A higher dimensional Poincaré - Birkhoff theorem for Hamiltonian flows

Alessandro Fonda

(Università degli Studi di Trieste)

A higher dimensional Poincaré - Birkhoff theorem for Hamiltonian flows

Alessandro Fonda

(Università degli Studi di Trieste)
a collaboration with Antonio J. Ureña

A higher dimensional Poincaré - Birkhoff theorem for Hamiltonian flows

Alessandro Fonda

(Università degli Studi di Trieste)
a collaboration with Antonio J. Ureña
Annales de l'Institut Henri Poincaré (2017)

But before starting...

But before starting...

let me show you two recent photos...

Oberwolfach, 1985

Along the Adriatic, 1987

Ok, let's start now

Jules Henri Poincaré (1854-1912)

SUR UN THÉORÈME DE GÉOMÉTRIE.

Par M. H. Poincaré (Paris).

Adunanza del 10 marzo 1912.

SUR UN THÉORÈME DE GÉOMÉTRIE.

Par M. H. Poincaré (Paris).

Adunanza del 10 marzo 1912.

Rend. Circ. Matem. Palermo, t. XXXIII (I^{0} sem. 1912). - Stampato il 7 maggio 1912.

SUR UN THÉORÈME DE GÉOMÉTRIE.

Par M. H. Poincaré (Paris).

Adunanza del 10 marzo 1912.

Rend. Circ. Matem. Palermo, t. XXXIII (I^{0} sem. 1912). - Stampato il 7 maggio 1912.

Note: Poincaré died on July 17th, 1912

RENDICONTI

DEL

CIRCOLO MATEMATICO

DI PALERMO

Direttore: G. B. GUCCIA.

$$
\begin{aligned}
& \text { TOMO XXXIII } \\
& \text { (}{ }^{\circ} \text { SEMESTRE I } 912 \text {). }
\end{aligned}
$$

COMITATO DI REDAZIONE

pel trienniol 912-I9I3-I9I4.

> Residenti:
M. L. Albeggiani. - G. Bagnera. - M. Gebbia. - G. B. Guccia. - G. Scorza.

Non Residenti:
E. Bertini (Pisa). - L. Bianchi (Pisa). - É. Borel (Paris). - C. Carathéodory (Breslau). - G. Castelnuovo (Roma). - M. de Franchis (Catania). - Ú. Dini (Pisa).-F. Enriques (Bologna).-L. Fejér (Budapest). - A. R. Forsyth (Cambridge). - I. Fredholm (Stockholm). - J. Hadamard (Paris). - D. Hilbert (Göttingen). G. Humbert (Paris).-F. Klein (Göttingen).-E. Landau (Göttingen).-T. Levi-Civita (Padova). - A. Liapounoff (St.-Pétersbourg). - G. Loria (Genova). - A. E. H. Love (Oxford). - R. Marcolongo (Napoli). - F. Mertens (Wien). - G. Mittag-Leffler (Stockholm).-E. H. Moore (Chicago, Ill.).-M. Noether (Erlangen).-W. F. Osgood (Cambridge, Mass.).-E. Pascal (Napoli).-É. Picard (Paris).-S. Pincherle (Bologna). -H. Poincaré (Paris).-C. Segre (Torino).-F. Severi (Padova).-C. Somigliana (Torino).-P. Stäckel (Karlsruhe).-W. Stekloff (St.-Pétersbourg).-C. Stéphanos (Athènes). - Ch.-J. de la Vallée Poussin (Louvain). - G. Vivanti (Pavia). W. Wirtinger (Wien). - H. G. Zeuthen (Kóbenhavn).

> Direttore dei Rendiconti: G. B. GUCCIA.

COMITATO DI REDAZIONE

pel trienniol 912-I9I3-I9I4.

Residenti:
M. L. Albeggiani. - G. Bagnera. - M. Gebbia. - G. B. Guccia. - G. Scorza.

