A nonsmooth Chow-Rashevski's theorem

Ermal Feleqi

University of Vlora, Albania

Optimization, State Constraints and Geometric Control Padova, May 25, 2018

References

- F. Rampazzo & H. Sussmann, *Set-valued differentials and a nonsmooth version of Chow-Rashevski's theorem*, Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, December 2001.
- F. Rampazzo and H. Sussmann, Commutators of flow maps of nonsmooth vector fields, J. Differential Equations 2007

Sketch of results in

- E. Feleqi & F. Rampazzo, *Integral representations for* bracket-generating multi-flows, Discrete Contin. Dyn. Syst. Ser. A., 2015.
- E. Feleqi & F. Rampazzo, *Iterated Lie brackets for nonsmooth vector fields*, NoDEA Nonlinear Differential Equations Appl., 2017.
- Section 2. Section

Given

$$X = (X_1, \ldots, X_p)$$
 vector fields.

on some open set $\Omega \subset \mathbb{R}^n$.

X – **trajectory** := concatenation of a finite no. of integral curves of $X_1, \ldots, X_p, -X_1, \ldots, -X_p$.

Definition

X controllable in Ω

if $\forall x, y \in \Omega \; \exists X - \text{trajectory } \xi \colon [t_1, t_2] \to \Omega$ s.t. $\xi(t_1) = x, \; \xi(t_2) = y.$

Definition

Given two vector fields X, Y

$$[X, Y] = XY - YX \equiv DY \cdot X - DX \cdot Y$$

Definition

Given two vector fields X, Y

 $[X, Y] = XY - YX \equiv DY \cdot X - DX \cdot Y.$

Main fact needed here

$$e^{-tY} \circ e^{-tX} \circ e^{tY} \circ e^{tX}(x) = x + t^2[X, Y](x_*) + o(t^2)$$

as $(t, x) \to (0, x_*)$.

Iterated brackets of a family X_1, \ldots, X_p of vector fields:

• degree 1

$$X_1,\ldots,X_p$$

3

э

∃ >

Image: A matrix and a matrix

Iterated brackets of a family X_1, \ldots, X_p of vector fields:

• degree 1

$$X_1,\ldots,X_p$$

• degree 2 (Lie Bracket or Commutator)

$$[X_i, X_j] := X_i X_j - X_j X_i \equiv \nabla X_j X_i - \nabla X_i X_j$$

Iterated brackets of a family X_1, \ldots, X_p of vector fields:

• degree 1

$$X_1,\ldots,X_p$$

• degree 2 (Lie Bracket or Commutator)

$$[X_i, X_j] := X_i X_j - X_j X_i \equiv \nabla X_j X_i - \nabla X_i X_j$$

• degree 3

$$\left[\left[X_i, X_j \right] , X_k \right]$$

< 17 ▶

Iterated brackets of a family X_1, \ldots, X_p of vector fields:

• degree 1

$$X_1,\ldots,X_p$$

• degree 2 (Lie Bracket or Commutator)

$$[X_i,X_j]:=X_iX_j-X_jX_i\equiv \nabla X_jX_i-\nabla X_iX_j$$

• degree 3

$$\left[\left[X_i, X_j \right] \;,\; X_k \right]$$

• degree 4

 $[[[X_i, X_j], X_k], X_\ell] \quad \dots \quad [[X_i, X_j], [X_k, X_\ell]]$

< <p>I > < <p>I

Iterated brackets of a family X_1, \ldots, X_p of vector fields:

• degree 1

$$X_1,\ldots,X_p$$

• degree 2 (Lie Bracket or Commutator)

$$[X_i, X_j] := X_i X_j - X_j X_i \equiv \nabla X_j X_i - \nabla X_i X_j$$

• degree 3

$$\left[\left[X_i, X_j \right] \;,\; X_k \right]$$

• degree 4

$[[[X_i, X_j], X_k], X_\ell] \quad \dots \quad [[X_i, X_j], [X_k, X_\ell]]$

• et cetera....

