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Ok, let’s start now



Jules Henri Poincaré (1854 – 1912)
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Poincaré’s
“Théorème de géométrie”

A is a closed planar annulus

P : A → A is an area preserving homeomorphism

and

(?) it rotates the two boundary circles in opposite directions

(this is called the “twist condition”).
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An equivalent formulation

S = R× [a,b] is a planar strip

P : S → S is an area preserving homeomorphism,
and writing

P(x , y) = (x + f (x , y), y + g(x , y)) ,

both f (x , y) and g(x , y) are continuous, 2π -periodic in x ,

g(x ,a) = 0 = g(x ,b) (boundary invariance) ,

and

(?) f (x ,a) < 0 < f (x ,b) (twist condition) .



An equivalent formulation

S = R× [a,b] is a planar strip

P : S → S is an area preserving homeomorphism,
and writing

P(x , y) = (x + f (x , y), y + g(x , y)) ,

both f (x , y) and g(x , y) are continuous, 2π -periodic in x ,

g(x ,a) = 0 = g(x ,b) (boundary invariance) ,

and

(?) f (x ,a) < 0 < f (x ,b) (twist condition) .



An equivalent formulation

S = R× [a,b] is a planar strip

P : S → S is an area preserving homeomorphism

,
and writing

P(x , y) = (x + f (x , y), y + g(x , y)) ,

both f (x , y) and g(x , y) are continuous, 2π -periodic in x ,

g(x ,a) = 0 = g(x ,b) (boundary invariance) ,

and

(?) f (x ,a) < 0 < f (x ,b) (twist condition) .



An equivalent formulation

S = R× [a,b] is a planar strip

P : S → S is an area preserving homeomorphism,
and writing

P(x , y) = (x + f (x , y), y + g(x , y)) ,

both f (x , y) and g(x , y) are continuous, 2π -periodic in x ,

g(x ,a) = 0 = g(x ,b) (boundary invariance) ,

and

(?) f (x ,a) < 0 < f (x ,b) (twist condition) .



An equivalent formulation

S = R× [a,b] is a planar strip

P : S → S is an area preserving homeomorphism,
and writing

P(x , y) = (x + f (x , y), y + g(x , y)) ,

both f (x , y) and g(x , y) are continuous, 2π -periodic in x ,

g(x ,a) = 0 = g(x ,b) (boundary invariance) ,

and

(?) f (x ,a) < 0 < f (x ,b) (twist condition) .



An equivalent formulation

S = R× [a,b] is a planar strip

P : S → S is an area preserving homeomorphism,
and writing

P(x , y) = (x + f (x , y), y + g(x , y)) ,

both f (x , y) and g(x , y) are continuous, 2π -periodic in x ,

g(x ,a) = 0 = g(x ,b) (boundary invariance) ,

and

(?) f (x ,a) < 0 < f (x ,b) (twist condition) .



An equivalent formulation

S = R× [a,b] is a planar strip

P : S → S is an area preserving homeomorphism,
and writing

P(x , y) = (x + f (x , y), y + g(x , y)) ,

both f (x , y) and g(x , y) are continuous, 2π -periodic in x ,

g(x ,a) = 0 = g(x ,b) (boundary invariance) ,

and

(?) f (x ,a) < 0 < f (x ,b) (twist condition) .



An equivalent formulation

S = R× [a,b] is a planar strip

P : S → S is an area preserving homeomorphism,
and writing

P(x , y) = (x + f (x , y), y + g(x , y)) ,

both f (x , y) and g(x , y) are continuous, 2π -periodic in x ,

g(x ,a) = 0 = g(x ,b) (boundary invariance) ,

and

(?) f (x ,a) < 0 < f (x ,b) (twist condition) .

Then, P has two geometrically distinct fixed points.



An equivalent formulation

S = R× [a,b] is a planar strip

P : S → S is an area preserving homeomorphism,
and writing

P(x , y) = (x + f (x , y), y + g(x , y)) ,

both f (x , y) and g(x , y) are continuous, 2π -periodic in x ,

g(x ,a) = 0 = g(x ,b) (boundary invariance) ,

and

(?) f (x ,a) < 0 < f (x ,b) (twist condition) .

Then, P has two geometrically distinct fixed points.



George David Birkhoff (1884 – 1944)



The Poincaré – Birkhoff theorem

In 1913 – 1925, Birkhoff proved Poincaré’s “théorème de géométrie”,
so that it now carries the name

“Poincaré – Birkhoff Theorem”.

