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Controllability

Given
X = (X1, . . . ,Xp) vector fields .

on some open set Ω ⊂ Rn.

X − trajectory := concatenation of a finite no. of integral
curves of X1, . . . ,Xp, −X1, . . . ,−Xp .

Definition

X controllable in Ω

if ∀x, y ∈ Ω ∃X − trajectory ξ : [t1, t2]→ Ω

s.t. ξ(t1) = x, ξ(t2) = y.
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Lie bracket

Definition
Given two vector fields X, Y

[X,Y] = XY − YX ≡ DY · X − DX · Y .

Main fact needed here

e−tY ◦ e−tX ◦ etY ◦ etX(x) = x + t2[X,Y](x∗) + o(t2)

as (t, x)→ (0, x∗).
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Iterated Lie brackets
Iterated brackets of a family X1, . . . ,Xp of vector fields:

degree 1
X1, . . . ,Xp

degree 2 ( Lie Bracket or Commutator )

[Xi,Xj] := XiXj − XjXi ≡ ∇XjXi − ∇XiXj

degree 3 [
[Xi,Xj] , Xk

]
degree 4

[[[Xi,Xj],Xk],X`] . . . [[Xi,Xj], [Xk,X`]]

et cetera....
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LARC, Chow-Rashevski’s theorem and other deep
results

Theorem
Assume X1, . . . ,Xp satisfy Lie Algebra Rank Condition or
Hörmander’s Condition or, that is,

span
{
iterated Lie brackets at x

}
= Rn . (LARC)

Then
1. (Chow-Rashevski) Any two points can be connected by an
X-trajectory: T(y, x) ≤ C|y − x|1/k

2. (Hörmander)

L =

p∑
j=1

X2
j is hypoelliptic

3. (Bony) L satisfies the strong maximum principle.
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A set-valued-bracket (Franco and Hector)

If X1,X2 are C0,1 ,we set

[X1,X2]set(x) := co
{

v = lim
j→∞

[X1,X2](xj),
}

where

1. xj ∈ Diff (X1) ∩Diff (X2) for all j,

2. limj→∞ xj = x

Properties: x 7→ [X1,X2]set(x) u. s.c., comp. convex valued; robust

Applications commutativity, simultaneous rectification, asymptotic formulas,
Chow-Rashevski type theorem. (H. Sussmann, F. Rampazzo, 2001, 2007).
Frobenius type thm (F. Rampazzo 2007).

Asymptotic formula: As |t| + |x − x∗| → 0,

e−tX2 ◦ e−tX1 ◦ etX2 ◦ etX1(x) − x ∈ t2[X1,X2](x∗) + t2o(1)
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Higher-order set-valued brackets

If X1,X2 are C1,1 and X3 is C0,1, we set

[[X1,X2],X3]set(x)

:= co
{

v = lim
j→∞

DX3(yj) · [X1,X2](xj) − D[X1,X2](xj) · X3(yj),
}

where

1. xj ∈ Diff (DX1) ∩Diff (DX2) ∀j, yj ∈ Diff (X3) ∀j,

2. limj→∞(xj, yj) = (x, x).

Properties: Chart-invariant, robust, u.s.c. with comp, conv values
Asymptotic formula: As |t| + |x − x∗| → 0

e−tX3 ◦ e−tX1 ◦ e−tX2 ◦ etX1 ◦ etX2︸                         ︷︷                         ︸
Ψ−1

◦etX3 ◦ e−tX2 ◦ e−tX1 ◦ etX2 ◦ etX1︸                         ︷︷                         ︸
Ψ

(x) − x

∈ t3[X1, [X2,X3]
]
(x∗) + t3o(1) .
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Theorem (A generalization of Chow-Rashevski’s theorem)
Assume ∃ iterated brackets B1, . . . ,Br, possibly set-valued, of the vector fields

X1, . . . ,Xp s.t. at x∗

span
{
v1, . . . , vr

}
= Rn ∀v1 ∈ B1, . . . vr ∈ Br . (GHC)

Then every point x in a neighborhood of x∗ is reached by a X-trajectory in
minimum time

T(x, x∗) ≤ C|x − x∗|1/k ,

where k = max
{

deg Bj : j = 1, . . . , r
}
, C ind. of x.

If (GHC) holds at every x∗ ∈ Ω, and Ω is connected, then every two points of
Ω can be connected by a X-trajectory and

T(x, y) ≤ C|x − y|1/k locally.

GHC is acronym for Generalized Hörmander’s Condition.
k is step of HGC at x∗.
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EXAMPLES

Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 10 / 18



Heisenberg group Lie algebra generators
Nonholonomic integrator (Brocket)

X1 =

 1
0
−y

 ≡ ∂x − y∂z, X2 =

 0
1
x

 ≡ ∂y + x∂z ,

We see that

[X1,X2] =

00
2

 .
Thus LARC holds at every point of R3.
The system is controllable in R3 and has locally (1/2)-Hölder
continuous minimum time function.
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A modified nonholonomic integrator in dim = 4

X1 =


1
0
−y
0

 X2 =


0
1
x
0

 X3 =


0
0
0
α


with α a nonvanishing continuous function.

Since

[X1,X2] =


0
0
2
0


(LARC) is verified:

span
{
X1,X2, [X1,X2],X3

}
= R4

=⇒ 1/2-Hölder minimum time.
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Another modification of the nonholonomic integrator

X1 =

 1
0

−2y + |y|

 ≡ ∂x+(|y|−2y)∂z, X2 =

 0
1

2x + |x|

 ≡ ∂y+(|x|+2x)∂z ,

Simple calculations yield

[X1,X2] =


00
h

 : h ∈ [2, 6]

 for x = y = 0.

