Evolutionary Games with Time Constraints

Vlastimil Krivan

Biology Center
and
Faculty of Science
University of South Bohemia
Ceske Budejovice
Czech Republic
vlastimil.krivan@gmail.com
www.entu.cas.cz/krivan

Padova, 2018

Funded by the Horizon 2020

Evolutionary game theory

(1) There are many individuals of the same species that interact pair-wise
(3) There is a finite number of different strategies in the population
(0) Payoffs are obtained through games animals play

- Each individual is selfish, i.e., maximizes its own benefit which leads to the Nash equilibrium
(5) All interactions take the same time independently from the strategy individuals play (Typically, one interaction per unit of time)
© Pairs are formed instantaneously and randomly

Evolutionary game theory

(1) There are many individuals of the same species that interact pair-wise
(2) There is a finite number of different strategies in the population

- Payoffs are obtained through games animals play
(Each individual is selfish, i.e., maximizes its own benefit which leads to the Nash equilibrium
(5) All interactions take the same time independently from the strategy individuals play (Typically, one interaction per unit of time)
(0) Pairs are formed instantaneously and randomly

Evolutionary game theory

(1) There are many individuals of the same species that interact pair-wise
(2) There is a finite number of different strategies in the population
(3) Payoffs are obtained through games animals play

- Each individual is selfish, i.e., maximizes its own benefit which leads to the Nash equilibrium
(5) All interactions take the same time independently from the strategy individuals play (Typically, one interaction per unit of time)
(0) Pairs are formed instantaneously and randomly

Evolutionary game theory

(1) There are many individuals of the same species that interact pair-wise
(2) There is a finite number of different strategies in the population
(3) Payoffs are obtained through games animals play
(9) Each individual is selfish, i.e., maximizes its own benefit which leads to the Nash equilibrium
(5) All interactions take the same time independently from the strategy individuals play (Typically, one interaction per unit of time)
(0) Pairs are formed instantaneously and randomly

Evolutionary game theory

(1) There are many individuals of the same species that interact pair-wise
(2) There is a finite number of different strategies in the population
(3) Payoffs are obtained through games animals play
(1) Each individual is selfish, i.e., maximizes its own benefit which leads to the Nash equilibrium
(0) All interactions take the same time independently from the strategy individuals play (Typically, one interaction per unit of time)
© Pairs are formed instantaneously and randomly

Evolutionary game theory

(1) There are many individuals of the same species that interact pair-wise
(2) There is a finite number of different strategies in the population
(3) Payoffs are obtained through games animals play
(1) Each individual is selfish, i.e., maximizes its own benefit which leads to the Nash equilibrium
(0) All interactions take the same time independently from the strategy individuals play (Typically, one interaction per unit of time)
(0) Pairs are formed instantaneously and randomly

Hawk-Dove game (Maynard Smith and Price, 1973)

Payoffs for two-strategy games when all interactions take the same time

Payoff matrix (entries are payoffs per interaction):

$$
\begin{gathered}
e_{1} \\
e_{2}
\end{gathered}\left(\begin{array}{cc}
e_{2} \\
\pi_{11} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{array}\right)
$$

Interaction time matrix when all interactions take single unit of time:

Payoffs for two-strategy games when all interactions take the same time

Payoff matrix (entries are payoffs per interaction):

$$
\begin{gathered}
e_{1} \\
e_{2}
\end{gathered}\left(\begin{array}{cc}
e_{2} \\
\pi_{11} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{array}\right)
$$

Interaction time matrix when all interactions take single unit of time:

$$
\begin{aligned}
& e_{1}\left(\begin{array}{cc}
e_{1} & e_{2} \\
e_{2} & 1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

Payoffs for two-strategy games when all interactions take the same time

Payoff matrix (entries are payoffs per interaction):

$$
\begin{aligned}
& e_{1}\left(\begin{array}{cc}
e_{1} & e_{2} \\
e_{2} \\
\pi_{11} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{array}\right)
\end{aligned}
$$

Interaction time matrix when all interactions take single unit of time:

$$
\begin{gathered}
e_{1} \\
e_{1}\left(\begin{array}{cc}
e_{2} \\
e_{2} & 1 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

- n_{11} - number of $e_{1} e_{1}$ pairs
- $n_{12}-$ number of $e_{1} e_{2}$ pairs
- $n_{22}-$ number of $e_{2} e_{2}$ pairs
- $N_{1}=2 n_{11}+n_{12}$-total number of individuals playing strategy e_{1}
- $N_{2}=2 n_{22}+n_{12}$-total number of individuals playing strategy e_{2}
- $N=N_{1}+N_{2}$-total number of individuals

Payoff matrix (entries are payoffs per interaction):

$$
\begin{aligned}
& e_{1}\left(\begin{array}{cc}
e_{1} & e_{2} \\
e_{2} \\
\pi_{11} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{array}\right)
\end{aligned}
$$

Interaction time matrix when all interactions take single unit of time:

$$
\begin{gathered}
e_{1} \\
e_{1}\left(\begin{array}{cc}
e_{2} \\
e_{2} & 1 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

- n_{11} - number of $e_{1} e_{1}$ pairs
- n_{12} - number of $e_{1} e_{2}$ pairs
- $n_{22}-$ number of $e_{2} e_{2}$ pairs
- $N_{1}=2 n_{11}+n_{12}$-total number of individuals playing strategy e_{1}
- $N_{2}=2 n_{22}+n_{12}$-total number of individuals playing strategy e_{2}
- $N=N_{1}+N_{2}$-total number of individuals

Payoff matrix (entries are payoffs per interaction):

$$
\begin{aligned}
& e_{1}\left(\begin{array}{cc}
e_{1} & e_{2} \\
e_{2} \\
\pi_{11} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{array}\right)
\end{aligned}
$$

Interaction time matrix when all interactions take single unit of time:

$$
\begin{aligned}
& e_{1}\left(\begin{array}{cc}
e_{1} & e_{2} \\
1 & 1 \\
e_{2} & 1
\end{array}\right)
\end{aligned}
$$

- n_{11} - number of $e_{1} e_{1}$ pairs
- n_{12} - number of $e_{1} e_{2}$ pairs
- $n_{22}-$ number of $e_{2} e_{2}$ pairs
- $N_{1}=2 n_{11}+n_{12}$-total number of individuals playing strategy e_{1}
- $N_{2}=2 n_{22}+n_{12}$-total number of individuals playing strategy e_{2}
- $N=N_{1}+N_{2}$-total number of individuals

Payoffs for two-strategy games when all interactions take the same time

Payoff matrix (entries are payoffs per interaction):

$$
\begin{aligned}
& e_{1}\left(\begin{array}{cc}
e_{1} & e_{2} \\
e_{2} \\
\pi_{11} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{array}\right)
\end{aligned}
$$

Interaction time matrix when all interactions take single unit of time:

$$
\begin{aligned}
& e_{1}\left(\begin{array}{cc}
e_{1} & e_{2} \\
e_{1} & 1 \\
e_{2} & 1
\end{array}\right)
\end{aligned}
$$

- n_{11} - number of $e_{1} e_{1}$ pairs
- n_{12} - number of $e_{1} e_{2}$ pairs
- $n_{22}-$ number of $e_{2} e_{2}$ pairs
- $N_{1}=2 n_{11}+n_{12}$-total number of individuals playing strategy e_{1}
- $N_{2}=2 n_{22}+n_{12}$-total number of individuals playing strategy e_{2}
- $N=N_{1}+N_{2}$-total number of individuals

Payoffs for two-strategy games when all interactions take the same time

Payoff matrix (entries are payoffs per interaction):

$$
\begin{aligned}
& e_{1}\left(\begin{array}{cc}
e_{1} & e_{2} \\
e_{11} & \pi_{12} \\
e_{2} \\
\pi_{21} & \pi_{22}
\end{array}\right)
\end{aligned}
$$

Interaction time matrix when all interactions take single unit of time:

$$
\begin{aligned}
& e_{1}\left(\begin{array}{cc}
e_{1} & e_{2} \\
e_{2} & 1 \\
e_{2} & 1
\end{array}\right)
\end{aligned}
$$

- n_{11} - number of $e_{1} e_{1}$ pairs
- n_{12} - number of $e_{1} e_{2}$ pairs
- $n_{22}-$ number of $e_{2} e_{2}$ pairs
- $N_{1}=2 n_{11}+n_{12}$-total number of individuals playing strategy e_{1}
- $N_{2}=2 n_{22}+n_{12}$-total number of individuals playing strategy e_{2}
- $N=N_{1}+N_{2}$-total number of individuals

Payoffs for two-strategy games when all interactions take the same time

Payoff matrix (entries are payoffs per interaction):

$$
\begin{aligned}
& e_{1}\left(\begin{array}{cc}
e_{1} & e_{2} \\
e_{11} & \pi_{12} \\
e_{2} \\
\pi_{21} & \pi_{22}
\end{array}\right)
\end{aligned}
$$

Interaction time matrix when all interactions take single unit of time:

$$
\begin{aligned}
& e_{1}\left(\begin{array}{cc}
e_{1} & e_{2} \\
e_{2} & 1 \\
e_{2} & 1
\end{array}\right)
\end{aligned}
$$

- n_{11} - number of $e_{1} e_{1}$ pairs
- n_{12} - number of $e_{1} e_{2}$ pairs
- $n_{22}-$ number of $e_{2} e_{2}$ pairs
- $N_{1}=2 n_{11}+n_{12}$-total number of individuals playing strategy e_{1}
- $N_{2}=2 n_{22}+n_{12}$-total number of individuals playing strategy e_{2}
- $N=N_{1}+N_{2}$-total number of individuals

Fitnesses are frequency dependent but density independent

Assumption: Pairs are formed instantaneously and randomly, i.e., the equilibrium distribution of pairs is given by Hardy-Weinberg distribution

$$
n_{11}=\left(\frac{N_{1}}{N}\right)^{2} \frac{N}{2}=\frac{N_{1}^{2}}{2 N}, \quad n_{12}=\frac{N_{1} N_{2}}{N}, \quad n_{22}=\frac{N_{2}^{2}}{2 N}
$$

$\frac{2 n_{11}}{2 n_{11}+n_{12}}$ - the probability an e_{1} strategist is paired with another e_{1} strategist

and similar expression W_{2} holds for the fitness of the e_{2} strategists.