Non Residenti:
E. Bertini (Pisa). - L. Bianchi (Pisa). - É. Borel (Paris). C. Carathéodory (Breslau). - G. Castelnuovo (Roma). - M. de Franchis (Catania). - U. Dini (Pisa).-F. Enriques (Bologna).-L. Fejer (Budapest). -A. R. Forsyth (Cambridge). - I. Fredholm (Stockholm). - J. Hadamard (Paris). - D. Hilbert (Göttingen). G. Humbert (Paris).-F. Klein (Göttingen).-E. Landau (Göttingen).-T. Levi-Civita (Padova).-A. Liapounoff (St.-Pétersbourg). - G. Loria (Genova). - A. E. H. Love (Oxford). - R. Marcolongo (Napoli). - F. Mertens (Wien). - G. Mittag-Leffler (Stockholm).-E. H. Moore (Chicago, Ill.).-M. Noether (Erlangen).-W. F. Osgood (Cambridge, Mass.).-E. Pascal (Napoli).-E. Picard (Paris).-S. Pincherle (Bologna). -H. Poincare (Paris).-C. Segre (Torino).-F. Severi (Padova).-C. Somigliana (Torino).-P Stäckel (Karlsruhe).-W. Stekloff (St.-Pétersbourg).-C. Stéphanos (Athènes). - Ch.-J. de la Vallée Poussin (Louvain). - G. Vivanti (Pavia). W. Wirtinger (Wien). - H. G. Zeuthen (Kóbenhavn).

Direttore dei Rendiconti: G. B. GUCCIA.

SUR UN THÉORÈME DE GÉOMÉTRIE.

Par M. H. Poincaré (Paris).

```
Adunanza del to marzo 1912.
```

§ I.

Introduction.

Je n'ai jamais présenté au public un travail aussi inachevé; je crois donc nécessaire d'expliquer en quelques mots les raisons qui m'ont déterminé à le publier, et d'abord celles qui m'avaient engagé à l'entreprendre. J'ai démontré, il y a longtemps déjà, l'existence des solutions périodiques du problème des trois corps; le résultat laissait cependant encore à désirer; car, si l'existence de chaque sorte de solution était établie pour les petites valeurs des masses, on ne voyait pas ce qui devait arriver pour des valeurs plus grandes, quelles étaient celles de ces solutions qui subsistaient et dans quel ordre elles disparaissaient. En réfléchissant à cette question, je me suis assuré que la réponse devait dépendre de l'exactitude ou de la fausseté d'un certain théorème de géométrie dont l'énoncé est très simple, du moins dans le cas du problème restreint et des problèmes de Dynamique où il n'y a que deux degrés de liberté.

SUR UN THÉORÈME DE GÉOMÉTRIE.

Par M. H. Poincaré (Paris).

Adunanza del to marzo 1912.

$$
\text { § } 1 .
$$

Introduction.

Je n'ai jamais présenté au public un travail aussi inachevé je crois donc nécessaire d'expliquer en quelques mots les raisons qui m'ont déterminé à le publier, et d'abord celles qui m'avaient engagé à l'entreprendre. J'ai démontré, il y a longtemps déjà, l'existence des solutions périodiques du problème des trois corps le résultat laissait cependant encore à désirer; car, si l'existence de chaque sorte de solution était établie pour les petites valeurs des masses, on ne voyait pas ce qui devait arriver pour des valeurs plus grandes, quelles étaient celles de ces solutions qui subsistaient et dans auel ordre elles disparaissaient. En réfléchissant à cette question, je me suis assuré que la réponse devait dépendre de l'exactitude ou de la fausseté d'un certain théorème de géométrie dont l'énoncé est très simple du moins dans le cas du problème restreint et des problémes de Dynamique oú il n'y a que deux degrés de liberté.

J'ai donc été amené à rechercher si ce théorème est vrai ou faux, mais j'ai rencontré des difficultés auxquelles je ne m'attendais pas. J'ai été obligé d'envisager séparément un très grand nombre de cas particuliers; mais les cas possibles sont trop nombreux pour que j'aie pu les étudier tous. J'ai reconnu l'exactitude du théorème dans tous ceux que j'ai traités. Pendant deux ans, je me suis efforcé sans succès, soit de trouver une démonstration générale, soit de découvrir un exemple où le théorème soit en défaut.

Ma conviction quil est toujours vrai s'affermissait de jour en jour, mais je restais incapable de l'asseoir sur des fondements solides.