Variants and different proofs have been proposed by:

Brown–Neumann, Carter, W.-Y. Ding, Franks, Guillou, Jacobowitz, de
Kérékjartó, Le Calvez, Moser, Rebelo, Slaminka, ...

Applications to the existence of periodic solutions were provided by:

Bonheure, Boscaggin, Butler, Del Pino, T. Ding, Fabry, Garrione,
Hartman, Manásevich, Mawhin, Omari, Sfecci, Smets, Torres, Wang,
Zanini, Zanolin, ...
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Periodic solutions of a Hamiltonian system

We consider the system

ẋ =
∂H
∂y

(t , x , y) , ẏ = −∂H
∂x

(t , x , y) ,

and assume that the Hamiltonian H(t , x , y) is T -periodic in t .

The questions we want to face:

Are there periodic solutions? How many?

Two “simple” examples: the pendulum equation

ẍ + sin x = e(t) ,

and the superlinear equation

ẍ + x3 = e(t) ,

where e(t) is a T -periodic forcing.
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Periodic solutions as fixed points of the Poincaré map
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and assume that the Hamiltonian H(t , x , y) is T -periodic in t .

The Poincaré time – map is defined as

P : (x0, y0) 7→ (xT , yT )

i.e.

to each “starting point” (x0, y0) of a solution at time t = 0,

P associates

the “arrival point” (xT , yT ) of the solution at time t = T .
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Good and bad news

We consider the system

ẋ =
∂H
∂y

(t , x , y) , ẏ = −∂H
∂x

(t , x , y) ,

and assume that the Hamiltonian H(t , x , y) is T -periodic in t .

Good news:

The Poincaré map P is an area preserving homeomorphism.

Its fixed points correspond to T -periodic solutions.

Bad news:

It is very difficult to find an invariant annulus for P .
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Generalizing the Poincaré – Birkhoff theorem
(in the framework of Hamiltonian systems)

We consider the system

ẋ =
∂H
∂y

(t , x , y) , ẏ = −∂H
∂x

(t , x , y) ,

and assume that the Hamiltonian H(t , x , y) is T -periodic in t .

Assume H(t , x , y) to be also 2π -periodic in x .

Let S = R× [a,b] be a planar strip.

Twist condition: the solutions (x(t), y(t)) with “starting point”
(x(0), y(0)) on ∂S are defined on [0,T ] and satisfy

(?) x(T )− x(0)

{
< 0 , if y(0) = a ,
> 0 , if y(0) = b .

Then, there are two geometrically distinct T -periodic solutions.
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Two remarks

1. Writing S = R×D , with

D = ]a,b[ ,

and defining the “outer normal function” ν : ∂D → R as

ν(a) = −1 , ν(b) = +1 ,

the twist condition

(?) (x(0), y(0)) ∈ ∂S ⇒ x(T )− x(0)

{
< 0 , if y(0) = a ,
> 0 , if y(0) = b ,

can be written as

(?) (x(0), y(0)) ∈ ∂S ⇒ [x(T )− x(0)] · ν(y(0)) > 0 .

2. The Poincaré map could be multivalued.



Two remarks

1. Writing S = R×D , with

D = ]a,b[ ,

and defining the “outer normal function” ν : ∂D → R as

ν(a) = −1 , ν(b) = +1 ,

the twist condition

(?) (x(0), y(0)) ∈ ∂S ⇒ x(T )− x(0)

{
< 0 , if y(0) = a ,
> 0 , if y(0) = b ,

can be written as

(?) (x(0), y(0)) ∈ ∂S ⇒ [x(T )− x(0)] · ν(y(0)) > 0 .

2. The Poincaré map could be multivalued.



Two remarks

1. Writing S = R×D , with

D = ]a,b[ ,

and defining the “outer normal function” ν : ∂D → R as

ν(a) = −1 , ν(b) = +1 ,

the twist condition

(?) (x(0), y(0)) ∈ ∂S ⇒ x(T )− x(0)

{
< 0 , if y(0) = a ,
> 0 , if y(0) = b ,

can be written as

(?) (x(0), y(0)) ∈ ∂S ⇒ [x(T )− x(0)] · ν(y(0)) > 0 .