Ermal Feleqi (University of Vlora, Albania)

< < >> < <</p>

Theorem

Assume X_1, \ldots, X_p satisfy Lie Algebra Rank Condition or Hörmander's Condition or, that is,

 $span\{iterated \ Lie \ brackets \ at \ x\} = \mathbb{R}^n$. (LARC)

Theorem

Assume X_1, \ldots, X_p satisfy Lie Algebra Rank Condition or Hörmander's Condition or, that is,

span{iterated Lie brackets at
$$x$$
} = \mathbb{R}^n . (LARC)

Then

(Chow-Rashevski) Any two points can be connected by an X-trajectory:

Theorem

Assume X_1, \ldots, X_p satisfy Lie Algebra Rank Condition or Hörmander's Condition or, that is,

span{iterated Lie brackets at
$$x$$
} = \mathbb{R}^n . (LARC)

Then

• (*Chow-Rashevski*) Any two points can be connected by an *X*-trajectory: $T(y,x) \le C|y-x|^{1/k}$

Theorem

Assume X_1, \ldots, X_p satisfy Lie Algebra Rank Condition or Hörmander's Condition or, that is,

$$span\{iterated \ Lie \ brackets \ at \ x\} = \mathbb{R}^n.$$
 (LARC)

Then

- (Chow-Rashevski) Any two points can be connected by an X-trajectory: $T(y,x) \le C|y-x|^{1/k}$
- (Hörmander)

$$\mathcal{L} = \sum_{j=1}^{p} X_j^2 \quad is hypoelliptic$$

(Bony) \mathcal{L} satisfies the strong maximum principle.

If X_1, X_2 are $C^{0,1}$, we set

$$[X_1, X_2]_{set}(x) := \overline{co} \left\{ v = \lim_{j \to \infty} [X_1, X_2](x_j), \right\}$$

where

1. $x_j \in \mathcal{D}iff(X_1) \cap \mathcal{D}iff(X_2)$ for all j,

2. $\lim_{j\to\infty} x_j = x$

If X_1, X_2 are $C^{0,1}$, we set

$$[X_1, X_2]_{set}(x) := \overline{co} \left\{ v = \lim_{j \to \infty} [X_1, X_2](x_j), \right\}$$

where

1. $x_j \in \mathcal{D}iff(X_1) \cap \mathcal{D}iff(X_2)$ for all j, 2. $\lim_{j \to \infty} x_j = x$

Properties: $x \mapsto [X_1, X_2]_{set}(x)$ u. s.c., comp. convex valued; robust

If X_1, X_2 are $C^{0,1}$, we set

$$[X_1, X_2]_{set}(x) := \overline{co} \left\{ v = \lim_{j \to \infty} [X_1, X_2](x_j), \right\}$$

where

1.
$$x_j \in \mathcal{D}iff(X_1) \cap \mathcal{D}iff(X_2)$$
 for all j ,
2. $\lim_{i \to \infty} x_i = x$

Properties: $x \mapsto [X_1, X_2]_{set}(x)$ u. s.c., comp. convex valued; robust

Applications commutativity, simultaneous rectification, asymptotic formulas, **Chow-Rashevski type theorem**. (H. Sussmann, F. Rampazzo, 2001, 2007). Frobenius type thm (F. Rampazzo 2007).

If X_1, X_2 are $C^{0,1}$, we set

$$[X_1, X_2]_{set}(x) := \overline{co} \left\{ v = \lim_{j \to \infty} [X_1, X_2](x_j), \right\}$$

where

1.
$$x_j \in \mathcal{D}iff(X_1) \cap \mathcal{D}iff(X_2)$$
 for all j ,
2. $\lim_{j \to \infty} x_j = x$

Properties: $x \mapsto [X_1, X_2]_{set}(x)$ u. s.c., comp. convex valued; robust

Applications commutativity, simultaneous rectification, asymptotic formulas, **Chow-Rashevski type theorem**. (H. Sussmann, F. Rampazzo, 2001, 2007). Frobenius type thm (F. Rampazzo 2007).

Asymptotic formula: As $|t| + |x - x_*| \rightarrow 0$,

 $e^{-tX_2} \circ e^{-tX_1} \circ e^{tX_2} \circ e^{tX_1}(x) - x \in t^2[X_1, X_2](x_*) + t^2o(1)$

Higher-order set-valued brackets

If X_1, X_2 are $C^{1,1}$ and X_3 is $C^{0,1}$, we set

$$\begin{split} & [[X_1, X_2], X_3]_{set}(x) \\ & \coloneqq \overline{co} \left\{ v = \lim_{j \to \infty} DX_3(y_j) \cdot [X_1, X_2](x_j) - D[X_1, X_2](x_j) \cdot X_3(y_j), \right\} \end{split}$$

where

1.
$$x_j \in \mathcal{D}iff(DX_1) \cap \mathcal{D}iff(DX_2) \ \forall j, y_j \in \mathcal{D}iff(X_3) \ \forall j,$$