Fitnesses are frequency dependent but density independent

Assumption: Pairs are formed instantaneously and randomly, i.e., the equilibrium distribution of pairs is given by Hardy-Weinberg distribution

$$
n_{11}=\left(\frac{N_{1}}{N}\right)^{2} \frac{N}{2}=\frac{N_{1}^{2}}{2 N}, \quad n_{12}=\frac{N_{1} N_{2}}{N}, \quad n_{22}=\frac{N_{2}^{2}}{2 N}
$$

$\frac{2 n_{11}}{2 n_{11}+n_{12}}$ - the probability an e_{1} strategist is paired with another e_{1} strategist
$\frac{n_{12}}{2 n_{11}+n_{12}}$ - the probability an e_{1} strategist is paired with an e_{2} strategist
Fitness of the first phenotype, defined as the expected payoff per interaction is

and similar expression W_{2} holds for the fitness of the e_{2} strategists.

Fitnesses are frequency dependent but density independent

Assumption: Pairs are formed instantaneously and randomly, i.e., the equilibrium distribution of pairs is given by Hardy-Weinberg distribution

$$
n_{11}=\left(\frac{N_{1}}{N}\right)^{2} \frac{N}{2}=\frac{N_{1}^{2}}{2 N}, \quad n_{12}=\frac{N_{1} N_{2}}{N}, \quad n_{22}=\frac{N_{2}^{2}}{2 N}
$$

$\frac{2 n_{11}}{2 n_{11}+n_{12}}$ - the probability an e_{1} strategist is paired with another e_{1} strategist
$\frac{n_{12}}{2 n_{11}+n_{12}}$ - the probability an e_{1} strategist is paired with an e_{2} strategist
Fitness of the first phenotype, defined as the expected payoff per interaction is

$$
W_{1}=\frac{2 n_{11}}{2 n_{11}+n_{12}} \pi_{11}+\frac{n_{12}}{2 n_{11}+n_{12}} \pi_{12}=\frac{N_{1}}{N} \pi_{11}+\frac{N_{2}}{N} \pi_{12}=p_{1} \pi_{11}+p_{2} \pi_{12}
$$

Fitnesses are frequency dependent but density independent

Assumption: Pairs are formed instantaneously and randomly, i.e., the equilibrium distribution of pairs is given by Hardy-Weinberg distribution

$$
n_{11}=\left(\frac{N_{1}}{N}\right)^{2} \frac{N}{2}=\frac{N_{1}^{2}}{2 N}, \quad n_{12}=\frac{N_{1} N_{2}}{N}, \quad n_{22}=\frac{N_{2}^{2}}{2 N}
$$

$\frac{2 n_{11}}{2 n_{11}+n_{12}}$ - the probability an e_{1} strategist is paired with another e_{1} strategist
$\frac{n_{12}}{2 n_{11}+n_{12}}$ - the probability an e_{1} strategist is paired with an e_{2} strategist
Fitness of the first phenotype, defined as the expected payoff per interaction is

$$
W_{1}=\frac{2 n_{11}}{2 n_{11}+n_{12}} \pi_{11}+\frac{n_{12}}{2 n_{11}+n_{12}} \pi_{12}=\frac{N_{1}}{N} \pi_{11}+\frac{N_{2}}{N} \pi_{12}=p_{1} \pi_{11}+p_{2} \pi_{12}
$$

and similar expression W_{2} holds for the fitness of the e_{2} strategists.

Observation

The expected payoffs (fitnesses) are frequency dependent but density independent.

Evolutionary games: Mathematical description of evolution by natural selection (Maynard Smith and Price, 1973)

George R. Price (1922-1975)

John Maynard Smith (1920-2004)

Aim

To predict the eventual behavior of individuals in a single species without considering complex dynamical systems of evolution that may ultimately depend on many factors such as genetics, mating systems etc.

[^0]Evolutionary games: Mathematical description of evolution by natural selection (Maynard Smith and Price, 1973)

George R. Price (1922-1975)

John Maynard Smith (1920-2004)

Aim

To predict the eventual behavior of individuals in a single species without considering complex dynamical systems of evolution that may ultimately depend on many factors such as genetics, mating systems etc.

Definition

An Evolutionary Stable Strategy (ESS) is a strategy such that, if all members of a population adopt it, then no mutant strategy could invade the population under the influence of natural selection

Classification of possible evolutionary outcomes

$$
\begin{gathered}
e_{1} \\
e_{1}\left(\begin{array}{cc}
e_{2} \\
e_{21} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{array}\right)
\end{gathered}
$$

$$
W_{1}=p_{1} \pi_{11}+p_{2} \pi_{12}, \quad W_{2}=p_{1} \pi_{21}+p_{2} \pi_{22}
$$

Classification of evolutionarily stable states

(1) Strategy e_{1} is a Nash equilibrium and evolutionarily stable $\left(\pi_{11}>\pi_{21}, \pi_{12}>\pi_{22}\right)$.

(2) There exists exactly one interior NE which is also evolutionarily stable ($\pi_{11}<\pi_{21}$, $\pi_{12}>\pi_{22}$)
(8) Strategies e_{1} and e_{2} are evolutionarily stable $\left(\pi_{11}>\pi_{21}, \pi_{22}>\pi_{12}\right.$. There is an interior NE which is not evolutionarily stable.
4.4 Strategies e_{1} and e_{2} are evolutionarily stable $\left(\pi_{11}>\pi_{21}, \pi_{22}>\pi_{12}\right.$. There is an interior NE which is not evolutionarily stable.

Classification of evolutionarily stable states

(1) Strategy e_{1} is a Nash equilibrium and evolutionarily stable $\left(\pi_{11}>\pi_{21}, \pi_{12}>\pi_{22}\right)$.

(2) There exists exactly one interior NE which is also evolutionarily stable ($\pi_{11}<\pi_{21}$, $\pi_{12}>\pi_{22}$)

(8) Strategies e_{1} and e_{2} are evolutionarily stable $\left(\pi_{11}>\pi_{21}, \pi_{22}>\pi_{12}\right.$. There is an interior NE which is not evolutionarily stable.
4. Strategies e_{1} and e_{2} are evolutionarily stable $\left(\pi_{11}>\pi_{21}, \pi_{22}>\pi_{12}\right.$. There is an interior NE which is not evolutionarily stable.

Classification of evolutionarily stable states

(1) Strategy e_{1} is a Nash equilibrium and evolutionarily stable $\left(\pi_{11}>\pi_{21}, \pi_{12}>\pi_{22}\right)$.

(2) There exists exactly one interior NE which is also evolutionarily stable ($\pi_{11}<\pi_{21}$, $\pi_{12}>\pi_{22}$)

(3) Strategies e_{1} and e_{2} are evolutionarily stable $\left(\pi_{11}>\pi_{21}, \pi_{22}>\pi_{12}\right.$. There is an interior NE which is not evolutionarily stable.

(9) Strategies e_{1} and e_{2} are evolutionarily stable $\left(\pi_{11}>\pi_{21}, \pi_{22}>\pi_{12}\right.$. There is an interior NE which is not evolutionarily stable.

Classification of evolutionarily stable states

(1) Strategy e_{1} is a Nash equilibrium and evolutionarily stable ($\pi_{11}>\pi_{21}, \pi_{12}>\pi_{22}$).

(2) There exists exactly one interior NE which is also evolutionarily stable ($\pi_{11}<\pi_{21}$, $\pi_{12}>\pi_{22}$)

(3) Strategies e_{1} and e_{2} are evolutionarily stable $\left(\pi_{11}>\pi_{21}, \pi_{22}>\pi_{12}\right.$. There is an interior NE which is not evolutionarily stable.

(9) Strategies e_{1} and e_{2} are evolutionarily stable ($\pi_{11}>\pi_{21}, \pi_{22}>\pi_{12}$. There is an interior NE which is not evolutionarily stable.

Classification of evolutionarily stable states

(1) Strategy e_{1} is a Nash equilibrium and evolutionarily stable ($\pi_{11}>\pi_{21}, \pi_{12}>\pi_{22}$).

(2) There exists exactly one interior NE which is also evolutionarily stable ($\pi_{11}<\pi_{21}$, $\pi_{12}>\pi_{22}$)

(3) Strategies e_{1} and e_{2} are evolutionarily stable $\left(\pi_{11}>\pi_{21}, \pi_{22}>\pi_{12}\right.$. There is an interior NE which is not evolutionarily stable.

(9) Strategies e_{1} and e_{2} are evolutionarily stable ($\pi_{11}>\pi_{21}, \pi_{22}>\pi_{12}$. There is an interior NE which is not evolutionarily stable.

