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Impulsive control system

@ Consider

x(t) = go(x(t), u(t), v(t)) + 22 gi(x(1), u(t)) (1),

(x(0),u(0)) = (X0, to)

(1)
where
@ the control (u, v) ranges over a compact set U x V C R” x RY
@ u is the impulsive control; v is the ordinary control

@ (usual hypotheses on g;: local Lipschitz continuity and linear growth in (x, u)...)
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@ Let T >0and v e L'. Aclassical, Carathéodory solution x of (1) in
[0, T] exists only for u € AC.
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@ Let T >0and v e L'. Aclassical, Carathéodory solution x of (1) in
[0, T] exists only for u € AC.

@ If u € BV, there are fairly equivalent concepts of generalized solutions
x € BV, which | will refer to as graph completion solutions, ([Rishel,
Warga, Bressan, Rampazzo, Dal Maso, Motta, Sartori, Miller, Rubinovich, Vinter, Silva,

Arutyunov, Karamzin, de Oliveira, Pereira, Guerra, Sarychev, Wolenski, Zabic’', Mazzola,...] )
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@ Let T >0and v e L'. Aclassical, Carathéodory solution x of (1) in
[0, T] exists only for u € AC.

@ If u € BV, there are fairly equivalent concepts of generalized solutions
x € BV, which | will refer to as graph completion solutions, ([Rishel,
Warga, Bressan, Rampazzo, Dal Maso, Motta, Sartori, Miller, Rubinovich, Vinter, Silva,

Arutyunov, Karamzin, de Oliveira, Pereira, Guerra, Sarychev, Wolenski, Zabic’', Mazzola,...] )

@ Ifu c L' (set of pointwisely defined L' functions), there is a notion of
solution for commutative systems, where the Lie brackets
[(ei,9i),(ej,g))] =0foralli,j=1,...,m (e, e vectors of the
canonical basis in Rm) [Bressan, Rampazzo, '91], [A.V. Sarychev, 91], [Dykhta, 94],
or other notions when the Lie Algebra is non trivial. (looping controls in

[Bressan, Rampazzo, '94], _ in [Aronna, Rampazzo,15], ...)
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@ Let T >0and v e L'. Aclassical, Carathéodory solution x of (1) in
[0, T] exists only for u € AC.

@ If u € BV, there are fairly equivalent concepts of generalized solutions
x € BV, which | will refer to as graph completion solutions, ([Rishel,
Warga, Bressan, Rampazzo, Dal Maso, Motta, Sartori, Miller, Rubinovich, Vinter, Silva,

Arutyunov, Karamzin, de Oliveira, Pereira, Guerra, Sarychev, Wolenski, Zabic’', Mazzola,...] )

@ Ifu c L' (set of pointwisely defined L' functions), there is a notion of
solution for commutative systems, where the Lie brackets
[(ei,9i),(ej,g))] =0foralli,j=1,...,m (e, e vectors of the
canonical basis in Rm) [Bressan, Rampazzo, '91], [A.V. Sarychev, 91], [Dykhta, 94],
or other notions when the Lie Algebra is non trivial. (looping controls in

[Bressan, Rampazzo, '94], _ in [Aronna, Rampazzo,15], ...)

@ For commutative systems, all these concepts of solution coincide
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BV inputs u and graph completions

Let us first illustrate the graph completion approach for u € BV

(we assume that U C R™ has the Whitney property; e.g. let U be a compact, star-shaped set):

9(s)

u(t) u(t) )

f‘j—' f..f_' t=(p0(s)

: /\/—;. s, (@,(s)=t in[s,s,.])
/~/-'tu f‘/‘t i Graph reparametrization (¢ (s),p(s)) of the

completion of (t,u(t))
e Using the arc-length parametrization, (o, ) is 1-Lipschitz and

©0o(8) + 1 (s)| =1 forae.s

° 900(8) =T —= | S=T+ Var[o’s][go].

e v, :[0,T] — [0, S] is set-valued
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The space-time system associated to the graph

completion

@ Let & be the solution of the ORDINARY space-time system:

{ 5/(3) = g0(€7 p,Vo 900)906(8) + 221 gi(§7 p)(ﬁ:(S), (2)
£(0) = Xo.