2.
$$\lim_{j\to\infty}(x_j, y_j) = (x, x).$$

Properties: Chart-invariant, robust, u.s.c. with comp, conv values **Asymptotic formula:** As $|t| + |x - x_*| \rightarrow 0$

$$e^{-tX_{3}} \circ \underbrace{e^{-tX_{1}} \circ e^{-tX_{2}} \circ e^{tX_{1}} \circ e^{tX_{2}}}_{\Psi^{-1}} \circ e^{tX_{3}} \circ \underbrace{e^{-tX_{2}} \circ e^{-tX_{1}} \circ e^{tX_{2}} \circ e^{tX_{1}}}_{\Psi}(x) - x$$

$$\in t^{3}[X_{1}, [X_{2}, X_{3}]](x_{*}) + t^{3}o(1).$$

Assume \exists iterated brackets B_1, \ldots, B_r , possibly set-valued, of the vector fields X_1, \ldots, X_p s.t. at x_*

span
$$\{v_1, \ldots, v_r\} = \mathbb{R}^n \quad \forall v_1 \in B_1, \ldots, v_r \in B_r.$$
 (GHC)

- 47 ▶

э

Assume \exists iterated brackets B_1, \ldots, B_r , possibly set-valued, of the vector fields X_1, \ldots, X_p s.t. at x_*

$$\operatorname{span}\left\{v_1,\ldots,v_r\right\} = \mathbb{R}^n \quad \forall v_1 \in B_1,\ldots,v_r \in B_r. \quad (GHC)$$

Then every point x in a neighborhood of x_* is reached by a X-trajectory in minimum time

 $T(x, x_*) \le C|x - x_*|^{1/k},$ where $k = \max \{ \deg B_j : j = 1, ..., r \}, C ind. of x.$

Assume \exists iterated brackets B_1, \ldots, B_r , possibly set-valued, of the vector fields X_1, \ldots, X_p s.t. at x_*

$$\operatorname{span}\left\{v_1,\ldots,v_r\right\} = \mathbb{R}^n \quad \forall v_1 \in B_1,\ldots,v_r \in B_r. \quad (GHC)$$

Then every point x in a neighborhood of x_* is reached by a X-trajectory in minimum time

$$T(x, x_*) \le C|x - x_*|^{1/k}$$
,

where $k = \max \{ \deg B_j : j = 1, ..., r \}$, *C* ind. of *x*. **If** (GHC) holds at every $x_* \in \Omega$, and Ω is connected, **then** every two points of Ω can be connected by a X-trajectory and

$$T(x, y) \le C|x - y|^{1/k}$$
 locally.

Assume \exists iterated brackets B_1, \ldots, B_r , possibly set-valued, of the vector fields X_1, \ldots, X_p s.t. at x_*

$$\operatorname{span}\left\{v_1,\ldots,v_r\right\} = \mathbb{R}^n \quad \forall v_1 \in B_1,\ldots,v_r \in B_r. \quad (GHC)$$

Then every point x in a neighborhood of x_* is reached by a X-trajectory in minimum time

$$T(x, x_*) \le C|x - x_*|^{1/k}$$
,

where $k = \max \{ \deg B_j : j = 1, ..., r \}$, *C* ind. of *x*. **If** (GHC) holds at every $x_* \in \Omega$, and Ω is connected, **then** every two points of Ω can be connected by a X-trajectory and

$$T(x, y) \le C|x - y|^{1/k}$$
 locally.

GHC is acronym for Generalized Hörmander's Condition. k is step of HGC at x_* .

Ermal Feleqi (University of Vlora, Albania)

EXAMPLES

A D b A A b A

$$X_1 = \begin{pmatrix} 1 \\ 0 \\ -y \end{pmatrix} \equiv \partial_x - y \partial_z, \quad X_2 = \begin{pmatrix} 0 \\ 1 \\ x \end{pmatrix} \equiv \partial_y + x \partial_z,$$

$$X_1 = \begin{pmatrix} 1 \\ 0 \\ -y \end{pmatrix} \equiv \partial_x - y \partial_z, \quad X_2 = \begin{pmatrix} 0 \\ 1 \\ x \end{pmatrix} \equiv \partial_y + x \partial_z,$$

