N Diff (X3) for all j,

2. limj_m Xj =X

Properties: x — [X|, X2]5(x) u. s.c., comp. convex valued; robust

Applications commutativity, simultaneous rectification, asymptotic formulas,
Chow-Rashevski type theorem. (H. Sussmann, F. Rampazzo, 2001, 2007).
Frobenius type thm (F. Rampazzo 2007).
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A set-valued-bracket (Franco and Hector)

If X1, X, are C%! ,we set

[X1, X2 ]set(X) := E{V = jlirilo[Xl,Xz](Xj), }

where
1. xj € Diff (X1) N Diff (X3) for all j,

2. limj_m Xj =X

Properties: x — [X|, X2]5(x) u. s.c., comp. convex valued; robust

Applications commutativity, simultaneous rectification, asymptotic formulas,
Chow-Rashevski type theorem. (H. Sussmann, F. Rampazzo, 2001, 2007).
Frobenius type thm (F. Rampazzo 2007).

Asymptotic formula: As |¢| + |x — x| — 0,

™2 0 71 0 o2 6 ™1 (x) — x € [X1, X2](x,) + 0(1)
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Higher-order set-valued brackets

If X1, X, are C"! and X3 is C%', we set

[[X1, X2], X3]set(X)
‘=co {V = jli_glo DX3(y;) - [X1, X2](x5) — D[X1, X2](xj) - X3(Yj),}
where

1. x € Diff(DX1) N Diff (DX2) V). y; € Diff (X3) Vi,

2. hmj—)oo(xj’yj) = (X,X).

Properties: Chart-invariant, robust, u.s.c. with comp, conv values
Asymptotic formula: As || + [x — x| — O
e—th ° e—txl ° e—th ° etXI o eth Oel‘X3 ° e—th ° e—txl o eth o etxl(x) —x
p-l k4
3 3
€ [X1, [X2, X3]|(x:) + o(1).
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Theorem (A generalization of Chow-Rashevski’s theorem)

Assume 1 iterated brackets By, . . ., By, possibly set-valued, of the vector fields
Xi,...,X)p s.t. at x.

span{vl,...,vr} =R" Vv, €By,...v,eB,. (GHC)
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Xi,...,X)p s.t. at x.

span{vl,...,vr} =R" VYvi€By,...v,eB,. (GHC)

Then every point x in a neighborhood of x.. is reached by a X-trajectory in
minimum time
T(x, %) < Cle - x]'%,

where k = max{degBj D j= 1,...,r}, Cind. of x.
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Then every point x in a neighborhood of x.. is reached by a X-trajectory in
minimum time
T(x, %) < Cle - x]'%,

where k = max{degBj j=1,.. .,r}, C ind. of x.
If (GHC) holds at every x, € Q, and Q is connected, then every two points of
Q can be connected by a X-trajectory and

T(x,y) < Clx —y|'* locally.
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Theorem (A generalization of Chow-Rashevski’s theorem)
Assume 1 iterated brackets By, . . ., By, possibly set-valued, of the vector fields
Xi,...,X)p s.t. at x.

span{vl,...,vr}=R” Yvi €By,...v,€B,. (GHC)

Then every point x in a neighborhood of x.. is reached by a X-trajectory in
minimum time
T(x, %) < Cle - x]'%,

where k = max{degBj j=1,.. .,r}, C ind. of x.
If (GHC) holds at every x, € Q, and Q is connected, then every two points of
Q can be connected by a X-trajectory and

T(x,y) < Clx —y|'* locally.

GHC is acronym for Generalized Hormander’s Condition.
k is step of HGC at x,.
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EXAMPLES
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Heisenberg group Lie algebra generators

Nonholonomic integrator (Brocket)
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Heisenberg group Lie algebra generators

Nonholonomic integrator (Brocket)

1 0
Xi=| 0 [=0,-yd, Xo=|1|=0,+x0,,
We see that
0
[X:,X2] =|0].
2
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Heisenberg group Lie algebra generators
Nonholonomic integrator (Brocket)

We see that

(X1, X5] =

0
0f.
2

Thus LARC holds at every point of R,
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Heisenberg group Lie algebra generators
Nonholonomic integrator (Brocket)

We see that

(X1, X5] =

0

0] .

2
Thus LARC holds at every point of R,
The system is controllable in R? and has locally (1/2)-Holder
continuous minimum time function.
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A modified nonholonomic integrator in dim = 4

1 0
0 1
X]I —y X2: X
0 0

with @ a nonvanishing continuous function.

