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Motivations

There are many geometric structures in nature that still have to be
studied...

Plenty of them cannot be found in the Mathematical literature yet....
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Main (Philosophical) Questions

How does Nature control growth?

What are the simplest mathematical models which can capture the
heart of the matter?
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Motivations

Today we will discuss a growth model for tree stems and vines...
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The Model

The model takes into account:

(1) the elongation due to cell growth,

(2) the upward bending, as a response to gravity,

(3) an additional bending, in case of a vine clinging to branches of other
plants,

(4) the reaction produced by obstacles, such as rocks, trunks or branches
of other trees.
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The Model: Some Notations

We assume that:

t0 is the initial time;

an initial stem P̄(s) (curve in R3) is given for s ∈ [0, t0];

for t ≥ t0 the stem starts to grow, bend, curl, cling etc...

P(t, s) is the position at time t of the cell born at time s;

The domain of P(·, ·) is D :=
{

(t, s) : t ≥ t0, 0 ≤ s ≤ t
}

;

A new cell is generated at the tip of the stem P(t, t).
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The Model: Linear Elongation

For the sake of simplicity: assume that the length of the stem at time
t is:

`(t) =

∫ t

0
ds = t

(in other words: the rate of growth of the stem is constant=1).

s 7→ P(t, s) is a curve (parametrized by s) of length t.

k(t, s) is the unit tangent vector to the stem at the point P(t, s):

k(t, s) =
Ps(t, s)

|Ps(t, s)|
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The Model: Response to Gravity

The change in the position of points on the stem, in response to gravity, is
described by

∂

∂t
P(t, s) =

∫ s

0
κ e−β(t−σ)

(
k(t, σ)×e3

)
×
(
P(t, s)−P(t, σ)

)
dσ

.
= F1(t, s) .

Here:

κ > 0 is a constant, measuring the strength of the response;

e−β(t−s) is a stiffness factor (older parts of the stem are more rigid
and they bend more slowly).
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The Model: Response to Gravity

ω(t, σ) = k(t, σ)× e3 is an angular velocity at the point P(t, σ).
Notice that ω affects all the upper portion of the stem.
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The Model: Clinging to Obstacles

The bending of the vine around the obstacle Ω can be described by

∂

∂t
P(t, s) =

∫ s

0
e−β(t−σ)

(
∇ψ(P(t, σ))× k(t, σ)

)
×

×
(
P(t, s)− P(t, σ)

)
dσ

.
= F2(t, s) .

where
ψ(x)

.
= η

(
d(x ,Ω)

)
x ∈ R3 \ Ω,

for η a smooth function measuring the sensitivity of the vine to cling to
external obstacles.
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The Model: Clinging to Obstacles P(s) ∈ Ω

(t,s)α

0
s

η(s)

δ

δ
0

Ω

P(t,s)

k(t,s)

⊥
k

For given δ0 > 0, on the left we find a good choice of η;

F2 is a term which bends the stem toward the obstacle, at points
which are sufficiently close (i.e. < δ0).
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The Model: Avoiding Obstacles when P(t, s) ∈ Ω

P(s)

P

P(s) ~

Ω Ω

(σ)

ω(σ) = angular velocity producing a bending at the point P(σ).

P̃(s)− P(s) =

∫ s

0
ω(σ)×

(
P(s)− P(σ)

)
dσ
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The Model: Avoiding Obstacles

For each t, look for ω̄ minimizing the elastic energy:

J(ω)
.

=

∫ t

0
eβ(t−s)|ω(s)|2 ds.

over some unilateral linear constraints.

This produce a v(t, s) such that

v(t, s) =

∫ t

0
ω̄(t, s)× (P(t, s)− P(t, σ)) dσ
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Numerical Simulations: Avoiding Obstacles

(a) Center O = (1.2, 1.5)
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Numerical Simulations: Clinging to Obstacles

(a) δ0 = 0.05,
η(r) = 7(1− e−r ).
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(b) δ0 = 0.05,
η(r) = 4(1− e−r ).
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(c) δ0 = 0.05,
η(r) = 3(1− e−r ).
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The Model: Summary of the Equations

(∗) Pt(t, s) = F1(t, s) + F2(t, s) + v(t, s), (t, s) ∈ D

where
D .