2. The Poincaré map could be multivalued.



Two remarks

1. Writing S = R×D , with

D = ]a,b[ ,

and defining the “outer normal function” ν : ∂D → R as

ν(a) = −1 , ν(b) = +1 ,

the twist condition

(?) (x(0), y(0)) ∈ ∂S ⇒ x(T )− x(0)

{
< 0 , if y(0) = a ,
> 0 , if y(0) = b ,

can be written as

(?) (x(0), y(0)) ∈ ∂S ⇒ [x(T )− x(0)] · ν(y(0)) > 0 .

2. The Poincaré map could be multivalued.



Two remarks

1. Writing S = R×D , with

D = ]a,b[ ,

and defining the “outer normal function” ν : ∂D → R as

ν(a) = −1 , ν(b) = +1 ,

the twist condition

(?) (x(0), y(0)) ∈ ∂S ⇒ x(T )− x(0)

{
< 0 , if y(0) = a ,
> 0 , if y(0) = b ,

can be written as

(?) (x(0), y(0)) ∈ ∂S ⇒ [x(T )− x(0)] · ν(y(0)) > 0 .

2. The Poincaré map could be multivalued.



Two remarks

1. Writing S = R×D , with

D = ]a,b[ ,

and defining the “outer normal function” ν : ∂D → R as

ν(a) = −1 , ν(b) = +1 ,

the twist condition

(?) (x(0), y(0)) ∈ ∂S ⇒ x(T )− x(0)

{
< 0 , if y(0) = a ,
> 0 , if y(0) = b ,

can be written as

(?) (x(0), y(0)) ∈ ∂S ⇒ [x(T )− x(0)] · ν(y(0)) > 0 .

2. The Poincaré map could be multivalued.



A higher dimensional version of the theorem

The outstanding question as to the possibility of an N -dimensional
extension of Poincaré’s last geometric theorem

[Birkhoff, Acta Mathematica 1925]

Attempts in some directions have been made by:

Amann, Bertotti, Birkhoff, K.C. Chang, Conley, Felmer, Golé,
Hingston, Josellis, J.Q. Liu, Mawhin, Moser, Rabinowitz, Szulkin,
Weinstein, Willem, Winkelnkemper, Zehnder, ...

However,
a genuine generalization of the Poincaré – Birkhoff theorem

to higher dimensions has never been given.

[Moser and Zehnder, Notes on Dynamical Systems, 2005].

Note: Arnold proposed some conjectures in the sixties.
Some of them are still open.
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A higher dimensional version of the theorem

We consider the system

ẋ =
∂H
∂y

(t , x , y) , ẏ = −∂H
∂x

(t , x , y) ,

and assume that the Hamiltonian H(t , x , y) is T -periodic in t .

Here, x = (x1, . . . , xN) and y = (y1, . . . , yN) .

Assume H(t , x , y) to be also 2π -periodic in each x1, . . . , xN .

Let D be an open, bounded, convex set in RN , with a smooth
boundary, and denote by ν : ∂D → RN the outward normal
vectorfield. Consider the “strip” S = RN ×D .

Twist condition: for a solution (x(t), y(t)) ,

(?) (x(0), y(0)) ∈ ∂S ⇒ [x(T )− x(0)] · ν(y(0)) > 0 .

(this is the old condition, when N = 1)
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Then, there are N + 1 geometrically distinct T -periodic solutions.



Why N + 1 solutions?

The proof is variational, it uses an

infinite dimensional Ljusternik – Schnirelmann theory.

The periodicity in x1, . . . , xN permits to define the action functional on
the product of a Hilbert space E and the N -torus TN :

ϕ : E × TN → R .

The result then follows from the fact that

cat(TN) = N + 1 .

Note. If ϕ only has nondegenerate critical points, then we can use
Morse theory and find 2N solutions. Indeed,

sb(TN) = 2N .
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More general twist conditions

The twist condition

(?) (x(0), y(0)) ∈ ∂S ⇒
〈
x(T )− x(0) , ν(y(0))

〉
> 0

can be improved in two directions.

I. The “indefinite twist” condition:
for a regular symmetric N × N matrix A ,

(?′) (x(0), y(0)) ∈ ∂S ⇒
〈
x(T )− x(0) ,Aν(y(0))

〉
> 0 .

II. The “avoiding rays” condition:

(?′′) (x(0), y(0)) ∈ ∂S ⇒ x(T )− x(0) /∈ {−λν(y(0)) : λ ≥ 0} .
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Buon compleanno!!!