Il semble que dans ces conditions, je devrais m'abstenir de toute publication tant que je n'aurai pas résolu la question; mais après les inutiles efforts que j'ai faits pendant de longs mois, il m'a paru que le plus sage était de laisser le problème mûrir, en m'en reposant durant quelques années; cela serait très bien si j'étais sûr de pouvoir le reprendre un jour; mais à mon âge je ne puis en répondre. D'un autre côté, l'importance du sujet est trop grande (et je chercherai plus loin à la faire comprendre) et l'ensemble des résultats obtenus trop considérable déja, pour que je me résigne à les laisser définitivement infructueux. Je puis espérer que les géomètres qui s'intéresseront à ce pro-

Poincaré's
 "Théorème de géométrie"

Poincaré's
 "Théorème de géométrie"

\mathcal{A} is a closed planar annulus

Poincaré's "Théorème de géométrie"

\mathcal{A} is a closed planar annulus

$\mathcal{P}: \mathcal{A} \rightarrow \mathcal{A}$ is an area preserving homeomorphism

Poincaré's "Théorème de géométrie"

\mathcal{A} is a closed planar annulus

$\mathcal{P}: \mathcal{A} \rightarrow \mathcal{A}$ is an area preserving homeomorphism and

Poincaré's "Théorème de géométrie"

\mathcal{A} is a closed planar annulus

$\mathcal{P}: \mathcal{A} \rightarrow \mathcal{A}$ is an area preserving homeomorphism and
(\star) it rotates the two boundary circles in opposite directions

Poincaré's "Théorème de géométrie"

\mathcal{A} is a closed planar annulus

$\mathcal{P}: \mathcal{A} \rightarrow \mathcal{A}$ is an area preserving homeomorphism and
(\star) it rotates the two boundary circles in opposite directions (this is called the "twist condition").

Poincaré's "Théorème de géométrie"

\mathcal{A} is a closed planar annulus

$\mathcal{P}: \mathcal{A} \rightarrow \mathcal{A}$ is an area preserving homeomorphism and
(*) it rotates the two boundary circles in opposite directions (this is called the "twist condition").

Poincaré's "Théorème de géométrie"

\mathcal{A} is a closed planar annulus

$\mathcal{P}: \mathcal{A} \rightarrow \mathcal{A}$ is an area preserving homeomorphism and
(*) it rotates the two boundary circles in opposite directions (this is called the "twist condition").
Then, \mathcal{P} has two fixed points.

An equivalent formulation

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

$\mathcal{P}: \mathcal{S} \rightarrow \mathcal{S}$ is an area preserving homeomorphism

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

$\mathcal{P}: \mathcal{S} \rightarrow \mathcal{S}$ is an area preserving homeomorphism, and writing

$$
\mathcal{P}(x, y)=(x+f(x, y), y+g(x, y)),
$$

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

$\mathcal{P}: \mathcal{S} \rightarrow \mathcal{S}$ is an area preserving homeomorphism, and writing

$$
\mathcal{P}(x, y)=(x+f(x, y), y+g(x, y))
$$

both $f(x, y)$ and $g(x, y)$ are continuous, 2π-periodic in x,

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

$\mathcal{P}: \mathcal{S} \rightarrow \mathcal{S}$ is an area preserving homeomorphism, and writing

$$
\mathcal{P}(x, y)=(x+f(x, y), y+g(x, y))
$$

both $f(x, y)$ and $g(x, y)$ are continuous, 2π-periodic in x,

$$
g(x, a)=0=g(x, b) \quad \text { (boundary invariance) }
$$

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

$\mathcal{P}: \mathcal{S} \rightarrow \mathcal{S}$ is an area preserving homeomorphism, and writing

$$
\mathcal{P}(x, y)=(x+f(x, y), y+g(x, y)),
$$

both $f(x, y)$ and $g(x, y)$ are continuous, 2π-periodic in x,

$$
g(x, a)=0=g(x, b) \quad \text { (boundary invariance) }
$$

and
($) \quad f(x, a)<0<f(x, b) \quad$ (twist condition).

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

$\mathcal{P}: \mathcal{S} \rightarrow \mathcal{S}$ is an area preserving homeomorphism, and writing

$$
\mathcal{P}(x, y)=(x+f(x, y), y+g(x, y)),
$$

both $f(x, y)$ and $g(x, y)$ are continuous, 2π-periodic in x,

$$
g(x, a)=0=g(x, b) \quad \text { (boundary invariance) }
$$

and
($) \quad f(x, a)<0<f(x, b) \quad$ (twist condition).