=
{

(t, s) ; t ≥ t0 , s ∈ [0, t]
}
,

coupled with the conditions

P(t0, s) = P(s), s ∈ [0, t0],

Pss(t, s)

∣∣∣∣
s=t

= 0, t > t0 ,

and the constraint

P(t, s) /∈ Ω for all (t, s) ∈ D.
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Related Models

The main equation (∗) can be reformulated as a differential inclusion:

d

dt
P(t, ·) ∈ Ψ(P(t, ·)) + Γ(P(t, ·)), P(t, ·) ∈ H2([0,T ]; R3).

Γ(P(t, ·)) is a (discontinuous) cone containing v(t, s).

A related model is the Perturbed Sweeping process

d

dt
P(t, s) ∈ Ψ(P(t, ·))− NΩ(P(t, ·)), P(t, ·) ∈ H2([0,T ]; R3).

However,
Γ(P(t, ·)) 6= −NΩ(P(t, ·)) !!

Here, NΩ is the normal cone to Ω.
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The Model: Definition of Solution

The model is NOT defined on a FIXED domain.

To overcome this problem, we call solution of the model a function P(·, ·)
s.t.:

(i) t 7→ P(t, ·) is Lipschitz continuous from [t0,T ] into H2([0,T ]; R3).

(ii) P(·, ·) satisfies the equation of the model.

(iii) P(t, ·) is prolonged on [0,T ] using the relation

P(t, s) = P(t, t) + (s − t)Ps(t, t) for all t ∈ [t0,T ], s ∈ [t,T ]

for every t ∈ [t0,T ], requiring that the constraint is satisfied just on
[0, t].
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The solution, defined on {(t, s) : 0 ≤ s ≤ t}, is extended for
s ∈ [t,T ].

According to (iii), such an extension may end up into Ω.

This trick is carried out in order to work on the fixed domain
[t0,T ]× [0,T ].
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Existence of a Solution

Theorem: (A. Bressan, M. P., W. Shen)

Let Ω ⊂ R3 be a bounded open set with C2 boundary. At time t0, consider
the initial data s 7→ P̄(t0, s) is in H2([0, t0]; R3) and satisfies

P̄(t0, 0) = 0 /∈ ∂Ω, P̄(t0, s) /∈ Ω for all s ∈ [0, t0].

Then the solution to (∗) exists as long as the BREAKDOWN condition
(B) is NOT reached.
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Breakdown Condition

Ω

bad badgood good

ΩΩ
Ω

(B) The tip of the stem touches the obstacle perpendicularly, namely

P̄(t0) ∈ ∂Ω , P̄s(t0) = − n(P̄(t0)).

Moreover,

P̄ss(s) = 0 for all s ∈ (0, t) such that P̄(s) /∈ ∂Ω .
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Comments on Existence Theorem

When P(t, s) /∈ ∂Ω, then Existence and Uniqueness of the solution is
standard! (F1 and F2 are smooth and Γ = {0}).

When the stem touches the obstacle, the dynamics becomes
discontinuous.

if (B) occurs, the cone of reactions Γ becomes tangent to the
obstacle.

A

ψ

Γ
1

Γ
3

Γ
2

ΩΩΩ

γ γ γ
1 2 3
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What happens when the stem touches Ω...

Suppose that γ is in Ω. Call

γω(s)
.

= γ(s) +

∫ s

0
ω(σ)×

(
γ(s)− γ(σ)

)
dσ

γω is the rotated curve, ω ∈ R3.

Goal: Find the “best” ω which pushes the stem out from Ω!

This leads to:

minimize: J(ω)
.

=

∫ t

0
eβ(t−s)|ω(s)|2 ds,

subject to: γω(s) /∈ Ω for all s ∈ [0, t].
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What happens when the stem touches Ω...