In any case LARC of step 2 at every point of R3.
System ẋ = u1X1 + u2X2 + u3X3, |ui| ≤ 1, controllable
Minimum time 1/2-Hölder continuous.
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Grushin type vector fields
Higher order brackets

Let

X1 =

(
1
0

)
X2 =

(
0

2xk − x|x|k−1

)
One checks (for k even)

[Xi, [Xi, [· · · [Xi,Xn+i]]]]set︸                           ︷︷                           ︸
k bracketings

=

{(
0
h

)
: h ∈ [k!, 3k!]

}
at x = 0 .

Hörmander of step k + 1.
Hence 1/(k + 1) minimum time.
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Proof: integral formulas

If X1,X2 ∈ C1

xet1X1et2X2e−t1X1e−t2X2 = x+

∫ t1

0

∫ t2

0
xet1X1es2X2e(s1−t1)X1[X1,X2]e−s1X1e−s2X2ds1 ds2 .

If X1,X2 ∈ C2, X3 ∈ C1, then

xet1X1et2X2e−t1X1e−t2X2et3X3et2X2et1X1e−t2X2e−t1X1e−t3X3 − x =∫ t1

0

∫ t2

0

∫ t3

0
xet1X1et2X2e−t1X1e−t2X2es3X3et2X2et1X1e(s2−t2)X2e−t1X1e−s2X2[

es2X2es1X1[X1,X2]e−s1X1e−s2X2 , X3
]
es2X2et1X1e−s2X2e−t1X1e−s3X3ds1 ds2 ds3 .

E. Feleqi & F. Rampazzo, Integral representations for
bracket-generating multi-flows, Discrete Contin. Dyn. Syst. Ser. A.,
2015.
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es2X2es1X1[X1,X2]e−s1X1e−s2X2 , X3
]
es2X2et1X1e−s2X2e−t1X1e−s3X3ds1 ds2 ds3 .

E. Feleqi & F. Rampazzo, Integral representations for
bracket-generating multi-flows, Discrete Contin. Dyn. Syst. Ser. A.,
2015.
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Proof: asymptotic formulas

(i) If f1, f2 ∈ C1, x∗ ∈ M,

xet1f1et2f2e−t1f1e−t2f2 = x + t1t2[f1, f2](x∗) + t1t2o(1)

as |x − x∗| + |(t1, t2)| → 0.

(ii) If f1, f2, ∈ C2, f3 ∈ C1, x∗ ∈ M,

xet1f1et2f2e−t1f1e−t2f2et3f3et2f2et1f1e−t2f2e−t1f1e−t3f3

= x + t1t2t3[[f1, f2], f3](x∗) + (t1t2t3)o(1)

as |x − x∗| + |(t1, t2, t3)| → 0.

E. Feleqi & F. Rampazzo, Iterated Lie brackets for nonsmooth vector
fields, NoDEA - Nonlinear Differential Equations Appl., 2017.
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Proof: Generalized Differential Quotients

If X ∈ C−1,1, (In X(x∗))
def
=

{
(In v) : v ∈ X(x∗)

}
,

is a GDQ (t, x) 7→ xetX,

If X1,X2 ∈ C0,1,
(
In [X1,X2]set(x∗)

) def
=

{
(In v) : v ∈ [X1,X2]set(x∗)

}
and if X1,X2 ∈ C1,1, X3 ∈ C0,1(
In [[X1,X2],X3]set(x∗)

) def
=

{
(In v) : v ∈ [[X1,X2],X3]set(x∗)

}
are GDQs

of, respectively, Σ
(X1,X2)
[·,·] , Σ

(X1,X2,X3)
[[·,·],·] at (x∗, 0) in the direction of Ω × R,

where

Σ
(X1,X2)
[·,·] (x, t) :=

xΨ
(X1,X2)
[·,·] (

√
t,
√

t)Ψ(X1,X2)
[·,·] (−

√
t,−
√

t) if t ≥ 0
xΨ

(X1,−X2)
[·,·] (

√
−t,
√
−t)Ψ(X1,−X2)

[·,·] (−
√
−t,−

√
−t) if t < 0,

Σ
(X1,X2,X3)
[[·,·],·] (x, t) := xΨ

(X1,X2,X3)
[[·,·],·] ( 3√t, 3√t, 3√t) ∀t ∈ R .
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Proof: conclusion

We assume generalized LARC at x∗ for X1,X2 ∈ C1,1, X3 ∈ C0,1,
X4 ∈ C−1,1, that is,

span
{
X1(x∗),X2(x∗),X3(x∗), [X1,X2], [X1,X3]set(x∗), [X2,X3]set(x∗),

[[X1,X2],X3]set(x∗),X4(x∗)
}

= Tx∗Ω ≡ R
n .

Consider R8 3 (t1, . . . , t8) 7→
x∗et1X1 et2X2 et3X3 Σ

(X1,X2)
[·,·] (t4) Σ

(X1,X3)
[·,·] (t5)Σ(X2,X3)

[·,·] (t6) Σ
(X1,X2,X3)
[[·,·],·] (t7) et8X4 ∈ Ω ;

By the chain rule, its GDQ at 0 ∈ R8 is(
X1(x∗) X2(x∗) X3(x∗) [X1,X2](x∗) [X1,X3]set(x∗) [X2,X3]set(x∗)

[[X1,X2],X3]set(x∗) X4(x∗)
)
.

The LARC implies that the open mapping for GDQs applies to this
map and hence the conclusion.
E. Feleqi & F. Rampazzo, An L∞-Chow-Rashevski’s Theorem, work in
progress.Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 18 / 18



Best wishes
Franco and Giovanni!!

Thank you!
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