Distributional dynamics when interactions take different time (Kïivan and Cressman, 2017)

Two-strategy games with interaction times

Payoff matrix:

$$
\begin{gathered}
e_{1}\left(\begin{array}{cc}
e_{1} & e_{2} \\
e_{21} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{array}\right)
\end{gathered}
$$

Interaction time matrix:

Two-strategy games with interaction times

Payoff matrix:

$$
\begin{array}{cc}
e_{1} & e_{2} \\
e_{2}
\end{array}\left(\begin{array}{cc}
\pi_{11} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{array}\right)
$$

Interaction time matrix:

$$
\begin{gathered}
e_{1} \\
e_{2}
\end{gathered}\left(\begin{array}{cc}
e_{2} \\
\tau_{11} & \tau_{12} \\
\tau_{21} & \tau_{22}
\end{array}\right)
$$

Two-strategy games with interaction times

Payoff matrix:

$$
\begin{array}{cc}
e_{1} & e_{2} \\
e_{2}
\end{array}\left(\begin{array}{cc}
\pi_{11} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{array}\right)
$$

Interaction time matrix:
e_{1}
$e_{2}$$\left(\begin{array}{cc}e_{2} \\ \tau_{11} & \tau_{12} \\ \tau_{21} & \tau_{22}\end{array}\right)$

- $n_{11}-$ number of $e_{1} e_{1}$ pairs
- n_{12} - number of $e_{1} e_{2}$ pairs
- $n_{22}-$ number of $e_{2} e_{2}$ pairs
- $N_{1}=2 n_{11}+n_{12}$-total number of individuals playing strategy e_{1}
- $N_{2}=2 n_{22}+n_{12}-$ total number of individuals playing strategy e_{2}
- $N=2\left(n_{11}+n_{12}+n_{22}\right)$-total number of individuals

Two-strategy games with interaction times

Payoff matrix:

$$
\begin{array}{cc}
e_{1} & e_{2} \\
e_{2}
\end{array}\left(\begin{array}{cc}
\pi_{11} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{array}\right)
$$

Interaction time matrix:
${ }_{e_{1}}^{e_{2}}\left(\begin{array}{cc}e_{1} & e_{2} \\ \tau_{11} & \tau_{12} \\ \tau_{21} & \tau_{22}\end{array}\right)$

- n_{11} - number of $e_{1} e_{1}$ pairs
- n_{12} - number of $e_{1} e_{2}$ pairs
- n_{22} - number of $e_{2} e_{2}$ pairs
- $N_{1}=2 n_{11}+n_{12}$-total number of individuals playing strategy e_{1}
- $N_{2}=2 n_{22}+n_{12}$-total number of individuals playing strategy e_{2}
- $N=2\left(n_{11}+n_{12}+n_{22}\right)$-total number of individuals

Two-strategy games with interaction times

Payoff matrix:

$$
\begin{array}{cc}
e_{1} & e_{2} \\
e_{2} \\
e_{2}
\end{array}\left(\begin{array}{cc}
\pi_{11} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{array}\right)
$$

Interaction time matrix:
${ }_{e_{1}}^{e_{2}}\left(\begin{array}{cc}e_{1} & e_{2} \\ \tau_{11} & \tau_{12} \\ \tau_{21} & \tau_{22}\end{array}\right)$

- n_{11} - number of $e_{1} e_{1}$ pairs
- n_{12} - number of $e_{1} e_{2}$ pairs
- $n_{22}-$ number of $e_{2} e_{2}$ pairs
- $N_{1}=2 n_{11}+n_{12}$-total number of individuals playing strategy e_{1}
- $N_{2}=2 n_{22}+n_{12}$-total number of individuals playing strategy e_{2}
- $N=2\left(n_{11}+n_{12}+n_{22}\right)$-total number of individuals

Two-strategy games with interaction times

Payoff matrix:

$$
\begin{array}{cc}
e_{1} & e_{2} \\
e_{2}
\end{array}\left(\begin{array}{cc}
\pi_{11} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{array}\right)
$$

Interaction time matrix:
${ }_{e_{1}}^{e_{2}}\left(\begin{array}{cc}e_{1} & e_{2} \\ \tau_{11} & \tau_{12} \\ \tau_{21} & \tau_{22}\end{array}\right)$

- n_{11} - number of $e_{1} e_{1}$ pairs
- $n_{12}-$ number of $e_{1} e_{2}$ pairs
- n_{22} - number of $e_{2} e_{2}$ pairs
- $N_{1}=2 n_{11}+n_{12}$-total number of individuals playing strategy e_{1}
- $N_{2}=2 n_{22}+n_{12}$-total number of individuals playing strategy e_{2}
- $N=2\left(n_{11}+n_{12}+n_{22}\right)$-total number of individuals

Two-strategy games with interaction times

Payoff matrix:

$$
\begin{gathered}
e_{1} \\
e_{1}\left(\begin{array}{cc}
e_{2} \\
e_{2} \\
\pi_{11} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{array}\right), ~
\end{gathered}
$$

Interaction time matrix:

$$
\begin{gathered}
e_{1} \\
e_{2}
\end{gathered}\left(\begin{array}{cc}
e_{1} & e_{2} \\
\tau_{11} & \tau_{12} \\
\tau_{21} & \tau_{22}
\end{array}\right)
$$

- n_{11} - number of $e_{1} e_{1}$ pairs
- n_{12} - number of $e_{1} e_{2}$ pairs
- $n_{22}-$ number of $e_{2} e_{2}$ pairs
- $N_{1}=2 n_{11}+n_{12}$-total number of individuals playing strategy e_{1}
- $N_{2}=2 n_{22}+n_{12}$-total number of individuals playing strategy e_{2}
- $N=2\left(n_{11}+n_{12}+n_{22}\right)$-total number of individuals

Two-strategy games with interaction times

Payoff matrix:

$$
\begin{gathered}
e_{1} \\
e_{1}\left(\begin{array}{cc}
e_{2} \\
e_{2} \\
\pi_{11} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{array}\right), ~
\end{gathered}
$$

Interaction time matrix:

$$
\begin{gathered}
e_{1} \\
e_{2}
\end{gathered}\left(\begin{array}{cc}
e_{1} & e_{2} \\
\tau_{11} & \tau_{12} \\
\tau_{21} & \tau_{22}
\end{array}\right)
$$

- n_{11} - number of $e_{1} e_{1}$ pairs
- n_{12} - number of $e_{1} e_{2}$ pairs
- $n_{22}-$ number of $e_{2} e_{2}$ pairs
- $N_{1}=2 n_{11}+n_{12}$-total number of individuals playing strategy e_{1}
- $N_{2}=2 n_{22}+n_{12}$-total number of individuals playing strategy e_{2}
- $N=2\left(n_{11}+n_{12}+n_{22}\right)$-total number of individuals

Pair dynamics

- A pair $n_{i j}$ splits up following a Poisson process with parameter $\tau_{i j}$, i. e., in a unit of time, the number of pairs that disband is $\frac{n_{i j}}{\tau_{i j}}$
- Per unit of time there will be $2 \frac{n_{11}}{T_{11}}+\frac{n_{12}}{\tau_{12}}$ individuals playing strategy e_{1} disbanded from pairs and $2 \frac{n_{22}}{\tau_{22}}+\frac{n_{12}}{\tau_{12}}$ individuals playing strategy e_{2} disbanded from pairs
- Free individuals immediately and randomly form new pairs
- The total number of individuals forming new pairs is $2\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)$
- The proportion of newly formed n_{11} pairs among all newly formed pairs is

- To get the number of newly formed n_{11} pairs we multiply this proportion by the number of all newly formed pairs $\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}$ and obtain

and similarly for the number of newly formed n_{12} and n_{22} pairs

Pair dynamics

- A pair $n_{i j}$ splits up following a Poisson process with parameter $\tau_{i j}$, i. e., in a unit of time, the number of pairs that disband is $\frac{n_{i j}}{\tau_{i j}}$
- Per unit of time there will be $2 \frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}$ individuals playing strategy e_{1} disbanded from pairs and $2 \frac{n_{22}}{\tau_{22}}+\frac{n_{12}}{\tau_{12}}$ individuals playing strategy e_{2} disbanded from pairs
- Free individuals immediately and randomly form new pairs
- The total number of individuals forming new pairs is $2\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)$
- The proportion of newly formed n_{11} pairs among all newly formed pairs is

- To get the number of newly formed n_{11} pairs we multiply this proportion by the number of all newly formed pairs $\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}$ and obtain

and similarly for the number of newly formed n_{12} and n_{22} pairs

Pair dynamics

- A pair $n_{i j}$ splits up following a Poisson process with parameter $\tau_{i j}$, i. e., in a unit of time, the number of pairs that disband is $\frac{n_{i j}}{\tau_{i j}}$
- Per unit of time there will be $2 \frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}$ individuals playing strategy e_{1} disbanded from pairs and $2 \frac{n_{22}}{\tau_{22}}+\frac{n_{12}}{\tau_{12}}$ individuals playing strategy e_{2} disbanded from pairs
- Free individuals immediately and randomly form new pairs
- The total number of individuals forming new pairs is $2\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{T_{22}}\right)$
- The proportion of newly formed n_{11} pairs among all newly formed pairs is

- To get the number of newly formed n_{11} pairs we multiply this proportion by the number of all newly formed pairs $\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{2 \rho}}$ and obtain

Pair dynamics

- A pair $n_{i j}$ splits up following a Poisson process with parameter $\tau_{i j}$, i. e., in a unit of time, the number of pairs that disband is $\frac{n_{i j}}{\tau_{i j}}$
- Per unit of time there will be $2 \frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}$ individuals playing strategy e_{1} disbanded from pairs and $2 \frac{n_{22}}{\tau_{22}}+\frac{n_{12}}{\tau_{12}}$ individuals playing strategy e_{2} disbanded from pairs
- Free individuals immediately and randomly form new pairs
- The total number of individuals forming new pairs is $2\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)$
- The proportion of newly formed n_{11} pairs among all newly formed pairs is

- To get the number of newly formed n_{11} pairs we multiply this proportion by the number of all newly formed pairs