This leads to the study of a related optimal control problem for which, if
condition (B) does NOT hold:

we can prove a “controllability” result: exists ω ∈ R3 bounded s.t.〈∫ s

0
ω(σ)×

(
γ(s)− γ(σ)

)
dσ , ∇Φ(γ(s))

〉
≥ 1,

the necessary conditions hold true in normal form, leading to the
expression:

ω̄(s) = −
∫ t

s

∫
[σ,t]

e−β(t−s)∇Φ(γω̄(s ′))dµ(s ′)× γ′(σ)dσ,

(Representation of an optimal angular velocity ω̄)

Φ(·) is the signed distance from Ω.
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Ω ΩΩ

growth + upward bending push−out  operator

The effect of the Push-out operator (an “integral rotation matrix”) is to
apply a rotation able to move the stem outside the obstacle.
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Idea of the proof

We construct a sequence of approximate solutions. For ε > 0, define
tk = t0 + kε.

Suppose that a solution exists in [0, tk−1]. An approximate solution
P(tk−, s) is then constructed on [tk−1, tk ] in a suitable manner. Such
a solution may lie inside Ω.

Find an optimal angular velocity ω̄k . This is a solution of an optimal
control problem with state constraint. Necessary Conditions imply the
existence of a state constraint multiplier µk .

Apply a rotation matrix to the curve s 7→ P(tk−, s), with optimal
angular velocity ω̄k .

KEY ESTIMATE: ||µk ||T .V . ≤ Cε (“controllability” condition)

Compactness arguments lead to the existence of a solution.
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Uniqueness of the solution: Discussion

In the sweeping process (or classic ODE) literature, uniqueness follows
from the inequality

d

dt
||γ1(·, t)− γ2(·, t)||H2([0,T ]) ≤ C ||γ1(·, t)− γ2(·, t)||H2([0,T ]),

which follows from the monotonicity property of the normal cone −NΩ(·).

Here, another approach is required!

The key idea is the following: given k1, k2 unit tangent vectors of two
curves γ1, γ2, we estimate the evolution w.r.t. t of the rotation vector
between k1 and k2.
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Uniqueness of the solution: Geometric Intuition

(s)

(s)

k
2

k (s)
1

(s)γ
1 γ

2

Consider γ1 and a rotated curve γ2. A bending determined by an angular
velocity ω is reflected in a rotation of the tangent vectors.
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Uniqueness of the solution: Key Idea

Given k1, k2, w and an initial time τ such that

k2(τ) = R[w(τ)]k1(τ)

and assume that

ki ,t(t) = ωi (t)× ki (t), i = 1, 2,

for some ω1, ω2 angular velocities. Then, for all t ∈ [τ,T ],∣∣∣ d
dt

w(t)− (ω2(t)− ω1(t))
∣∣∣ ≤ C ·

(
|ω1(t)|+ |ω2(t)|

)
|w(t)|.

An integral version of the above estimate leads to uniqueness of the
solution...
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Uniqueness of the Solution

Theorem: (A. Bressan, M. P.)

Let Ω ⊂ R3 be a bounded open set with C2 boundary. At time t0, consider
the initial data s 7→ P̄(t0, s) is in H2([0, t0]; R3) and satisfies

P̄(t0, 0) = 0 /∈ ∂Ω, P̄(t0, s) /∈ Ω for all s ∈ [0, t0].

Then the solution to the model is unique as long as the BREAKDOWN
condition (B) is NOT reached.
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Related Problem (F. Ancona, A. Bressan, O. Glass, W.
Shen)

Stabilizing growth in vertical direction.

If the initial datum is in a tube of radius δ, then the stem remains in a
tube of radius ε.
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Related Problem: Numerical Simulations

β = 2.0 β = 0.8 β = 0.1

Stability is always achieved.

Decreasing the stiffness β increases the oscillations.
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Conclusions

A completely new model for the growth of tree stems and vines has
been presented.

Main Results: Well-posedness and Characterization of the solution.

What’s next? Modeling the stem growth is just the first step...

Deriving a model that explains Phototropism as a “competitive
behaviour” among stems will be the next step.
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Happy Birthrday
Giovanni and Franco

and thanks for your contributions
and your friendship!!
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