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

$\mathcal{P}: \mathcal{S} \rightarrow \mathcal{S}$ is an area preserving homeomorphism, and writing

$$
\mathcal{P}(x, y)=(x+f(x, y), y+g(x, y)),
$$

both $f(x, y)$ and $g(x, y)$ are continuous, 2π-periodic in x,

$$
g(x, a)=0=g(x, b) \quad \text { (boundary invariance) }
$$

and
(*)

$$
f(x, a)<0<f(x, b) \quad \text { (twist condition). }
$$

Then, \mathcal{P} has two geometrically distinct fixed points.

George David Birkhoff (1884-1944)

The Poincaré - Birkhoff theorem

In 1913-1925, Birkhoff proved Poincaré's "théorème de géométrie", so that it now carries the name
"Poincaré - Birkhoff Theorem".

The Poincaré - Birkhoff theorem

In 1913-1925, Birkhoff proved Poincaré's "théorème de géométrie", so that it now carries the name
"Poincaré - Birkhoff Theorem".
Variants and different proofs have been proposed by:
Brown-Neumann, Carter, W.-Y. Ding, Franks, Guillou, Jacobowitz, de Kérékjartó, Le Calvez, Moser, Rebelo, Slaminka, ...

The Poincaré - Birkhoff theorem

In 1913-1925, Birkhoff proved Poincaré's "théorème de géométrie", so that it now carries the name
"Poincaré - Birkhoff Theorem".
Variants and different proofs have been proposed by:
Brown-Neumann, Carter, W.-Y. Ding, Franks, Guillou, Jacobowitz, de Kérékjartó, Le Calvez, Moser, Rebelo, Slaminka, ...

Applications to the existence of periodic solutions were provided by: Bonheure, Boscaggin, Butler, Del Pino, T. Ding, Fabry, Garrione, Hartman, Manásevich, Mawhin, Omari, Sfecci, Smets, Torres, Wang, Zanini, Zanolin, ...

Periodic solutions of a Hamiltonian system

Periodic solutions of a Hamiltonian system

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

Periodic solutions of a Hamiltonian system

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

Periodic solutions of a Hamiltonian system

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
The questions we want to face:
Are there periodic solutions? How many?

Periodic solutions of a Hamiltonian system

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
The questions we want to face:
Are there periodic solutions? How many?
Two "simple" examples: the pendulum equation

$$
\ddot{x}+\sin x=e(t),
$$

and the superlinear equation

$$
\ddot{x}+x^{3}=e(t)
$$

where $e(t)$ is a T-periodic forcing.

Periodic solutions as fixed points of the Poincaré map

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y)
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

Periodic solutions as fixed points of the Poincaré map

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

The Poincaré time - map is defined as

$$
\mathcal{P}:\left(x_{0}, y_{0}\right) \mapsto\left(x_{T}, y_{T}\right)
$$

Periodic solutions as fixed points of the Poincaré map

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

The Poincaré time - map is defined as

$$
\mathcal{P}:\left(x_{0}, y_{0}\right) \mapsto\left(x_{T}, y_{T}\right)
$$

i.e.

Periodic solutions as fixed points of the Poincaré map

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

The Poincaré time - map is defined as

$$
\mathcal{P}:\left(x_{0}, y_{0}\right) \mapsto\left(x_{T}, y_{T}\right)
$$

i.e.
to each "starting point" $\left(x_{0}, y_{0}\right)$ of a solution at time $t=0$,

Periodic solutions as fixed points of the Poincaré map

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

The Poincaré time - map is defined as

$$
\mathcal{P}:\left(x_{0}, y_{0}\right) \mapsto\left(x_{T}, y_{T}\right)
$$

i.e.
to each "starting point" $\left(x_{0}, y_{0}\right)$ of a solution at time $t=0$,
\mathcal{P} associates

Periodic solutions as fixed points of the Poincaré map

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

The Poincaré time - map is defined as

$$
\mathcal{P}:\left(x_{0}, y_{0}\right) \mapsto\left(x_{T}, y_{T}\right)
$$

i.e.
to each "starting point" $\left(x_{0}, y_{0}\right)$ of a solution at time $t=0$,
\mathcal{P} associates
the "arrival point" $\left(x_{T}, y_{T}\right)$ of the solution at time $t=T$.

Good and bad news

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

Good and bad news

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

Good news:
The Poincaré map \mathcal{P} is an area preserving homeomorphism. Its fixed points correspond to T-periodic solutions.