Pair dynamics

- A pair $n_{i j}$ splits up following a Poisson process with parameter $\tau_{i j}$, i. e., in a unit of time, the number of pairs that disband is $\frac{n_{i j}}{\tau_{i j}}$
- Per unit of time there will be $2 \frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}$ individuals playing strategy e_{1} disbanded from pairs and $2 \frac{n_{22}}{\tau_{22}}+\frac{n_{12}}{\tau_{12}}$ individuals playing strategy e_{2} disbanded from pairs
- Free individuals immediately and randomly form new pairs
- The total number of individuals forming new pairs is $2\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)$
- The proportion of newly formed n_{11} pairs among all newly formed pairs is

$$
\left(\frac{2 \frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}}{2\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)}\right)^{2}
$$

- To get the number of newly formed n_{11} pairs we multiply this proportion by the number of all newly formed pairs

Pair dynamics

- A pair $n_{i j}$ splits up following a Poisson process with parameter $\tau_{i j}$, i. e., in a unit of time, the number of pairs that disband is $\frac{n_{i j}}{\tau_{i j}}$
- Per unit of time there will be $2 \frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}$ individuals playing strategy e_{1} disbanded from pairs and $2 \frac{n_{22}}{\tau_{22}}+\frac{n_{12}}{\tau_{12}}$ individuals playing strategy e_{2} disbanded from pairs
- Free individuals immediately and randomly form new pairs
- The total number of individuals forming new pairs is $2\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)$
- The proportion of newly formed n_{11} pairs among all newly formed pairs is

$$
\left(\frac{2 \frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}}{2\left(\frac{n_{1}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)}\right)^{2}
$$

- To get the number of newly formed n_{11} pairs we multiply this proportion by the number of all newly formed pairs $\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}$ and obtain

$$
\frac{\left(2 \frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}\right)^{2}}{4\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)}
$$

and similarly for the number of newly formed n_{12} and n_{22} pairs

Pair dynamics

$$
\begin{aligned}
& \frac{d n_{11}}{d t}=-\frac{n_{11}}{\tau_{11}}+\frac{\left(\frac{2 n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}\right)^{2}}{4\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)} \\
& \frac{d n_{12}}{d t}=-\frac{n_{12}}{\tau_{12}}+\frac{2\left(\frac{2 n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}\right)\left(\frac{n_{12}}{\tau_{12}}+\frac{2 n_{22}}{\tau_{22}}\right)}{4\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)} \\
& \frac{d n_{22}}{d t}=-\frac{n_{22}}{\tau_{22}}+\frac{\left(\frac{n_{12}}{\tau_{12}}+\frac{2 n_{22}}{\tau_{22}}\right)^{2}}{4\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)}
\end{aligned}
$$

Pair dynamics

$$
\begin{aligned}
& \frac{d n_{11}}{d t}=-\frac{n_{11}}{\tau_{11}}+\frac{\left(\frac{2 n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}\right)^{2}}{4\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)} \\
& \frac{d n_{12}}{d t}=-\frac{n_{12}}{\tau_{12}}+\frac{2\left(\frac{2 n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}\right)\left(\frac{n_{12}}{\tau_{12}}+\frac{2 n_{22}}{\tau_{22}}\right)}{4\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)} \\
& \frac{d n_{22}}{d t}=-\frac{n_{22}}{\tau_{22}}+\frac{\left(\frac{n_{12}}{\tau_{12}}+\frac{2 n_{22}}{\tau_{22}}\right)^{2}}{4\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)}
\end{aligned}
$$

Pair dynamics

$$
\begin{aligned}
& \frac{d n_{11}}{d t}=-\frac{n_{11}}{\tau_{11}}+\frac{\left(\frac{2 n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}\right)^{2}}{4\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)} \\
& \frac{d n_{12}}{d t}=-\frac{n_{12}}{\tau_{12}}+\frac{2\left(\frac{2 n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}\right)\left(\frac{n_{12}}{\tau_{12}}+\frac{2 n_{22}}{\tau_{22}}\right)}{4\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)} \\
& \frac{d n_{22}}{d t}=-\frac{n_{22}}{\tau_{22}}+\frac{\left(\frac{n_{12}}{\tau_{12}}+\frac{2 n_{22}}{\tau_{22}}\right)^{2}}{4\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)}
\end{aligned}
$$

Pair equilibrium

$$
\begin{aligned}
& \frac{n_{11}}{\tau_{11}}=\frac{\left(\frac{2 n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}\right)^{2}}{4\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)} \\
& \frac{n_{12}}{\tau_{12}}=\frac{2\left(\frac{2 n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}\right)\left(\frac{n_{12}}{\tau_{12}}+\frac{2 n_{22}}{\tau_{22}}\right)}{4\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)} \\
& \frac{n_{22}}{\tau_{22}}=\frac{\left(\frac{n_{12}}{\tau_{12}}+\frac{2 n_{22}}{\tau_{22}}\right)^{2}}{4\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)}
\end{aligned}
$$

$\frac{n_{11}}{\tau_{11}}, \frac{n_{12}}{\tau_{12}}, \frac{n_{22}}{\tau_{22}}$ are in Hardy-Weinberg proportions, i. e., $$
\frac{n_{11}}{\tau_{11}} \frac{n_{22}}{\tau_{22}}=\frac{1}{4}\left(\frac{n_{12}}{\tau_{12}}\right)^{2}
$$

Pair equilibrium

$$
\begin{aligned}
& \frac{n_{11}}{\tau_{11}}=\frac{\left(\frac{2 n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}\right)^{2}}{4\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)} \\
& \frac{n_{12}}{\tau_{12}}=\frac{2\left(\frac{2 n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}\right)\left(\frac{n_{12}}{\tau_{12}}+\frac{2 n_{22}}{\tau_{22}}\right)}{4\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)} \\
& \frac{n_{22}}{\tau_{22}}=\frac{\left(\frac{n_{12}}{\tau_{12}}+\frac{2 n_{22}}{\tau_{22}}\right)^{2}}{4\left(\frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}+\frac{n_{22}}{\tau_{22}}\right)}
\end{aligned}
$$

$\frac{n_{11}}{\tau_{11}}, \frac{n_{12}}{\tau_{12}}, \frac{n_{22}}{\tau_{22}}$ are in Hardy-Weinberg proportions, i. e.,

$$
\frac{n_{11}}{\tau_{11}} \frac{n_{22}}{\tau_{22}}=\frac{1}{4}\left(\frac{n_{12}}{\tau_{12}}\right)^{2}
$$

Pair equilibrium distribution as a function of number N_{1} of e_{1} strategists

When $\tau_{12}^{2} \neq \tau_{11} \tau_{22}$:

$$
\begin{aligned}
& n_{11}=\frac{N_{1}\left(\tau_{12}^{2}-\tau_{11} \tau_{22}\right)-\tau_{12}^{2} \frac{N}{2}+\tau_{12} \sqrt{N_{1}\left(N_{1}-N\right)\left(\tau_{12}^{2}-\tau_{11} \tau_{22}\right)+\left(\frac{N}{2}\right)^{2} \tau_{12}^{2}}}{2\left(\tau_{12}^{2}-\tau_{11} \tau_{22}\right)} \\
& n_{12}=\frac{\tau_{12}^{2} \frac{N}{2}-\tau_{12} \sqrt{N_{1}\left(N_{1}-N\right)\left(\tau_{12}^{2}-\tau_{11} \tau_{22}\right)+\left(\frac{N}{2}\right)^{2} \tau_{12}^{2}}}{\tau_{12}^{2}-\tau_{11} \tau_{22}} \\
& n_{22}=\frac{N}{2}-n_{11}-n_{12}
\end{aligned}
$$

Pair equilibrium distribution as a function of number N_{1} of e_{1} strategists

When $\tau_{12}^{2} \neq \tau_{11} \tau_{22}$:

$$
\begin{aligned}
& n_{11}=\frac{N_{1}\left(\tau_{12}^{2}-\tau_{11} \tau_{22}\right)-\tau_{12}^{2} \frac{N}{2}+\tau_{12} \sqrt{N_{1}\left(N_{1}-N\right)\left(\tau_{12}^{2}-\tau_{11} \tau_{22}\right)+\left(\frac{N}{2}\right)^{2} \tau_{12}^{2}}}{2\left(\tau_{12}^{2}-\tau_{11} \tau_{22}\right)} \\
& n_{12}=\frac{\tau_{12}^{2} \frac{N}{2}-\tau_{12} \sqrt{N_{1}\left(N_{1}-N\right)\left(\tau_{12}^{2}-\tau_{11} \tau_{22}\right)+\left(\frac{N}{2}\right)^{2} \tau_{12}^{2}}}{\tau_{12}^{2}-\tau_{11} \tau_{22}} \\
& n_{22}=\frac{N}{2}-n_{11}-n_{12}
\end{aligned}
$$

When $\tau_{12}^{2}=\tau_{11} \tau_{22}$:

$$
\begin{aligned}
& n_{11}=\frac{N_{1}^{2}}{2 N} \\
& n_{12}=\frac{N_{1} N_{2}}{N} \\
& n_{22}=\frac{N_{2}^{2}}{2 N}
\end{aligned}
$$

Payoffs

Expected payoff per unit of time

$\frac{2 n_{11}}{2 n_{11}+n_{12}}$ - the probability an e_{1} strategist is paired with another e_{1} strategist
$\frac{n_{12}}{2 n_{11}+n_{12}}$ - the probability an e_{1} strategist is paired with an e_{2} strategist
The expected payoff per unit time to an e_{1} strategist is frequency dependent, but not a linear function of proportion p_{1} of e_{1} strategists

and the expected payoff to an e_{2} strategists is

Fitnesses W_{1} and W_{2} are non-linear functions of N_{1} and N_{2} (i.e., non-linear in frequencies p_{1} and p_{2})