We see that

$$[X_1, X_2] = \begin{pmatrix} 0\\0\\2 \end{pmatrix}.$$

Ermal Feleqi (University of Vlora, Albania)

Padova, May 25, 2018 11 / 18

$$X_1 = \begin{pmatrix} 1 \\ 0 \\ -y \end{pmatrix} \equiv \partial_x - y \partial_z, \quad X_2 = \begin{pmatrix} 0 \\ 1 \\ x \end{pmatrix} \equiv \partial_y + x \partial_z,$$

We see that

$$[X_1, X_2] = \begin{pmatrix} 0\\0\\2 \end{pmatrix}.$$

Thus LARC holds at every point of \mathbb{R}^3 .

$$X_1 = \begin{pmatrix} 1 \\ 0 \\ -y \end{pmatrix} \equiv \partial_x - y \partial_z, \quad X_2 = \begin{pmatrix} 0 \\ 1 \\ x \end{pmatrix} \equiv \partial_y + x \partial_z,$$

We see that

$$[X_1, X_2] = \begin{pmatrix} 0\\0\\2 \end{pmatrix}.$$

Thus LARC holds at every point of \mathbb{R}^3 . The system is controllable in \mathbb{R}^3 and has locally (1/2)-Hölder continuous minimum time function.

$$X_{1} = \begin{pmatrix} 1 \\ 0 \\ -y \\ 0 \end{pmatrix} \quad X_{2} = \begin{pmatrix} 0 \\ 1 \\ x \\ 0 \end{pmatrix} \quad X_{3} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \alpha \end{pmatrix}$$

with α a nonvanishing **continuous** function.

$$X_{1} = \begin{pmatrix} 1 \\ 0 \\ -y \\ 0 \end{pmatrix} \quad X_{2} = \begin{pmatrix} 0 \\ 1 \\ x \\ 0 \end{pmatrix} \quad X_{3} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \alpha \\ \alpha \end{pmatrix}$$

with α a nonvanishing continuous function.Since

$$[X_1, X_2] = \begin{pmatrix} 0\\0\\2\\0 \end{pmatrix}$$

Ermal Feleqi (University of Vlora, Albania)

$$X_{1} = \begin{pmatrix} 1 \\ 0 \\ -y \\ 0 \end{pmatrix} \quad X_{2} = \begin{pmatrix} 0 \\ 1 \\ x \\ 0 \end{pmatrix} \quad X_{3} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \alpha \\ \alpha \end{pmatrix}$$

with α a nonvanishing continuous function.Since

$$[X_1, X_2] = \begin{pmatrix} 0\\0\\2\\0 \end{pmatrix}$$

(LARC) is verified:

$$X_{1} = \begin{pmatrix} 1 \\ 0 \\ -y \\ 0 \end{pmatrix} \quad X_{2} = \begin{pmatrix} 0 \\ 1 \\ x \\ 0 \end{pmatrix} \quad X_{3} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \alpha \\ \alpha \end{pmatrix}$$

with α a nonvanishing continuous function.Since

$$[X_1, X_2] = \begin{pmatrix} 0\\0\\2\\0 \end{pmatrix}$$

(LARC) is verified:

$$span\{X_1, X_2, [X_1, X_2], X_3\} = \mathbb{R}^4$$

$$X_{1} = \begin{pmatrix} 1 \\ 0 \\ -y \\ 0 \end{pmatrix} \quad X_{2} = \begin{pmatrix} 0 \\ 1 \\ x \\ 0 \end{pmatrix} \quad X_{3} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \alpha \\ \alpha \end{pmatrix}$$

with α a nonvanishing continuous function.Since

$$[X_1, X_2] = \begin{pmatrix} 0\\0\\2\\0 \end{pmatrix}$$

(LARC) is verified:

$$span\{X_1, X_2, [X_1, X_2], X_3\} = \mathbb{R}^4$$

 \implies 1/2-Hölder minimum time.

Another modification of the nonholonomic integrator

$$X_1 = \begin{pmatrix} 1 \\ 0 \\ -2y + |y| \end{pmatrix} \equiv \partial_x + (|y| - 2y)\partial_z, \quad X_2 = \begin{pmatrix} 0 \\ 1 \\ 2x + |x| \end{pmatrix} \equiv \partial_y + (|x| + 2x)\partial_z,$$

Simple calculations yield

$$[X_1, X_2] = \left\{ \begin{pmatrix} 0 \\ 0 \\ h \end{pmatrix} : h \in [2, 6] \right\} \text{ for } x = y = 0.$$

In any case **LARC** of step 2 at every point of \mathbb{R}^3 . System $\dot{x} = u_1X_1 + u_2X_2 + u_3X_3$, $|u_i| \le 1$, **controllable** Minimum time 1/2-Hölder continuous.