Good and bad news

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

Good news:
The Poincaré map \mathcal{P} is an area preserving homeomorphism. Its fixed points correspond to T-periodic solutions.

Bad news:

It is very difficult to find an invariant annulus for \mathcal{P}.

Generalizing the Poincaré - Birkhoff theorem (in the framework of Hamiltonian systems)

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

Generalizing the Poincaré - Birkhoff theorem (in the framework of Hamiltonian systems)

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

Assume $H(t, x, y)$ to be also 2π-periodic in x.

Generalizing the Poincaré - Birkhoff theorem (in the framework of Hamiltonian systems)

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

Assume $H(t, x, y)$ to be also 2π-periodic in x.
Let $\mathcal{S}=\mathbb{R} \times[a, b]$ be a planar strip.

Generalizing the Poincaré - Birkhoff theorem (in the framework of Hamiltonian systems)

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

Assume $H(t, x, y)$ to be also 2π-periodic in x.
Let $\mathcal{S}=\mathbb{R} \times[a, b]$ be a planar strip.
Twist condition: the solutions $(x(t), y(t))$ with "starting point" $(x(0), y(0))$ on $\partial \mathcal{S}$ are defined on $[0, T]$ and satisfy

$$
x(T)-x(0) \begin{cases}<0, & \text { if } y(0)=a \\ >0, & \text { if } y(0)=b\end{cases}
$$

Generalizing the Poincaré - Birkhoff theorem (in the framework of Hamiltonian systems)

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y)
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

Assume $H(t, x, y)$ to be also 2π-periodic in x.
Let $\mathcal{S}=\mathbb{R} \times[a, b]$ be a planar strip.
Twist condition: the solutions $(x(t), y(t))$ with "starting point" $(x(0), y(0))$ on $\partial \mathcal{S}$ are defined on $[0, T]$ and satisfy

$$
x(T)-x(0) \begin{cases}<0, & \text { if } y(0)=a \\ >0, & \text { if } y(0)=b\end{cases}
$$

Then, there are two geometrically distinct T-periodic solutions.

Two remarks

Two remarks

1. Writing $\mathcal{S}=\mathbb{R} \times \overline{\mathcal{D}}$, with

$$
\mathcal{D}=] a, b[
$$

Two remarks

1. Writing $\mathcal{S}=\mathbb{R} \times \overline{\mathcal{D}}$, with

$$
\mathcal{D}=] a, b[
$$

and defining the "outer normal function" $\nu: \partial \mathcal{D} \rightarrow \mathbb{R}$ as

$$
\nu(a)=-1, \quad \nu(b)=+1,
$$

Two remarks

1. Writing $\mathcal{S}=\mathbb{R} \times \overline{\mathcal{D}}$, with

$$
\mathcal{D}=] a, b[
$$

and defining the "outer normal function" $\nu: \partial \mathcal{D} \rightarrow \mathbb{R}$ as

$$
\nu(a)=-1, \quad \nu(b)=+1,
$$

the twist condition
$(\star) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad x(T)-x(0) \begin{cases}<0, & \text { if } y(0)=a, \\ >0, & \text { if } y(0)=b,\end{cases}$

Two remarks

1. Writing $\mathcal{S}=\mathbb{R} \times \overline{\mathcal{D}}$, with

$$
\mathcal{D}=] a, b[
$$

and defining the "outer normal function" $\nu: \partial \mathcal{D} \rightarrow \mathbb{R}$ as

$$
\nu(a)=-1, \quad \nu(b)=+1,
$$

the twist condition
$(\star) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad x(T)-x(0) \begin{cases}<0, & \text { if } y(0)=a, \\ >0, & \text { if } y(0)=b,\end{cases}$
can be written as
$(\star) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad[x(T)-x(0)] \cdot \nu(y(0))>0$.

Two remarks

1. Writing $\mathcal{S}=\mathbb{R} \times \overline{\mathcal{D}}$, with

$$
\mathcal{D}=] a, b[
$$

and defining the "outer normal function" $\nu: \partial \mathcal{D} \rightarrow \mathbb{R}$ as

$$
\nu(a)=-1, \quad \nu(b)=+1
$$

the twist condition
$(\star) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad x(T)-x(0) \begin{cases}<0, & \text { if } y(0)=a, \\ >0, & \text { if } y(0)=b,\end{cases}$
can be written as
$(\star) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad[x(T)-x(0)] \cdot \nu(y(0))>0$.
2. The Poincaré map could be multivalued.