Expected payoff per unit of time

$\frac{2 n_{11}}{2 n_{11}+n_{12}}$ - the probability an e_{1} strategist is paired with another e_{1} strategist
$\frac{n_{12}}{2 n_{11}+n_{12}}$ - the probability an e_{1} strategist is paired with an e_{2} strategist
The expected payoff per unit time to an e_{1} strategist is frequency dependent, but not a linear function of proportion p_{1} of e_{1} strategists

$$
W_{1}=\frac{2 n_{11}}{2 n_{11}+n_{12}} \frac{\pi_{11}}{\tau_{11}}+\frac{n_{12}}{2 n_{11}+n_{12}} \frac{\pi_{12}}{\tau_{12}}
$$

and the expected payoff to an e_{2} strategists is

Fitnesses W_{1} and W_{2} are non-linear functions of N_{1} and N_{2} (i.e., non-linear in frequencies p_{1} and p_{2})

Expected payoff per unit of time

$\frac{2 n_{11}}{2 n_{11}+n_{12}}$ - the probability an e_{1} strategist is paired with another e_{1} strategist
$\frac{n_{12}}{2 n_{11}+n_{12}}$ - the probability an e_{1} strategist is paired with an e_{2} strategist
The expected payoff per unit time to an e_{1} strategist is frequency dependent, but not a linear function of proportion p_{1} of e_{1} strategists

$$
W_{1}=\frac{2 n_{11}}{2 n_{11}+n_{12}} \frac{\pi_{11}}{\tau_{11}}+\frac{n_{12}}{2 n_{11}+n_{12}} \frac{\pi_{12}}{\tau_{12}}
$$

and the expected payoff to an e_{2} strategists is

$$
W_{2}=\frac{n_{12}}{n_{12}+2 n_{22}} \frac{\pi_{21}}{\tau_{12}}+\frac{2 n_{22}}{n_{12}+2 n_{22}} \frac{\pi_{22}}{\tau_{22}}
$$

Fitnesses W_{1} and W_{2} are non-linear functions of N_{1} and N_{2} (i.e., non-linear in frequencies p_{1} and p_{2})

Interior Nash equilibria

Equation

$$
W_{1}=W_{2}
$$

has up to two positive solutions:

$$
\begin{aligned}
& p_{1 \pm}=\frac{n_{1 \pm}}{N}=\frac{1}{2 B}\left(\pm\left(\pi_{11} \tau_{22}-\pi_{22} \tau_{11}\right) \sqrt{A}+\pi_{22}^{2} \tau_{11}^{2}+\right. \\
& \tau_{22}\left(2 \pi_{12}^{2} \tau_{11}+2 \pi_{12} \pi_{21} \tau_{11}-3 \pi_{11} \pi_{12} \tau_{12}-\pi_{11} \pi_{21} \tau_{12}+\pi_{11}^{2} \tau_{22}\right) \\
& \left.\quad-\pi_{22}\left(\tau_{12}\left(3 \pi_{12} \tau_{11}+\pi_{21} \tau_{11}-4 \pi_{11} \tau_{12}\right)+2 \pi_{11} \tau_{11} \tau_{22}\right)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
A & =\left(\pi_{22} \tau_{11}-\pi_{11} \tau_{22}\right)^{2}+\left(\pi_{12}-\pi_{21}\right)^{2} \tau_{12}^{2} \\
& +4\left(\pi_{11} \pi_{22} \tau_{12}^{2}+\pi_{12} \pi_{21} \tau_{11} \tau_{22}\right)-2\left(\pi_{12}+\pi_{21}\right) \tau_{12}\left(\pi_{22} \tau_{11}+\pi_{11} \tau_{22}\right) \\
B & =A-\left(\pi_{12}-\pi_{21}\right)^{2}\left(\tau_{12}^{2}-\tau_{11} \tau_{22}\right) .
\end{aligned}
$$

Observation

There are up to two interior equilibria, which contrasts with the classic result of evolutionary game theory with a single interior equilibrium.

Classification of evolutionarily stable states under time constraints

(1) Strategy e_{1} is stable and e_{2} is unstable ($\left(\frac{\pi_{11}}{\tau_{11}}>\frac{\pi_{21}}{\tau_{12}}, \frac{\pi_{12}}{\tau_{12}}>\frac{\pi_{22}}{\tau_{22}}\right)$: One or two ESSs.

(2) Strategies e_{1} and e_{2} are unstable $\left(\frac{\pi_{11}}{\tau_{11}}<\frac{\pi_{21}}{\tau_{12}}, \frac{\pi_{12}}{\tau_{12}}>\frac{\pi_{22}}{\tau_{22}}\right)$: Single interior ESSs.
(C) Strategies e_{1} and e_{2} are stable $\left(\frac{\pi_{11}}{\tau_{11}}>\frac{\pi_{21}}{\tau_{12}}, \frac{\pi_{12}}{\tau_{12}}<\frac{\pi_{22}}{\tau_{22}}\right)$: Two boundary ESSs.
(9) Strategy e_{1} is unstable and e_{2} is stable ($\frac{\pi_{11}}{\tau_{11}}<\frac{\pi_{21}}{\tau_{12}}, \frac{\pi_{12}}{\tau_{12}}<\frac{\pi_{22}}{\tau_{22}}$): One or two ESSs.

Classification of evolutionarily stable states under time constraints

(1) Strategy e_{1} is stable and e_{2} is unstable $\left(\frac{\pi_{11}}{\tau_{11}}>\frac{\pi_{21}}{\tau_{12}}, \frac{\pi_{12}}{\tau_{12}}>\frac{\pi_{22}}{\tau_{22}}\right)$: One or two ESSs.

(2) Strategies e_{1} and e_{2} are unstable $\left(\frac{\pi_{11}}{\tau_{11}}<\frac{\pi_{21}}{\tau_{12}}, \frac{\pi_{12}}{\tau_{12}}>\frac{\pi_{22}}{\tau_{22}}\right)$: Single interior ESSs.

(0) Strategies e_{1} and e_{2} are stable $\left(\frac{\pi_{11}}{\tau_{11}}>\frac{\pi_{21}}{\tau_{12}}, \frac{\pi_{12}}{\tau_{12}}<\frac{\pi_{22}}{\tau_{22}}\right)$: Two boundary ESSs.
(ㄱ) Strategy e_{1} is unstable and e_{2} is stable ($\frac{\pi_{11}}{\tau_{11}}<\frac{\pi_{21}}{\tau_{12}}, \frac{\pi_{12}}{\tau_{12}}<\frac{\pi_{22}}{\tau_{22}}$): One or two ESSs.

Classification of evolutionarily stable states under time constraints

(1) Strategy e_{1} is stable and e_{2} is unstable $\left(\frac{\pi_{11}}{\tau_{11}}>\frac{\pi_{21}}{\tau_{12}}, \frac{\pi_{12}}{\tau_{12}}>\frac{\pi_{22}}{\tau_{22}}\right)$: One or two ESSs.

(2) Strategies e_{1} and e_{2} are unstable $\left(\frac{\pi_{11}}{\tau_{11}}<\frac{\pi_{21}}{\tau_{12}}, \frac{\pi_{12}}{\tau_{12}}>\frac{\pi_{22}}{\tau_{22}}\right)$: Single interior ESSs.

(1) Strategies e_{1} and e_{2} are stable $\left(\frac{\pi_{11}}{\tau_{11}}>\frac{\pi_{21}}{\tau_{12}}, \frac{\pi_{12}}{\tau_{12}}<\frac{\pi_{22}}{\tau_{22}}\right)$: Two boundary ESSs.

(Strategy e_{1} is unstable and e_{2} is stable $\left(\frac{\pi_{11}}{\tau_{11}}<\frac{\pi_{21}}{\tau_{12}}, \frac{\pi_{12}}{\tau_{12}}<\frac{\pi_{22}}{\tau_{22}}\right)$: One or two ESSS.

Classification of evolutionarily stable states under time constraints

(1) Strategy e_{1} is stable and e_{2} is unstable $\left(\frac{\pi_{11}}{\tau_{11}}>\frac{\pi_{21}}{\tau_{12}}, \frac{\pi_{12}}{\tau_{12}}>\frac{\pi_{22}}{\tau_{22}}\right)$: One or two ESSs.

(2) Strategies e_{1} and e_{2} are unstable $\left(\frac{\pi_{11}}{\tau_{11}}<\frac{\pi_{21}}{\tau_{12}}, \frac{\pi_{12}}{\tau_{12}}>\frac{\pi_{22}}{\tau_{22}}\right)$: Single interior ESSs.

(1) Strategies e_{1} and e_{2} are stable $\left(\frac{\pi_{11}}{\tau_{11}}>\frac{\pi_{21}}{\tau_{12}}, \frac{\pi_{12}}{\tau_{12}}<\frac{\pi_{22}}{\tau_{22}}\right)$: Two boundary ESSs.

(9) Strategy e_{1} is unstable and e_{2} is stable $\left(\frac{\pi_{11}}{\tau_{11}}<\frac{\pi_{21}}{\tau_{12}}, \frac{\pi_{12}}{\tau_{12}}<\frac{\pi_{22}}{\tau_{22}}\right)$: One or two ESSs.

The Hawk-Dove game $\begin{array}{cc}\left.H\left(\begin{array}{cc}H & D \\ D-C & 2 V \\ 0 & V\end{array}\right) \text { with } \begin{array}{c}H\left(\begin{array}{ll}H & D \\ \tau & \tau \\ \tau & \tau\end{array}\right)\end{array}\right) . \begin{array}{c} \\ D\end{array}\left(\begin{array}{cc} \\ \hline\end{array}\right)\end{array}$
(1) If $V>C$ strategy D is dominated by H. Thus, Hawk is a strict NE (i.e., an ESS) of the game.