Grushin type vector fields Higher order brackets

Let

$$X_1 = \begin{pmatrix} 1\\ 0 \end{pmatrix} \qquad X_2 = \begin{pmatrix} 0\\ 2x^k - x|x|^{k-1} \end{pmatrix}$$

One checks (for *k* even)

$$\underbrace{[X_i, [X_i, [\cdots [X_i, X_{n+i}]]]]_{set}}_{k \text{ bracketings}} = \left\{ \begin{pmatrix} 0 \\ h \end{pmatrix} : h \in [k!, 3k!] \right\} \text{ at } x = 0.$$

Hörmander of step k + 1. Hence 1/(k + 1) minimum time.

Proof: integral formulas

If $X_1, X_2 \in C^1$

$$xe^{t_1X_1}e^{t_2X_2}e^{-t_1X_1}e^{-t_2X_2} = x + \int_0^{t_1} \int_0^{t_2} xe^{t_1X_1}e^{s_2X_2}e^{(s_1-t_1)X_1}[X_1, X_2]e^{-s_1X_1}e^{-s_2X_2}ds_1$$

э.

A D > A A P >
 A

э

Proof: integral formulas

If $X_1, X_2 \in C^1$

$$xe^{t_1X_1}e^{t_2X_2}e^{-t_1X_1}e^{-t_2X_2} = x + \int_0^{t_1} \int_0^{t_2} xe^{t_1X_1}e^{s_2X_2}e^{(s_1-t_1)X_1}[X_1, X_2]e^{-s_1X_1}e^{-s_2X_2}ds_1$$

If $X_1, X_2 \in C^2, X_3 \in C^1$, then

$$\begin{aligned} xe^{t_1X_1}e^{t_2X_2}e^{-t_1X_1}e^{-t_2X_2}e^{t_3X_3}e^{t_2X_2}e^{t_1X_1}e^{-t_2X_2}e^{-t_1X_1}e^{-t_3X_3} - x &= \\ & \int_0^{t_1}\int_0^{t_2}\int_0^{t_3}xe^{t_1X_1}e^{t_2X_2}e^{-t_1X_1}e^{-t_2X_2}e^{s_3X_3}e^{t_2X_2}e^{t_1X_1}e^{(s_2-t_2)X_2}e^{-t_1X_1}e^{-s_2X_2} \\ & [e^{s_2X_2}e^{s_1X_1}[X_1, X_2]e^{-s_1X_1}e^{-s_2X_2}, X_3]e^{s_2X_2}e^{t_1X_1}e^{-s_2X_2}e^{-t_1X_1}e^{-s_3X_3}ds_1 ds_2 ds_3 \,. \end{aligned}$$

E. FELEQI & F. RAMPAZZO, *Integral representations for bracket-generating multi-flows*, Discrete Contin. Dyn. Syst. Ser. A., 2015.

Proof: asymptotic formulas

(i) If $f_1, f_2 \in C^1, x_* \in M$, $xe^{t_1f_1}e^{t_2f_2}e^{-t_1f_1}e^{-t_2f_2} = x + t_1t_2[f_1, f_2](x_*) + t_1t_2o(1)$ as $|x - x_*| + |(t_1, t_2)| \to 0$.

Proof: asymptotic formulas

(i) If
$$f_1, f_2 \in C^1, x_* \in M$$
,
 $xe^{t_1f_1}e^{t_2f_2}e^{-t_1f_1}e^{-t_2f_2} = x + t_1t_2[f_1, f_2](x_*) + t_1t_2o(1)$
as $|x - x_*| + |(t_1, t_2)| \to 0$.
(ii) If $f_1, f_2, \in C^2, f_3 \in C^1, x_* \in M$,
 $xe^{t_1f_1}e^{t_2f_2}e^{-t_1f_1}e^{-t_2f_2}e^{t_3f_3}e^{t_2f_2}e^{t_1f_1}e^{-t_2f_2}e^{-t_1f_1}e^{-t_3f_3}$
 $= x + t_1t_2t_3[[f_1, f_2], f_3](x_*) + (t_1t_2t_3)o(1)$

as $|x - x_*| + |(t_1, t_2, t_3)| \to 0$.