0
0
X3:0
a
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A modified nonholonomic integrator in dim = 4

1 0
0 1
X = y X; = B X3 =
0 0
with @ a nonvanishing continuous function.

e Since

0
0
(X1, X>2] = >
0
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A modified nonholonomic integrator in dim = 4

1 0 0
0 1 0
X] = _y X2 = X X3 = 0
0 0 a
with @ a nonvanishing continuous function.
e Since
0
0
(X1, X1 =1,
0
(LARC) is verified:
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A modified nonholonomic integrator in dim = 4

1

0 0
0 1 0
X] = _y X2 = X X3 = 0
0 0 a
with @ a nonvanishing continuous function.
e Since
0
0
(X1, X1 =1,
0
(LARC) is verified:

span{ X\, X, [X1, X1, X3} = R*
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A modified nonholonomic integrator in dim = 4

1

0 0
0 1 0
X] = _y X2 = X X3 = 0
0 0 a
with @ a nonvanishing continuous function.
e Since
0
0
(X1, X2l =,
0
(LARC) is verified:

span{ X\, X, [X1, X1, X3} = R*

— 1/2-Holder minimum time.
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Another modification of the nonholonomic integrator

1 0
X1 = 0 ] = 0+ (y-2y)0., X; = 1 J = 0y +(lxl+2x)0. ,
=2y + |yl 2x + |x|
Simple calculations yield
0
[X1,X5] =4|0| : hel2,6] forx=y=0.
h

In any case LARC of step 2 at every point of R>.
System x = u; X + u,Xo + u3Xs, |u;| < 1, controllable
Minimum time 1/2-Ho6lder continuous.
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Grushin type vector fields

Higher order brackets

Let

1 0
X1 = (0) %= (2x" - x|x|k—1)

One checks (for k even)

[Xi’ [Xi7 [ v [Xi7 Xn+i]]]]set = {(2) :he [k‘7 3k']} atx=0.

k bracketings

Hormander of step k + 1.
Hence 1/(k + 1) minimum time.

Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 14/18



Proof: integral formulas

If X;,X, € C*

71 2
xe'X1p2X2 o~ 11X p~02Xo x+f f xe'X152%2 p(s1-1)X1 [X],Xz]e_slxle_szxzdsl
0 0
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Proof: integral formulas

If X;,X, € C*

2
xe'X1p2X2 o~ 11X p~02Xo x+f f xe'X152%2 p(s1-1)X1 (X, ,Xz]e_slxl e—Szxzdsl

Ile,Xz S CZ, X3 € Cl, then

t1X1 1‘2X2 —t1X1 —t2X2 nXy ,—0Xo ,~t1X1 ,—13X3

e e e e —X =

f f f xetlxl 12X26—11X16—12X26V3X3612X2 nXi (Vz 0)X> —t1X1 —¥2X2

SzXzelel )(1,)(2 —s1X1 e—S2X2 X ] SzXzethle—sz)(ze—thle S;X3ds1 dS2 dS3 .

X X
els 3612 2

E. FeLeQ1 & F. Rampazzo, Integral representations for

bracket-generating multi-flows, Discrete Contin. Dyn. Syst. Ser. A.,
2015.
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Proof: asymptotic formulas

OIffi,LeClLx.eM,
xe'ie2e g0l = x 4 111, [f1, o]1(x.) + tit0(1)

as |x — x.| + (7, )] — 0.
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Proof: asymptotic formulas

OIffi,LeClLx.eM,
xe'ie2e g0l = x 4 111, [f1, o]1(x.) + tit0(1)

as |x — x| +|(t1, )| = 0.
) If f1,/5, € Cz,fg eClx.eM,

xe'V1 122 p=1\f1 =022 o133 p12f2 11 =12 =111 p=1aS5
= x + nnt(lfi, f21, 1) + (i)o(1)

as |x — x.| + (1, 12, 13)| = 0.
E. Feleqi & F. Rampazzo, Iterated Lie brackets for nonsmooth vector
fields, NoDEA - Nonlinear Differential Equations Appl., 2017.
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Proof: Generalized Differential Quotients

IfXeCM, (0, X)) = {dv) : veX®)),

is a GDQ (¢, x) > xe',
def
If X1,X, € COL, (I, [X1, Xo)s (%)) = {Iyv) = v € [X), Xalyer(x))

and ile,X2 S Cl’l,Xg S CO’I
(I, [[X1, X21, XL (e) € {Ly v) = v € [[X1, Xa], Xa]ser(x,)} are GDQs

of, respectively, Ef‘.‘]’xﬁ, Etfl.’]xj’xﬂ at (x,, 0) in the direction of Q X R,
where
(X1,X2) (X1,X2) .
ST gy o X‘P[.X.l] ;( Vi, Vo - ;/? — 1) if >0
-l B R G A e G e A e I SR

X1,X0.X. . X1.X.X3) , 3 37 3
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Proof: conclusion

We assume generalized LARC at x, for X;,X, € C'!, X3 € C%!,
X, € CM that is,

Span {Xl (x*)’ X2(-x*)a X3(X*), [Xl ) XZ]’ [Xl’ X3]set(x*)a [XZ’ X3]set(-x*),

[1X1, Xa, Xslser (), Xa(x)} = T Q@ = R”.

Consider R® 5 (¢1,...,%) —

X, X1 phXa p13X3 Z(Xl XZ)(Z‘4) Z(Xl X3)(t5)Z(X2 X3)(t )Zﬁ(l]xﬁ&)(ﬁ) 8% e Q :

By the chain rule, its GDQ at 0 € R? is
(Xl (x*) XZ(X*) X3(-x*) [Xl ,XZ](X*) [Xl’ X3]set(x*) [XZ’ X3]set(-x*)

[1X1, X1, X3 leer () Xa(x.))

The LARC implies that the open mapping for GDQs applies to this
map and hence the conclusion.

E. Feleqi & F. Rampazzo, An L*-Chow-Rashevski’s Theorem, work in
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Best wishes
Franco and Giovanni!!
Thank you!
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