(3) If $V<C$ there is an ESS $p^{*}=\left(p_{1}^{*}, p_{2}^{*}\right)=\left(\frac{V}{C}, 1-\frac{V}{C}\right)$ that satisfies $W_{H}\left(p^{*}\right)=W_{D}\left(p^{*}\right)$

The Hawk-Dove game $\begin{array}{cc}\left.\left.H\left(\begin{array}{cc}H & D \\ V-C & 2 V \\ 0 & V\end{array}\right) \text { with } \begin{array}{c}H\left(\begin{array}{ll}H & D \\ \tau & \tau \\ \tau & \tau\end{array}\right)\end{array}\right) . \begin{array}{c} \\ D\end{array}\right)\end{array}$
(1) If $V>C$ strategy D is dominated by H. Thus, Hawk is a strict NE (i.e., an ESS) of the game.

(2) If $V<C$ there is an ESS $p^{*}=\left(p_{1}^{*}, p_{2}^{*}\right)=\left(\frac{v}{C}, 1-\frac{v}{C}\right)$ that satisfies
$W_{H}\left(p^{*}\right)=W_{D}\left(p^{*}\right)$

The Hawk-Dove game with time constraints

$$
\begin{gathered}
H \\
H\left(\begin{array}{cc}
H \\
D-C & 2 V \\
0 & V
\end{array}\right) \\
H\left(\begin{array}{cc}
H & D \\
\tau_{11} & \tau \\
\tau & \tau
\end{array}\right)=\left(\begin{array}{cc}
\tau_{11} & 1 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

The Hawk-Dove game with time constraints

$\left.\begin{array}{cc}H \\ D \\ D & D \\ V-C & D \\ 0 & V\end{array}\right)$

$$
\begin{array}{cc}
H & D \\
D & \left(\begin{array}{cc}
\tau_{11} & \tau \\
\tau & \tau
\end{array}\right)=\left(\begin{array}{cc}
\tau_{11} & 1 \\
1 & 1
\end{array}\right)
\end{array}
$$

$V>C$

Prisoner's dilemma (single shot game)

C-cooperate
D-defect
$b=$ benefit of cooperation
$c=$ cost of cooperation

$$
\begin{gathered}
C \\
C\left(\begin{array}{cc}
C-c & D \\
D & -c \\
b & 0
\end{array}\right)
\end{gathered}
$$

(1) Defection is the only Nash equilibrium
(2) Cooperation provides higher payoff when $b>c$

Question
How can cooperation evolve?

Prisoner's dilemma (single shot game)

C-cooperate
D-defect
$b=$ benefit of cooperation
$c=$ cost of cooperation

$$
\left.\begin{array}{c}
C \\
C \\
D \\
D-c \\
b \\
b
\end{array}\right)
$$

(1) Defection is the only Nash equilibrium
(2) Cooperation provides higher payoff when $b>c$

Question
How can cooperation evolve?

Prisoner's dilemma (single shot game)

C-cooperate
D-defect
$b=$ benefit of cooperation
$c=$ cost of cooperation

$$
\begin{gathered}
C \\
C\left(\begin{array}{cc}
C-c & D \\
D & -c
\end{array}\right)
\end{gathered}
$$

(1) Defection is the only Nash equilibrium
(2) Cooperation provides higher payoff when $b>c$

Question

How can cooperation evolve?

Repeated games: Prisoner's dilemma

$\rho=$ probability the game is played next time
$\frac{1}{1-\rho}=$ expected number of rounds
$\tau_{i j}=$ the expected number of rounds between e_{i} and e_{j} strategists
$\pi_{i j}=$ payofl to strategy e_{i} when played against strategy e_{j} in a single-shot game
Payoff per interaction between two players (i.e., when single shot games are repeated several ($\tau_{i j}$) times):

Payoff per unit of time, W_{i}, to strategy e_{i} are now given by

$$
\begin{aligned}
& W_{1}=\frac{2 n_{11}}{2 n_{11}+n_{12}}(b-c)-\frac{n_{12}}{2 n_{11}+n_{12}} c, \\
& W_{2}=\frac{n_{12}}{2 n_{22}+n_{12}} b
\end{aligned}
$$

Repeated games: Prisoner's dilemma

$\rho=$ probability the game is played next time
$\frac{1}{1-\rho}=$ expected number of rounds
$\tau_{j j}=$ the expected number of rounds between e_{i} and e_{j} strategists
$\pi_{i j}=$ payoff to strategy e_{i} when played against strategy e_{j} in a single-shot game
Payoff per interaction between two players (i.e., when single shot games are repeated several ($\tau_{i j}$) times):

Payoff per unit of time, W_{i}, to strategy e_{i} are now given by

Repeated games: Prisoner's dilemma

$\rho=$ probability the game is played next time
$\frac{1}{1-\rho}=$ expected number of rounds
$\tau_{i j}=$ the expected number of rounds between e_{i} and e_{j} strategists
$\pi_{j j}=$ payoff to strategy e_{i} when played against strategy e_{j} in a single-shot game
Payoff per interaction between two players (i.e., when single shot games are repeated several ($\tau_{i j}$) times):

Payoff per unit of time, W_{i}, to strategy e_{i} are now given by

Repeated games: Prisoner's dilemma

$\rho=$ probability the game is played next time
$\frac{1}{1-\rho}=$ expected number of rounds
$\tau_{i j}=$ the expected number of rounds between e_{i} and e_{j} strategists
$\pi_{i j}=$ payoff to strategy e_{i} when played against strategy e_{j} in a single-shot game
Payoff per interaction between two players (i.e., when single shot games are repeated several ($\tau_{i j}$) times):

Payoff per unit of time, W_{i}, to strategy e_{i} are now given by

Repeated games: Prisoner's dilemma

$\rho=$ probability the game is played next time
$\frac{1}{1-\rho}=$ expected number of rounds
$\tau_{i j}=$ the expected number of rounds between e_{i} and e_{j} strategists
$\pi_{i j}=$ payoff to strategy e_{i} when played against strategy e_{j} in a single-shot game
Payoff per interaction between two players (i.e., when single shot games are repeated several ($\tau_{i j}$) times):

$$
\left.\begin{array}{cc}
C \\
C \\
D(b-c) \tau_{11} & D \\
b \tau_{12} & 0
\end{array}\right)
$$

Payoff per unit of time, W_{i}, to strategy e_{i} are now given by

Repeated games: Prisoner's dilemma

$\rho=$ probability the game is played next time
$\frac{1}{1-\rho}=$ expected number of rounds
$\tau_{i j}=$ the expected number of rounds between e_{i} and e_{j} strategists
$\pi_{i j}=$ payoff to strategy e_{i} when played against strategy e_{j} in a single-shot game
Payoff per interaction between two players (i.e., when single shot games are repeated several ($\tau_{i j}$) times):

$$
\begin{array}{cc}
C & D \\
C\left(\begin{array}{cc}
(b-c) \tau_{11} & -C \tau_{12} \\
D \tau_{12} & 0
\end{array}\right)
\end{array}
$$

Payoff per unit of time, W_{i}, to strategy e_{i} are now given by

$$
\begin{aligned}
& W_{1}=\frac{2 n_{11}}{2 n_{11}+n_{12}}(b-c)-\frac{n_{12}}{2 n_{11}+n_{12}} c, \\
& W_{2}=\frac{n_{12}}{2 n_{22}+n_{12}} b
\end{aligned}
$$

Repeated Prisoner's dilemma (Opting-out game; Zhang et al., 2016), $b=2, c=1, \tau_{12}=\tau_{22}=1$ (Ǩ̌ivan and Cressman, 2017)

Prisoner's dilemma payoff matrix (single shot game)

$$
\begin{array}{cc}
C & D \\
C & \left(\begin{array}{cc}
1 & -1 \\
2 & 0
\end{array}\right)
\end{array}
$$

Prisoner's dilemma payoff matrix
(repeated game)

Repeated Prisoner's dilemma (Opting-out game; Zhang et al., 2016), $b=2, c=1, \tau_{12}=\tau_{22}=1$ (Ǩ̌ivan and Cressman, 2017)

Prisoner's dilemma payoff matrix (single shot game)

$$
\begin{array}{cc}
C & D \\
C & \left(\begin{array}{cc}
1 & -1 \\
2 & 0
\end{array}\right)
\end{array}
$$

$$
\left.\begin{array}{cc}
C \\
C \\
D & D \\
(b-c) \tau_{11} & -c \tau_{12} \\
b \tau_{12} & 0
\end{array}\right)=\left(\begin{array}{cc}
\tau_{11} & -1 \\
2 & 0
\end{array}\right)
$$

Prisoner's dilemma payoff matrix (repeated game)

Distributional dynamics when pairing is non-instantaneous (Křivan et al., In review)

Distributional dynamics of singles and pairs

$n_{1}=\#$ of singles using strategy e_{1} $n_{2}=\#$ of singles using strategy e_{2}
Distributional dynamics at fixed population numbers:

$$
\begin{aligned}
\frac{d n_{1}}{d t} & =-\lambda n_{1}^{2}-\lambda n_{1} n_{2}+2 \frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}} \\
\frac{d n_{2}}{d t} & =-\lambda n_{2}^{2}-\lambda n_{1} n_{2}+2 \frac{n_{22}}{\tau_{22}}+\frac{n_{12}}{\tau_{12}} \\
\frac{d n_{11}}{d t} & =-\frac{n_{11}}{\tau_{11}}+\frac{\lambda}{2} n_{1}^{2} \\
\frac{d n_{12}}{d t} & =-\frac{n_{12}}{\tau_{12}}+\lambda n_{1} n_{2} \\
\frac{d n_{22}}{d t} & =-\frac{n_{22}}{\tau_{22}}+\frac{\lambda}{2} n_{2}^{2}
\end{aligned}
$$