A higher dimensional version of the theorem

A higher dimensional version of the theorem

The outstanding question as to the possibility of an N-dimensional extension of Poincaré's last geometric theorem
[Birkhoff, Acta Mathematica 1925]

A higher dimensional version of the theorem

The outstanding question as to the possibility of an N-dimensional extension of Poincaré's last geometric theorem
[Birkhoff, Acta Mathematica 1925]
Attempts in some directions have been made by:
Amann, Bertotti, Birkhoff, K.C. Chang, Conley, Felmer, Golé, Hingston, Josellis, J.Q. Liu, Mawhin, Moser, Rabinowitz, Szulkin, Weinstein, Willem, WinkeInkemper, Zehnder, ...

A higher dimensional version of the theorem

The outstanding question as to the possibility of an N-dimensional extension of Poincaré's last geometric theorem
[Birkhoff, Acta Mathematica 1925]
Attempts in some directions have been made by:
Amann, Bertotti, Birkhoff, K.C. Chang, Conley, Felmer, Golé, Hingston, Josellis, J.Q. Liu, Mawhin, Moser, Rabinowitz, Szulkin, Weinstein, Willem, Winkelnkemper, Zehnder, ...

However,
a genuine generalization of the Poincaré - Birkhoff theorem to higher dimensions has never been given.
[Moser and Zehnder, Notes on Dynamical Systems, 2005].

A higher dimensional version of the theorem

The outstanding question as to the possibility of an N-dimensional extension of Poincaré's last geometric theorem
[Birkhoff, Acta Mathematica 1925]
Attempts in some directions have been made by:
Amann, Bertotti, Birkhoff, K.C. Chang, Conley, Felmer, Golé, Hingston, Josellis, J.Q. Liu, Mawhin, Moser, Rabinowitz, Szulkin, Weinstein, Willem, Winkelnkemper, Zehnder, ...

However,
a genuine generalization of the Poincaré - Birkhoff theorem to higher dimensions has never been given.
[Moser and Zehnder, Notes on Dynamical Systems, 2005].
Note: Arnold proposed some conjectures in the sixties.
Some of them are still open.

A higher dimensional version of the theorem

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

A higher dimensional version of the theorem

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
Here, $x=\left(x_{1}, \ldots, x_{N}\right)$ and $y=\left(y_{1}, \ldots, y_{N}\right)$.

A higher dimensional version of the theorem

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
Here, $x=\left(x_{1}, \ldots, x_{N}\right)$ and $y=\left(y_{1}, \ldots, y_{N}\right)$.
Assume $H(t, x, y)$ to be also 2π-periodic in each x_{1}, \ldots, x_{N}.

A higher dimensional version of the theorem

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
Here, $x=\left(x_{1}, \ldots, x_{N}\right)$ and $y=\left(y_{1}, \ldots, y_{N}\right)$.
Assume $H(t, x, y)$ to be also 2π-periodic in each x_{1}, \ldots, x_{N}.
Let \mathcal{D} be an open, bounded, convex set in \mathbb{R}^{N}, with a smooth boundary, and denote by $\nu: \partial \mathcal{D} \rightarrow \mathbb{R}^{N}$ the outward normal vectorfield. Consider the "strip" $\mathcal{S}=\mathbb{R}^{N} \times \overline{\mathcal{D}}$.

A higher dimensional version of the theorem

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
Here, $x=\left(x_{1}, \ldots, x_{N}\right)$ and $y=\left(y_{1}, \ldots, y_{N}\right)$.
Assume $H(t, x, y)$ to be also 2π-periodic in each x_{1}, \ldots, x_{N}.
Let \mathcal{D} be an open, bounded, convex set in \mathbb{R}^{N}, with a smooth boundary, and denote by $\nu: \partial \mathcal{D} \rightarrow \mathbb{R}^{N}$ the outward normal vectorfield. Consider the "strip" $\mathcal{S}=\mathbb{R}^{N} \times \overline{\mathcal{D}}$.