E. Feleqi & F. Rampazzo, *Iterated Lie brackets for nonsmooth vector fields*, NoDEA - Nonlinear Differential Equations Appl., 2017.

Proof: Generalized Differential Quotients

If
$$X \in C^{-1,1}$$
, $(I_n X(x_*)) \stackrel{\text{def}}{=} \{(I_n v) : v \in X(x_*)\},\$
is a GDQ $(t, x) \mapsto xe^{tX},$
If $X_1, X_2 \in C^{0,1}$, $(I_n [X_1, X_2]_{set}(x_*)) \stackrel{\text{def}}{=} \{(I_n v) : v \in [X_1, X_2]_{set}(x_*)\}\$
and if $X_1, X_2 \in C^{1,1}, X_3 \in C^{0,1}$
 $(I_n [[X_1, X_2], X_3]_{set}(x_*)) \stackrel{\text{def}}{=} \{(I_n v) : v \in [[X_1, X_2], X_3]_{set}(x_*)\}\$ are GDQs
of, respectively, $\Sigma_{[\cdot,\cdot]}^{(X_1, X_2)}, \Sigma_{[[\cdot,\cdot],\cdot]}^{(X_1, X_2, X_3)}$ at $(x_*, 0)$ in the direction of $\Omega \times \mathbb{R}$,
where

$$\begin{split} \Sigma_{[\cdot,\cdot]}^{(X_1,X_2)}(x,t) &:= \begin{cases} x \Psi_{[\cdot,\cdot]}^{(X_1,X_2)}(\sqrt{t},\sqrt{t}) \Psi_{[\cdot,\cdot]}^{(X_1,X_2)}(-\sqrt{t},-\sqrt{t}) & \text{if } t \geq 0\\ x \Psi_{[\cdot,\cdot]}^{(X_1,-X_2)}(\sqrt{-t},\sqrt{-t}) \Psi_{[\cdot,\cdot]}^{(X_1,-X_2)}(-\sqrt{-t},-\sqrt{-t}) & \text{if } t < 0, \end{cases} \\ \Sigma_{[[\cdot,\cdot],\cdot]}^{(X_1,X_2,X_3)}(x,t) &:= x \Psi_{[[\cdot,\cdot],\cdot]}^{(X_1,X_2,X_3)}(\sqrt[3]{t},\sqrt[3]{t},\sqrt[3]{t}) & \forall t \in \mathbb{R} \,. \end{split}$$

3 × 4 3 ×

A D b A A b A

э

Proof: conclusion

We assume generalized LARC at x_* for $X_1, X_2 \in C^{1,1}, X_3 \in C^{0,1}$, $X_4 \in C^{-1,1}$, that is,

 $span \{X_1(x_*), X_2(x_*), X_3(x_*), [X_1, X_2], [X_1, X_3]_{set}(x_*), [X_2, X_3]_{set}(x_*), \\ [[X_1, X_2], X_3]_{set}(x_*), X_4(x_*)\} = T_{x_*}\Omega \equiv \mathbb{R}^n.$ Consider $\mathbb{R}^8 \ni (t_1, \dots, t_8) \mapsto (Y, Y) = (Y, Y)$

 $x_*e^{t_1X_1}e^{t_2X_2}e^{t_3X_3}\Sigma_{[\cdot,\cdot]}^{(X_1,X_2)}(t_4)\Sigma_{[\cdot,\cdot]}^{(X_1,X_3)}(t_5)\Sigma_{[\cdot,\cdot]}^{(X_2,X_3)}(t_6)\Sigma_{[[\cdot,\cdot],\cdot]}^{(X_1,X_2,X_3)}(t_7)e^{t_8X_4} \in \Omega;$ By the **chain rule**, its GDQ at $0 \in \mathbb{R}^8$ is

 $\left(X_1(x_*) X_2(x_*) X_3(x_*) [X_1, X_2](x_*) [X_1, X_3]_{set}(x_*) [X_2, X_3]_{set}(x_*) \right)$ $\left[[X_1, X_2], X_3]_{set}(x_*) X_4(x_*) \right).$

The LARC implies that the open mapping for GDQs applies to this map and hence the conclusion.

E. Feleqi & F. Rampazzo, An L^{∞} -Chow-Rashevski's Theorem, work in

Best wishes Franco and Giovanni!! Thank you!

Ermal Feleqi (University of Vlora, Albania)