HW distribution at the population equilibrium:

Distributional dynamics of singles and pairs

$n_{1}=\#$ of singles using strategy e_{1}
$n_{2}=\#$ of singles using strategy e_{2}
Distributional dynamics at fixed population numbers:

$$
e_{1} \text { singles: } \quad \frac{d n_{1}}{d t}=-\lambda n_{1}^{2}-\lambda n_{1} n_{2}+2 \frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}}
$$

Distributional dynamics of singles and pairs

$n_{1}=\#$ of singles using strategy e_{1}
$n_{2}=\#$ of singles using strategy e_{2}
Distributional dynamics at fixed population numbers:

$$
\begin{array}{ll}
e_{1} \text { singles: } & \frac{d n_{1}}{d t}=-\lambda n_{1}^{2}-\lambda n_{1} n_{2}+2 \frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}} \\
e_{2} \text { singles: } & \frac{d n_{2}}{d t}=-\lambda n_{2}^{2}-\lambda n_{1} n_{2}+2 \frac{n_{22}}{\tau_{22}}+\frac{n_{12}}{\tau_{12}}
\end{array}
$$

Distributional dynamics of singles and pairs

$n_{1}=\#$ of singles using strategy e_{1}
$n_{2}=\#$ of singles using strategy e_{2}
Distributional dynamics at fixed population numbers:

$$
\begin{array}{ll}
e_{1} \text { singles: } & \frac{d n_{1}}{d t}=-\lambda n_{1}^{2}-\lambda n_{1} n_{2}+2 \frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}} \\
e_{2} \text { singles: } & \frac{d n_{2}}{d t}=-\lambda n_{2}^{2}-\lambda n_{1} n_{2}+2 \frac{n_{22}}{\tau_{22}}+\frac{n_{12}}{\tau_{12}} \\
e_{1} e_{1} \text { pairs: } & \frac{d n_{11}}{d t}=-\frac{n_{11}}{\tau_{11}}+\frac{\lambda}{2} n_{1}^{2}
\end{array}
$$

Distributional dynamics of singles and pairs

$n_{1}=\#$ of singles using strategy e_{1}
$n_{2}=\#$ of singles using strategy e_{2}
Distributional dynamics at fixed population numbers:

$$
\begin{array}{ll}
e_{1} \text { singles: } & \frac{d n_{1}}{d t}=-\lambda n_{1}^{2}-\lambda n_{1} n_{2}+2 \frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}} \\
e_{2} \text { singles: } & \frac{d n_{2}}{d t}=-\lambda n_{2}^{2}-\lambda n_{1} n_{2}+2 \frac{n_{22}}{\tau_{22}}+\frac{n_{12}}{\tau_{12}} \\
e_{1} e_{1} \text { pairs: } & \frac{d n_{11}}{d t}=-\frac{n_{11}}{\tau_{11}}+\frac{\lambda}{2} n_{1}^{2} \\
e_{1} e_{2} \text { pairs: } & \frac{d n_{12}}{d t}=-\frac{n_{12}}{\tau_{12}}+\lambda n_{1} n_{2}
\end{array}
$$

Distributional dynamics of singles and pairs

$n_{1}=\#$ of singles using strategy e_{1}
$n_{2}=\#$ of singles using strategy e_{2}
Distributional dynamics at fixed population numbers:

$$
\begin{array}{ll}
e_{1} \text { singles: } & \frac{d n_{1}}{d t}=-\lambda n_{1}^{2}-\lambda n_{1} n_{2}+2 \frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}} \\
e_{2} \text { singles: } & \frac{d n_{2}}{d t}=-\lambda n_{2}^{2}-\lambda n_{1} n_{2}+2 \frac{n_{22}}{\tau_{22}}+\frac{n_{12}}{\tau_{12}} \\
e_{1} e_{1} \text { pairs: } & \frac{d n_{11}}{d t}=-\frac{n_{11}}{\tau_{11}}+\frac{\lambda}{2} n_{1}^{2} \\
e_{1} e_{2} \text { pairs: } & \frac{d n_{12}}{d t}=-\frac{n_{12}}{\tau_{12}}+\lambda n_{1} n_{2} \\
e_{2} e_{2} \text { pairs: } & \frac{d n_{22}}{d t}=-\frac{n_{22}}{\tau_{22}}+\frac{\lambda}{2} n_{2}^{2}
\end{array}
$$

Distributional dynamics of singles and pairs

$n_{1}=\#$ of singles using strategy e_{1}
$n_{2}=\#$ of singles using strategy e_{2}
Distributional dynamics at fixed population numbers:

$$
\begin{array}{ll}
e_{1} \text { singles: } & \frac{d n_{1}}{d t}=-\lambda n_{1}^{2}-\lambda n_{1} n_{2}+2 \frac{n_{11}}{\tau_{11}}+\frac{n_{12}}{\tau_{12}} \\
e_{2} \text { singles: } & \frac{d n_{2}}{d t}=-\lambda n_{2}^{2}-\lambda n_{1} n_{2}+2 \frac{n_{22}}{\tau_{22}}+\frac{n_{12}}{\tau_{12}} \\
e_{1} e_{1} \text { pairs: } & \frac{d n_{11}}{d t}=-\frac{n_{11}}{\tau_{11}}+\frac{\lambda}{2} n_{1}^{2} \\
e_{1} e_{2} \text { pairs: } & \frac{d n_{12}}{d t}=-\frac{n_{12}}{\tau_{12}}+\lambda n_{1} n_{2} \\
e_{2} e_{2} \text { pairs: } & \frac{d n_{22}}{d t}=-\frac{n_{22}}{\tau_{22}}+\frac{\lambda}{2} n_{2}^{2}
\end{array}
$$

HW distribution at the population equilibrium:

$$
n_{11}=\frac{1}{2} \lambda \tau_{11} n_{1}^{2}, \quad n_{12}=\lambda \tau_{12} n_{1} n_{2}, \quad n_{22}=\frac{1}{2} \lambda \tau_{22} n_{2}^{2}
$$

Fitnesses

π_{i} - payoff per unit of time of a single e_{i} strategist
$\pi_{i j}$ - payoff per interaction of an e_{i} strategists paired with an e_{j} strategist
$\tau_{i j}$ average interaction time of an e_{i} strategist when paired with an e_{j} strategist
$\frac{\pi_{i j}}{\tau_{i j}}$ - payoff per unit of time of an e_{i} strategist when paired with an e_{j} strategist

Fitnesses are defined as expected payoffs per unit of time:

$$
\begin{aligned}
& W_{1}=\frac{2 n_{11}}{2 n_{11}+n_{12}+n_{1}} \frac{\pi_{11}}{\tau_{11}}+\frac{n_{12}}{2 n_{11}+n_{12}+n_{1}} \frac{\pi_{12}}{\tau_{12}}+\frac{n_{1}}{2 n_{11}+n_{12}+n_{1}} \pi_{1} \\
& W_{2}=\frac{2 n_{22}}{2 n_{22}+n_{12}+n_{2}} \frac{\pi_{22}}{\tau_{22}}+\frac{n_{12}}{2 n_{22}+n_{12}+n_{2}} \frac{\pi_{21}}{\tau_{12}}+\frac{n_{2}}{2 n_{22}+n_{12}+n_{2}} \pi_{2}
\end{aligned}
$$

Fitnesses

π_{i} - payoff per unit of time of a single e_{i} strategist
$\pi_{i j}$ payoff per interaction of an e_{i} strategists paired with an e_{j} strategist
$\tau_{i j}$ - average interaction time of an e_{i} strategist when paired with an e_{j} strategist
$\frac{\pi_{i j}}{\tau_{i j}}$ - payoff per unit of time of an e_{i} strategist when paired with an e_{j} strategist

Fitnesses are defined as expected payoffs per unit of time:

Fitnesses

π_{i} - payoff per unit of time of a single e_{i} strategist
$\pi_{i j}$ payoff per interaction of an e_{i} strategists paired with an e_{j} strategist
$\tau_{i j}$ average interaction time of an e_{i} strategist when paired with an e_{j} strategist
$\frac{\pi_{i j}}{\tau_{i j}}$ - payoff per unit of time of an e_{i} strategist when paired with an e_{j} strategist

Fitnesses are defined as expected payoffs per unit of time:

Fitnesses

π_{i} - payoff per unit of time of a single e_{i} strategist
$\pi_{i j-}$ payoff per interaction of an e_{i} strategists paired with an e_{j} strategist
$\tau_{i j-}$ average interaction time of an e_{i} strategist when paired with an e_{j} strategist
$\frac{\pi_{i j}}{\tau_{i j}}$ - payoff per unit of time of an e_{i} strategist when paired with an e_{j} strategist

Fitnesses are defined as expected payoffs per unit of time:

Fitnesses

π_{i} - payoff per unit of time of a single e_{i} strategist
$\pi_{i j}$ payoff per interaction of an e_{i} strategists paired with an e_{j} strategist
$\tau_{i j}$ average interaction time of an e_{i} strategist when paired with an e_{j} strategist
$\frac{\pi_{i j}}{\tau_{i j}}$ - payoff per unit of time of an e_{i} strategist when paired with an e_{j} strategist

Fitnesses are defined as expected payoffs per unit of time:

$$
W_{1}=\frac{2 n_{11}}{2 n_{11}+n_{12}+n_{1}} \frac{\pi_{11}}{\tau_{11}}+\frac{n_{12}}{2 n_{11}+n_{12}+n_{1}} \frac{\pi_{12}}{\tau_{12}}+\frac{n_{1}}{2 n_{11}+n_{12}+n_{1}} \pi_{1}
$$

