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Evolutionary game theory

@ There are many individuals of the same species that interact pair-wise

@ There is a finite number of different strategies in the population

@ Payoffs are obtained through games animals play

@ Each individual is selfish, i.e., maximizes its own benefit which leads to the Nash
equilibrium

@ Allinteractions take the same time independently from the strategy individuals
play (Typically, one interaction per unit of time)

@ Pairs are formed instantaneously and randomly



Hawk-Dove game (Maynard Smith and Price, 1973)
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Payoffs for two-strategy games when all interactions take the same time

Payoff matrix (entries are payoffs per interaction):
e (2]
(=] <7T11 7712)
€2 \T21 T22
Interaction time matrix when all interactions take single unit of time:

ey eo
e ( 11 )
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niy1— number of ey ey pairs

ni2— number of ey e; pairs

na2— number of exe; pairs

N; = 2ny1 + ny2—total number of individuals playing strategy e
N> = 2n2 + nypx—total number of individuals playing strategy e»
N = N; + N,—total number of individuals



Fitnesses are frequency dependent but density independent

Assumption: Pairs are formed instantaneously and randomly, i.e., the equilibrium
distribution of pairs is given by Hardy-Weinberg distribution
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Assumption: Pairs are formed instantaneously and randomly, i.e., the equilibrium
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Fitnesses are frequency dependent but density independent

Assumption: Pairs are formed instantaneously and randomly, i.e., the equilibrium
distribution of pairs is given by Hardy-Weinberg distribution
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2n44

————— - the probability an ey strategist is paired with another e; strategist
2m1 + N2

M2

——= - the probability an e; strategist is paired with an e, strategist
2Mm1 + N2

Fitness of the first phenotype, defined as the expected payoff per interaction is

W

= 2m1 14 Mhe W12—MW11+&7T12—P17F11+,027T12
2m1 + N2 2Mm1 + N2 N N

and similar expression W- holds for the fitness of the e, strategists.

Observation
The expected payoffs (fitnesses) are frequency dependent but density independent.
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Evolutionary games: Mathematical description of evolution by natural

selection (Maynard Smith and Price, 1973)
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complex dynamical systems of evolution that may ultimately depend on many factors
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Evolutionary games: Mathematical description of evolution by natural
selection (Maynard Smith and Price, 1973)

;* 7 !
George R. Price (1922-1975) John Maynard Smith (1920-2004)
Aim
To predict the eventual behavior of individuals in a single species without considering

complex dynamical systems of evolution that may ultimately depend on many factors
such as genetics, mating systems etc.

Definition
An Evolutionary Stable Strategy (ESS) is a strategy such that, if all members of a

population adopt it, then no mutant strategy could invade the population under the
influence of natural selection




Classification of possible evolutionary outcomes
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Distributional dynamics when interactions take different time (Kfivan
and Cressman, 2017)
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@ A pair nj splits up following a Poisson process with parameter 7, i. ., in a unit of
time, the number of pairs that disband is Z—Z

@ Per unit of time there will be 2’;:—1 + % individuals playing strategy e; disbanded

from pairs and 2%2 + Zf individuals playing strategy e, disbanded from pairs
@ Free individuals immediately and randomly form new pairs

@ The total number of individuals forming new pairs is 2(’% + 2—2 + %)

@ The proportion of newly formed ny1 pairs among all newly formed pairs is
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@ To get the number of newly formed ny4 pairs we multiply this proportion by the
number of all newly formed pairs 1 + 712 4’2 and obtain

n n 2
(2ms + 12)
4(’”71+M+”272)

Eah| T2 T22

and similarly for the number of newly formed ni> and ny, pairs
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Pair equilibrium
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Pair equilibrium distribution as a function of number N; of e; strategists
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When 7'122 7£ T To2:

Ny =
2(72, — T11722)
2 N N2
T Y — 24/ Nt (N — N) (72, — T117m22) + (5)7 75,
n 2 2
12 =
TZ — Ti1 T2z
M2 = 5 Mt — M2
When 7'122 = T11 To22.
2
ny = N
2N
N;i N-
M2 = N
n. N22
22 = S
2N



Payoffs

| Focal Individual |

P4 P2
€2
2n44 nqp M2 _2np
2n11 N2 2n41+n42 2n3+n12 2n22+n12
|9191| |e132| |e162| |6262|
T T12 Payoff 21 22
1 T12 Time T12 T22
T T2 : T21 T22
™ o Payoff/Time

T2 22



Expected payoff per unit of time

2n44

——— - the probability an ey strategist is paired with another e, strategist
2Mm1 + o2

N2

———=— - the probability an e; strategist is paired with an e, strategist
2n41 + ny2



Expected payoff per unit of time

2n44

——— - the probability an ey strategist is paired with another e, strategist
2Mm1 + o2

N2

———=— - the probability an e; strategist is paired with an e, strategist
2n41 + ny2

The expected payoff per unit time to an ey strategist is frequency dependent, but not a
linear function of proportion p; of ey strategists

_ 2n14 11 M2 12
2n1 + M2 711 2Ny + M2 Tr2

1



Expected payoff per unit of time

2n44

——— - the probability an ey strategist is paired with another e, strategist
2Mm1 + o2

N2

———=— - the probability an e; strategist is paired with an e, strategist
2n41 + ny2

The expected payoff per unit time to an ey strategist is frequency dependent, but not a
linear function of proportion p; of ey strategists
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2n1 + M2 711 2Ny + M2 Tr2
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and the expected payoff to an e; strategists is

_ N2 o4 2Mp2 T2
M2+ 22 T12 N2 + 2N22 T2

Wa

Fitnesses W; and W, are non-linear functions of N; and N (i.e., non-linear in
frequencies p; and p.)