(recall: t = po(s), time-change such that t; = o(S) for s € [s;, Si+1])
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The space-time system associated to the graph

completion

@ Let & be the solution of the ORDINARY space-time system:

{ 5/(3) = g0(€7 p,Vo 900)906(8) + 221 gl(f/ 5&’)@;(5), (2)
£(0) = Xo.

(recall: t = po(s), time-change such that t; = o(S) for s € [s;, Si+1])

@ Ifo: [0, T[— [0, S[is a selection of o, ', called a clock, such that

(vo,©)(a(t)) = (t,u(t)) forevery te [0, T[, c(0) =0,

the function x := ¢ o o defines a (single-valued) graph-completion solution
associated to (¢o, », S) and o. J
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The space-time system associated to the graph

completion

@ Let & be the solution of the ORDINARY space-time system:

{ 5/(3) = g0(€7 p,Vo 900)906(8) + 221 gl(f/ 5&’)@;(5), (2)
£(0) = Xo.

(recall: t = po(s), time-change such that t; = o(S) for s € [s;, Si+1])

@ Ifo: [0, T[— [0, S[is a selection of o, ', called a clock, such that

(vo,©)(a(t)) = (t,u(t)) forevery te [0, T[, c(0) =0,

the function x := ¢ o o defines a (single-valued) graph-completion solution
associated to (¢o, », S) and o. J

@ When u € AC and (¢, ¢, S) is the arc-length parametrization of (¢, u(t)),
graph-completion solution = Carathéodory solution.
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Limit Solutions

INDEPENDENTLY FROM GRAPH COMPLETIONS THERE IS THE
FOLLOWING

Definition 1 (Simple limit solution; Aronna, Rampazzo, ’15).
Let (u,v) € £' x L' with u(0) = Tpo.

A map x is called a simple limit solution of (1), shortly S limit solution,
if, there exists a sequence of controls (ux)x C AC with u,(0) = Up,
pointwisely converging to u, and such that
(i) the sequence (xk)x of the Carathéodory solutions to (1)
corresponding to (uk, v) is equibounded in [0, T];
(i) forany t € [0, T],
Iilr{n Xk (t) = x(t).
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BV Limit Solutions

Definition 2 (Aronna, Rampazzo, ’15).

Let (u,v) € BV x L' with u(0) = To. A map x is called a BV simple limit
solution of (1) if

i) there exists (ux) C AC, uk(0) = tp, with equibounded variation,
converging pointwisely to u;

ii) the corresponding solutions x to (1) converge pointwisely to x.
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Relation between BV limit solutions and graph
completions

Theorem 3 (Representation formula, Aronna, Rampazzo, ’15).
Let (u,v) € BV x L' with u(0) = Tp.

A map x is a graph completion solution /IF AND ONLY IF itis a BV
simple limit solution.
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Inputs u € BV,

OUR GOAL IS TO INTRODUCE A NOTION OF GENERALIZED SOLUTION,
the BV|oc graph completion solution, in an intermediate situation,
for BV|oc inputs u where:

Definition 4 (BV,,. controls).

Let T > 0. We say that u € BV if u: [0, T] — U and

Varp g(u) < +oo forevery t < T,but Varyg rj(u) < +oc.
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Inputs u € BV,

OUR GOAL IS TO INTRODUCE A NOTION OF GENERALIZED SOLUTION,
the BV|oc graph completion solution, in an intermediate situation,
for BV|oc inputs u where:

Definition 4 (BV,,. controls).

Let T > 0. We say that u € BV if u: [0, T] — U and

Varp g(u) < +oo forevery t < T,but Varyg rj(u) < +oc.

AGREEING with the concept of simple limit solution

BUT with the advantages of graph completion solutions
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WHY BV, graph completion solutions instead of limit solutions?