Fitnesses

π_{i} - payoff per unit of time of a single e_{i} strategist
$\pi_{i j}$ payoff per interaction of an e_{i} strategists paired with an e_{j} strategist
$\tau_{i j}$ average interaction time of an e_{i} strategist when paired with an e_{j} strategist
$\frac{\pi_{i j}}{\tau_{i j}}$ - payoff per unit of time of an e_{i} strategist when paired with an e_{j} strategist
Fitnesses are defined as expected payoffs per unit of time:

$$
\begin{aligned}
& W_{1}=\frac{2 n_{11}}{2 n_{11}+n_{12}+n_{1}} \frac{\pi_{11}}{\tau_{11}}+\frac{n_{12}}{2 n_{11}+n_{12}+n_{1}} \frac{\pi_{12}}{\tau_{12}}+\frac{n_{1}}{2 n_{11}+n_{12}+n_{1}} \pi_{1} \\
& W_{2}=\frac{2 n_{22}}{2 n_{22}+n_{12}+n_{2}} \frac{\pi_{22}}{\tau_{22}}+\frac{n_{12}}{2 n_{22}+n_{12}+n_{2}} \frac{\pi_{21}}{\tau_{12}}+\frac{n_{2}}{2 n_{22}+n_{12}+n_{2}} \pi_{2}
\end{aligned}
$$

Fitnesses

π_{i} - payoff per unit of time of a single e_{i} strategist
$\pi_{i j}$ payoff per interaction of an e_{i} strategists paired with an e_{j} strategist
$\tau_{i j}$ average interaction time of an e_{i} strategist when paired with an e_{j} strategist
$\frac{\pi_{i j}}{\tau_{i j}}$ - payoff per unit of time of an e_{i} strategist when paired with an e_{j} strategist
Fitnesses are defined as expected payoffs per unit of time:

$$
W_{1}=\frac{2 n_{11}}{2 n_{11}+n_{12}+n_{1}} \frac{\pi_{11}}{\tau_{11}}+\frac{n_{12}}{2 n_{11}+n_{12}+n_{1}} \frac{\pi_{12}}{\tau_{12}}+\frac{n_{1}}{2 n_{11}+n_{12}+n_{1}} \pi_{1}
$$

Fitnesses

π_{i} - payoff per unit of time of a single e_{i} strategist
$\pi_{i j}$ payoff per interaction of an e_{i} strategists paired with an e_{j} strategist
$\tau_{i j}$ average interaction time of an e_{i} strategist when paired with an e_{j} strategist
$\frac{\pi_{i j}}{\tau_{i j}}$ - payoff per unit of time of an e_{i} strategist when paired with an e_{j} strategist
Fitnesses are defined as expected payoffs per unit of time:

$$
\begin{aligned}
& W_{1}=\frac{2 n_{11}}{2 n_{11}+n_{12}+n_{1}} \frac{\pi_{11}}{\tau_{11}}+\frac{n_{12}}{2 n_{11}+n_{12}+n_{1}} \frac{\pi_{12}}{\tau_{12}}+\frac{n_{1}}{2 n_{11}+n_{12}+n_{1}} \pi_{1} \\
& W_{2}=\frac{2 n_{22}}{2 n_{22}+n_{12}+n_{2}} \frac{\pi_{22}}{\tau_{22}}+\frac{n_{12}}{2 n_{22}+n_{12}+n_{2}} \frac{\pi_{21}}{\tau_{12}}+\frac{n_{2}}{2 n_{22}+n_{12}+n_{2}} \pi_{2}
\end{aligned}
$$

Fitness calculated at the equilibrium population distribution

Using HW at the distribution equilibrium

$$
\begin{aligned}
& n_{11}=\frac{1}{2} \lambda \tau_{11} n_{1}^{2} \\
& n_{12}=\lambda \tau_{12} n_{1} n_{2} \\
& n_{22}=\frac{1}{2} \lambda \tau_{22} n_{2}^{2}
\end{aligned}
$$

allows us to express fitnesses in singles

At the interior Nash equilibrium $\left(n_{1}, n_{2}\right)$ must satisfy:
$\left\{W_{1}=W_{2}\right.$
$N=N_{1}+N_{2}=n_{1}\left(n_{1} \lambda \tau_{11}+n_{2} \lambda \tau_{12}+1\right)+n_{2}\left(n_{2} \lambda \tau_{22}+n_{1} \lambda \tau_{12}+1\right)$

Fitness calculated at the equilibrium population distribution

Using HW at the distribution equilibrium

$$
\begin{aligned}
& n_{11}=\frac{1}{2} \lambda \tau_{11} n_{1}^{2} \\
& n_{12}=\lambda \tau_{12} n_{1} n_{2} \\
& n_{22}=\frac{1}{2} \lambda \tau_{22} n_{2}^{2}
\end{aligned}
$$

allows us to express fitnesses in singles

$$
\begin{aligned}
& W_{1}=\frac{\pi_{11} \lambda n_{1}+\pi_{12} \lambda n_{2}+\pi_{1}}{\lambda n_{1} \tau_{11}+\lambda n_{2} \tau_{12}+1} \\
& W_{2}=\frac{\pi_{21} \lambda n_{1}+\pi_{22} \lambda n_{2}+\pi_{2}}{\lambda n_{1} \tau_{12}+\lambda n_{2} \tau_{22}+1}
\end{aligned}
$$

At the interior Nash equilibrium $\left(n_{1}, n_{2}\right)$ must satisfy:
$\int W_{1}=W_{2}$
$N=N_{1}+N_{2}=n_{1}\left(n_{1} \lambda \tau_{11}+n_{2} \lambda \tau_{12}+1\right)+n_{2}\left(n_{2} \lambda \tau_{22}+n_{1} \lambda \tau_{12}+1\right)$

Fitness calculated at the equilibrium population distribution

Using HW at the distribution equilibrium

$$
\begin{aligned}
& n_{11}=\frac{1}{2} \lambda \tau_{11} n_{1}^{2} \\
& n_{12}=\lambda \tau_{12} n_{1} n_{2} \\
& n_{22}=\frac{1}{2} \lambda \tau_{22} n_{2}^{2}
\end{aligned}
$$

allows us to express fitnesses in singles

$$
\begin{aligned}
& W_{1}=\frac{\pi_{11} \lambda n_{1}+\pi_{12} \lambda n_{2}+\pi_{1}}{\lambda n_{1} \tau_{11}+\lambda n_{2} \tau_{12}+1} \\
& W_{2}=\frac{\pi_{21} \lambda n_{1}+\pi_{22} \lambda n_{2}+\pi_{2}}{\lambda n_{1} \tau_{12}+\lambda n_{2} \tau_{22}+1}
\end{aligned}
$$

At the interior Nash equilibrium (n_{1}, n_{2}) must satisfy:

$$
\left\{\begin{aligned}
W_{1} & =W_{2} \\
N & =N_{1}+N_{2}=n_{1}\left(n_{1} \lambda \tau_{11}+n_{2} \lambda \tau_{12}+1\right)+n_{2}\left(n_{2} \lambda \tau_{22}+n_{1} \lambda \tau_{12}+1\right)
\end{aligned}\right.
$$

Nash equilibrium when all interaction times are the same

 $\left(\tau_{11}=\tau_{12}=\tau_{21}=\tau\right)$$$
\begin{aligned}
& n_{1}=\frac{\left(\pi_{22}-\pi_{12}\right)(\sqrt{4 \lambda N \tau+1}-1)+2 \tau\left(\pi_{2}-\pi_{1}\right)}{2 \lambda \tau\left(\pi_{22}-\pi_{21}-\pi_{12}+\pi_{11}\right)} \\
& n_{2}=\frac{\left(\pi_{11}-\pi_{21}\right)(\sqrt{4 \lambda N \tau+1}-1)+2 \tau\left(\pi_{1}-\pi_{2}\right)}{2 \lambda \tau\left(\pi_{22}-\pi_{21}-\pi_{12}+\pi_{11}\right)}
\end{aligned}
$$

and

$$
p_{1}=\frac{N_{1}}{N}=\frac{\pi_{22}-\pi_{12}}{\pi_{22}-\pi_{21}-\pi_{12}+\pi_{11}}+\frac{\left(\pi_{2}-\pi_{1}\right)(\sqrt{4 \lambda N \tau+1}+1)}{2 \lambda N\left(\pi_{22}-\pi_{21}-\pi_{12}+\pi_{11}\right)} .
$$

Observation

The equilibrium depends on population size N, which contrasts with the classic result of evolutionary game theory whereby the strategy proportion at Nash equilibrium are independent of the population size.

Nash equilibria for Hawk-Dove game when interaction times are not the

 same ($N=100, V=1, C=2, \tau_{H D}=\tau_{D D}=1, \pi_{H}=\pi_{D}=-1$).Pairing is very fast: $\lambda=10000$
A

Pairing is slow: $\lambda=1$

References

Křivan, V., Cressman, R., 2017. Interaction times change evolutionary outcomes: Two player matrix games. Journal of Theoretical Biology 416, 199-207.
Křivan, V., Galanthay, T., Cressman, R., In review. Beyond replicator dynamics: From frequency to density dependent models of evolutionary games.
Maynard Smith, J., Price, G. R., 1973. The logic of animal conflict. Nature 246, 15-18.
Zhang, B.-Y., Fan, S.-J., Li, C., Zheng, X.-D., Bao, J.-Z., Cressman, R., Tao, Y., 2016. Opting out against defection leads to stable coexistence with cooperation. Scientific Reports 6 (35902).
"A je to"

Pa

[^0]: Definition
 An Fvolutionary Stable Strategy (ESS) is a strategy such that, if all members of a population adopt it, then no mutant strategy could invade the population under the influence of natural selection