Twist condition: for a solution $(x(t), y(t))$,
$(\star) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad[x(T)-x(0)] \cdot \nu(y(0))>0$.
(this is the old condition, when $N=1$)

A higher dimensional version of the theorem

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
Here, $x=\left(x_{1}, \ldots, x_{N}\right)$ and $y=\left(y_{1}, \ldots, y_{N}\right)$.
Assume $H(t, x, y)$ to be also 2π-periodic in each x_{1}, \ldots, x_{N}.
Let \mathcal{D} be an open, bounded, convex set in \mathbb{R}^{N}, with a smooth boundary, and denote by $\nu: \partial \mathcal{D} \rightarrow \mathbb{R}^{N}$ the outward normal vectorfield. Consider the "strip" $\mathcal{S}=\mathbb{R}^{N} \times \overline{\mathcal{D}}$.

Twist condition: for a solution $(x(t), y(t))$,
$(*) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad\langle x(T)-x(0), \nu(y(0))\rangle>0$.
(this is the new condition)

A higher dimensional version of the theorem

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
Here, $x=\left(x_{1}, \ldots, x_{N}\right)$ and $y=\left(y_{1}, \ldots, y_{N}\right)$.
Assume $H(t, x, y)$ to be also 2π-periodic in each x_{1}, \ldots, x_{N}.
Let \mathcal{D} be an open, bounded, convex set in \mathbb{R}^{N}, with a smooth boundary, and denote by $\nu: \partial \mathcal{D} \rightarrow \mathbb{R}^{N}$ the outward normal vectorfield. Consider the "strip" $\mathcal{S}=\mathbb{R}^{N} \times \overline{\mathcal{D}}$.
Twist condition: for a solution $(x(t), y(t))$,
$(\star) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad\langle x(T)-x(0), \nu(y(0))\rangle>0$.
Then, there are $N+1$ geometrically distinct T-periodic solutions.

Why $N+1$ solutions?

Why $N+1$ solutions?

The proof is variational, it uses an
infinite dimensional Ljusternik - Schnirelmann theory.

Why $N+1$ solutions?

The proof is variational, it uses an infinite dimensional Ljusternik - Schnirelmann theory.

The periodicity in x_{1}, \ldots, x_{N} permits to define the action functional on the product of a Hilbert space E and the N-torus \mathbb{T}^{N} :

$$
\varphi: E \times \mathbb{T}^{N} \rightarrow \mathbb{R}
$$

Why $N+1$ solutions?

The proof is variational, it uses an infinite dimensional Ljusternik - Schnirelmann theory.

The periodicity in x_{1}, \ldots, x_{N} permits to define the action functional on the product of a Hilbert space E and the N-torus \mathbb{T}^{N} :

$$
\varphi: E \times \mathbb{T}^{N} \rightarrow \mathbb{R}
$$

The result then follows from the fact that

$$
\operatorname{cat}\left(\mathbb{T}^{N}\right)=N+1
$$

Why $N+1$ solutions?

The proof is variational, it uses an infinite dimensional Ljusternik - Schnirelmann theory.

The periodicity in x_{1}, \ldots, x_{N} permits to define the action functional on the product of a Hilbert space E and the N-torus \mathbb{T}^{N} :

$$
\varphi: E \times \mathbb{T}^{N} \rightarrow \mathbb{R}
$$

The result then follows from the fact that

$$
\operatorname{cat}\left(\mathbb{T}^{N}\right)=N+1
$$

Note. If φ only has nondegenerate critical points, then we can use Morse theory and find 2^{N} solutions.

Why $N+1$ solutions?

The proof is variational, it uses an infinite dimensional Ljusternik - Schnirelmann theory.

The periodicity in x_{1}, \ldots, x_{N} permits to define the action functional on the product of a Hilbert space E and the N-torus \mathbb{T}^{N} :

$$
\varphi: E \times \mathbb{T}^{N} \rightarrow \mathbb{R}
$$

The result then follows from the fact that

$$
\operatorname{cat}\left(\mathbb{T}^{N}\right)=N+1
$$

Note. If φ only has nondegenerate critical points, then we can use Morse theory and find 2^{N} solutions. Indeed,

$$
\operatorname{sb}\left(\mathbb{T}^{N}\right)=2^{N}
$$

More general twist conditions

More general twist conditions

The twist condition
$(\star) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad\langle x(T)-x(0), \nu(y(0))\rangle>0$
can be improved in two directions.