1) Because, they have explicit representation formula:

@ SUITABLE TO PROVE

o properness of the impulsive problem, HJ equations,
approximations
( [Aronna, Motta, Rampazzo, '15], [Motta, Sartori,15]; for u € BV, e.g., [Motta,
Rampazzo,'96], [Camilli, Falcone, '99], ...)

o optimality conditions (for u € BV: e.g., [Pereira, Silva, '00], ...)
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2) They may be the natural setting for:

Controllability issues:
given a closed set C C R" x U, called target, select (x, u) such that
(x(T),u(T)) € Cfor uin BV orin BViy;

Specific optimal control problems, as

Mégim/i)ze fOT[ﬁo(X(TL u(t), v(t)) + 61 (x(t), u(t)) luf] at,
- (x(T),u(T)) eC
WITH
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@ "target-weighted"” weak coercivity:
60 > 07 2 (X7 U) > C(d((X7 U)*C))

for some strictly increasing, continuous function ¢ : Ry — R,

= only u € BV|o¢ have finite cost
@ GENERALIZATION of the well known weak coercivity:
lh>0, (1>2C>0

—> only u € BV have finite cost (assumed in several applications).
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l. BVj,c REGULAR inputs u ( = ACj inputs U)

GIVEN a TARGET C ¢ R" x U, WHAT DOES IT MEAN

(x(T), u(T)) € C?

@ Ifuc ACand v ¢ L': 3! Carathéodory solution x of (1) in [0, T]:

~—_ (x(0),u(0))
O(T),u(T))

Target

A trajectory-control pair (x, u, v) is feasible if and only if
(x(T),u(T)) eC.
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l. BVj,c REGULAR inputs u ( = ACj inputs U)

If u € AC([0,1]) for every t < T, but possibly Varjy rj(v) = +oo
(u € ACjoc), and v € L': 3! Carathéodory solution x of (1) in [0, T|:

(x(0),u(0))
- ((T)u(T) lim,_, 7 (x(t), u(t)) € C;
Target
9((3),“(0))
target . |ithT— d((X(t), U(T)),C) - 0,

< ()

«» (2(0);u(0)) .
=~ =1 (x(t);u(t))

S

Target
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WE WANT TO EXTEND the pairs (x, u) at t = T, so that WE CAN SAY
that all all the previous (x, u) verify

(x(T),u(T)) eC!
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l. BVj,c REGULAR inputs u ( = ACjc inputs u)

Definition 5 (AC,; solutions).

Given a control pair (u, v) € ACjc x L', we introduce a set-valued
extension of the Carathéodory solution x of (1) andof uto t = T:

(x,U)set(T) := {Ii;n(x, u)(7;), (;); increasing and Ii;n 7 =T}

We call (single-valued) AC),. trajectory-control pair any (x, u, v) with

(x,u)(T) € (x, U)set(T)-
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l. BVj,c REGULAR inputs u ( = ACjc inputs u)

According to this definition, given a target C:

There exists (x,u)(T) € C < liminf,_,— d((x(t), u(t)),C) = 0; |
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TOWARDS THE DEFINITION of
BVioc graph completion solution

("compatible” with an endpoint constraint (x(T), u(T)) € C)
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BV/,c graph completion solutions

WE EXTEND the graph completion approach to u € BVjoc, where it may
happen that (using the arc-length parametrization)

S =T+ Varp glp] = +oo (<= Varp gly] = +0).

GENERALIZED CONTROLS:

Definition 6 (BV,,. graph completions).

Given u € BV|o¢, We say that (¢o, ¢, S) with S = +o0, is @ BVjoc graph
completion of u if

i) Vt €0, T[, 3s € [0, S[ such that (¢, ¥)(s) = (t, u(t));
ii) moreover,

lim ¢o(s) =T, limy(s))=u(T) forsomes; +oo.
j

S—+00
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BV/,c graph completion solutions

Recall the space-time system introduced before.
Let ¢ be the solution of the ORDINARY space-time system:

{ £'(8) = go(&, ¢, v o v0)pn(s) + 21 9il€s ) pi(8),
£(0) = Xo.
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BV/,c graph completion solutions

GENERALIZED SOLUTIONS:

Definition 7 (BV,,. graph completion solutions).

Given a BV, graph completion (o, ¢, +00) of u € BVjee and a clock
o : [0, T[— [0, 40| selection of @51 and a control v € L', let ¢ be the
solution of the space-time system (3).