Interior Nash equilibria

Equation

Wy = Wa
has up to two positive solutions:
My _ 1
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—mo2 (T12 (B3m12T11 + W21 T11 — 4T11T12) +27T117'117'22))

where
A = (moomi1 — m1722)° + (12 — T21)? T
+ 4(71'117T227'122 + maTa1 T11722) — 2(m12 + m21)Ti2(me2T1 4 W1 To2)
B=A— (mz — m21)? (152 — T11722).
Observation

There are up to two interior equilibria, which contrasts with the classic result of
evolutionary game theory with a single interior equilibrium.
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Classification of evolutionarily stable states under time constraints

@ Strategy e is stable and e is unstable (%‘ > ’T’f; ’T’:j > "22) One or two ESSs.
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The Hawk-Dove game with time constraints
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The Hawk-Dove game with time constraints
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Prisoner’s dilemma (single shot game)

C—cooperate
D—defect
b = benefit of cooperation

¢ = cost of cooperation
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@ Defection is the only Nash equilibrium
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Prisoner’s dilemma (single shot game)

C—cooperate
D—defect
b = benefit of cooperation

¢ = cost of cooperation
C D
C ( b—c —c)
D\ b 0

@ Defection is the only Nash equilibrium
@ Cooperation provides higher payoff when b > ¢

How can cooperation evolve?

Question J
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Repeated games: Prisoner’s dilemma

p = probability the game is played next time
11? =expected number of rounds

7; =the expected number of rounds between e; and ¢g; strategists
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Repeated games: Prisoner’s dilemma

p = probability the game is played next time

T, =expected number of rounds

7; =the expected number of rounds between e; and ¢g; strategists
m; =payoff to strategy e; when played against strategy ¢&; in a single-shot game
Payoff per interaction between two players (i.e., when single shot games are repeated

several (7j) times):
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Payoff per unit of time, W, to strategy e; are now given by
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Prisoner’s dilemma payoff matrix
(repeated game)

Prisoner’s dilemma payoff matrix
(single shot game)
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Distributional dynamics when pairing is non-instantaneous (Kfivan

et al., In review)

time




Distributional dynamics of singles and pairs

ny =# of singles using strategy ey
no =# of singles using strategy e,
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Distributional dynamics of singles and pairs

=# of singles using strategy ey
=# of singles using strategy e»

Distributional dynamics at fixed population numbers:
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Fitnesses

m;- payoff per unit of time of a single e; strategist
mji- payoff per interaction of an e; strategists paired with an e; strategist

;- average interaction time of an e; strategist when paired with an g; strategist

T payoff per unit of time of an e; strategist when paired with an g; strategist
Tij

Fitnesses are defined as expected payoffs per unit of time:

Wi — 2nN11 11 N2 T2 m T
=g —t 55— — t 5T
2my + M2+ M T 2my M2+ M T2 2Mg M2+

20 22 N2 21 ny

= ——— == — = — ™
2N+ M2+n2 T2 2Mp+ N2+ T2 2N+ N2+ 2



Fitness calculated at the equilibrium population distribution
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Fitness calculated at the equilibrium population distribution

Using HW at the distribution equilibrium

1 2
My = At n
5 1
N2 = ATi2M N2

1 2
Nop = é)\Tzz n;

allows us to express fitnesses in singles

TN + T12AN2 + T

W, =
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At the interior Nash equilibrium (ny, no) must satisfy:

Wy = Ws
N = Ny + No = m(mA711 + moAmi2 + 1) + no(MeAree + M2 + 1)



Nash equilibrium when all interaction times are the same

(T11 =T12 =721 =7)

n = (722 — m12)(VAINT +1 — 1) + 27 (72 — 1)

2AT(mo2 — T2t — 12 + mi1)

_ (7r11 —7['21)(\/4)\N7’+1 — 1)+27’(7r1 —7T2)

n
2 2XT (22 — Tt — a2 + 1)
and
Py = Ny o2 — T2 (m2 —m1) (VAANT +1+1)
"" N w2 w2+ 2AN(ma2 — w21 — w2 + 1)
Observation

The equilibrium depends on population size N, which contrasts with the classic result

of evolutionary game theory whereby the strategy proportion at Nash equilibrium are
independent of the population size.




Nash equilibria for Hawk-Dove game when interaction times are not the

same (N=100, V=1, C=2,7yp=mpp =1, 7y = 7p = —1).

Pairing is very fast: A = 10000 , Pairing is slow: A = 1 B
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