More general twist conditions

The twist condition
$(\star) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad\langle x(T)-x(0), \nu(y(0))\rangle>0$
can be improved in two directions.
I. The "indefinite twist" condition: for a regular symmetric $N \times N$ matrix \mathbb{A},

$$
\left(\star^{\prime}\right) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad\langle x(T)-x(0), \mathbb{A} \nu(y(0))\rangle>0 .
$$

More general twist conditions

The twist condition
$(\star) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad\langle x(T)-x(0), \nu(y(0))\rangle>0$
can be improved in two directions.
I. The "indefinite twist" condition: for a regular symmetric $N \times N$ matrix \mathbb{A},
$\left(\star^{\prime}\right) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad\langle x(T)-x(0), \mathbb{A} \nu(y(0))\rangle>0$.
II. The "avoiding rays" condition:
$\left(\star^{\prime \prime}\right) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad x(T)-x(0) \notin\{-\lambda \nu(y(0)): \lambda \geq 0\}$.

Some recent advances:

Some recent advances:
A. Fonda and A. Sfecci,

Periodic solutions of weakly coupled superlinear systems, Journal of Differential Equations (2016)

Some recent advances:

A. Fonda and A. Sfecci,

Periodic solutions of weakly coupled superlinear systems, Journal of Differential Equations (2016)
A. Fonda, M. Garrione and P. Gidoni, Periodic perturbations of Hamiltonian systems, Advances in Nonlinear Analysis (2016)

Some recent advances:
A. Fonda and A. Sfecci,

Periodic solutions of weakly coupled superlinear systems, Journal of Differential Equations (2016)
A. Fonda, M. Garrione and P. Gidoni, Periodic perturbations of Hamiltonian systems, Advances in Nonlinear Analysis (2016)
A. Fonda and A. Sfecci,

Multiple periodic solutions of Hamiltonian systems confined in a box, Discrete and Continuous Dynamical Systems (2017)

Some recent advances:
A. Fonda and A. Sfecci,

Periodic solutions of weakly coupled superlinear systems, Journal of Differential Equations (2016)
A. Fonda, M. Garrione and P. Gidoni, Periodic perturbations of Hamiltonian systems, Advances in Nonlinear Analysis (2016)
A. Fonda and A. Sfecci,

Multiple periodic solutions of Hamiltonian systems confined in a box, Discrete and Continuous Dynamical Systems (2017)
A. Fonda and P. Gidoni,

An avoiding cones condition for the Poincaré-Birkhoff theorem, Journal of Differential Equations (2017)

Some recent advances:
A. Fonda and A. Sfecci,

Periodic solutions of weakly coupled superlinear systems, Journal of Differential Equations (2016)
A. Fonda, M. Garrione and P. Gidoni, Periodic perturbations of Hamiltonian systems, Advances in Nonlinear Analysis (2016)
A. Fonda and A. Sfecci,

Multiple periodic solutions of Hamiltonian systems confined in a box, Discrete and Continuous Dynamical Systems (2017)
A. Fonda and P. Gidoni,

An avoiding cones condition for the Poincaré-Birkhoff theorem, Journal of Differential Equations (2017)
A. Fonda and R. Toader,

Subharmonic solutions of Hamiltonian systems displaying some kind of sublinear growth, Advances in Nonlinear Analysis (2017)

Some recent advances:
A. Fonda and A. Sfecci,

Periodic solutions of weakly coupled superlinear systems, Journal of Differential Equations (2016)
A. Fonda, M. Garrione and P. Gidoni, Periodic perturbations of Hamiltonian systems, Advances in Nonlinear Analysis (2016)
A. Fonda and A. Sfecci,

Multiple periodic solutions of Hamiltonian systems confined in a box, Discrete and Continuous Dynamical Systems (2017)
A. Fonda and P. Gidoni,

An avoiding cones condition for the Poincaré-Birkhoff theorem, Journal of Differential Equations (2017)
A. Fonda and R. Toader,

Subharmonic solutions of Hamiltonian systems displaying some kind of sublinear growth, Advances in Nonlinear Analysis (2017)
A. Boscaggin, A. Fonda and M. Garrione,

An infinite-dimensional version of the Poincaré-Birkhoff theorem on the Hilbert cube, preprint 2017

Buon compleanno!!!