We call (single-valued) BV),. graph completion solution to (1), the map
x(t):=ECoo(t) forte[0,T[

extended to { = T by considering (x(T), u(T)) € (&, ¢)set(+00), where

(€, ©)set(+00) = {“;n(f, ©)(sj): s/ +oos. t. |i;n p(sj) = u(T)}.
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BV/,c graph completion solutions

When u € ACjoc and (o, ¢, +00) is the arc-length parametrization of

(t, u(t),
BV, graph completion solution = AC,: graph completion solution.
When u € BV, however, we DON’T require that
(x,u)(T) = lim(x,u)(t;,)  forsomet; T
ti—T

but only the WEAKER assumption:

(x,u)(T)= lim (& ¢)(s;))  forsomes; 7 +oo

S/'—>+OO
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BV/,c graph completion solutions

This last condition DOES NOT IMPLY regularity of (x, u) at t = T.
E.g., considering just u:

Var(u)=« Var(p)=«
t T T
Var(u)<=° Var(gp)==
T T
u(T) = s,LToc ¢(sj))  forsomes; / +oo
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BV/,c graph completion solutions

The EXISTENCE of graph completions is NOT OBVIOUS and depends on
the FORM of U:

Definition 8 (Whitney property).

A compact set U C R™ has the Whitney property if there is some C > 1
such that for all uy, up € U, there exists 1 € AC([0, 1], U) verifying

u(0) =uw, u(1) = uo, Var[o’ﬂ[&] < Cluy — up|.

For instance, compact, star-shaped sets verify the Whitney property.
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BV/,c graph completion solutions

Existence of BV, graph completion solutions

Theorem 9.

If U has the Whitney property, for any u € BV, there exists a
graph-completion (¢g, , +00).
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Comparison with limit solutions

RECALL the definition already introduced above:

Definition 10 (Simple limit solution; Aronna, Rampazzo, ’15).

Let (u,v) € £ x L' with u(0) = Tp.

@ A map x is called a simple limit solution of (1), shortly S limit
solution, if, there exists a sequence of controls (uk)x C AC such that
ux(0) = tUp and,

(i) the sequence (xk)x of the Carathéodory solutions to (1) corresponding
to (u, v) is equibounded in [0, T;
(i) forany t e [0, T], limk(xk, uk)(t) = (x, u)(t).

@ An S limit solution x is called BVS limit solution of (1) if the
approximating inputs ux have equibounded variation.
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Theorem 11 (Motta, Sartori, ’18).

Let (u,v) € BVoc x L' with u(0) = ti. Then any BV, graph completion
solution x of (1) is an S limit solution of (1).

@ The proof IS NOT a routine adaptation of an analogous result for BV inputs and solutions due
to Aronna and Rampazzo, since we loose any compactness. Indeed, x = £ o o may

correspond to a graph completion (g, ¢, S) with S = +00 and a clock o : [0, T[— [0, +o0].
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Steps of the proof

@ xis a BV, GRAPH COMPLETION SOLUTION
It is associated to (o, ¢, %), to £ solution of the space-time system and to a clock
o : [0, T[— R4 such that x(t) := £ o o(t) and (o, ¢)(a(t)) = (t, u(t)).
@ Find a sequence o, — o in [0, T] such that pg, := o ' — g in [0, +00[, po, Lipschitz.
@ Define up, = ¢ o op. Modify the non (BV) controls uj, so that their variation is equibounded in
[0,f]fort < T.

@ For a suitable subsequence of the modified up, the corresponding trajectories xj converge
pointwisely to x. Hence x is S LIMIT SOLUTION.

@ ltis a BV, SIMPLE LIMIT SOLUTION.
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VICE-VERSA:

BV)sc graph completion solutions are SPECIAL simple limit solutions:

Definition 12 (BV,,:S limit solution; Motta, Sartori, ’16).

An S limit solution x is called a BV, simple limit solution of (1), shortly
a BV, S limit solution, if the approximating inputs u:

i) have equibounded variation in [0, t] for every t < T;

ii) have "equiuniformity” at 7 (*)

Uk) = §j

(*) : 3&(j) — 0,3 / +oo and ki > j such that, for 7/ implicitly defined by 7/ + var, T[](
j Tk

(i, uk ) (T]) — (e, k) (T)| <€) for every k > k;,
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The BV/,:S limit solution are the right subset to prove the vice-versa of our
theorem.

Theorem 13 (Motta, Sartori, ’18).

Let (u,v) € BVjoe x L' with u(0) = To.

Then any BV,,cS limit solution x of (1) is a BV, graph completion solution
of (1).
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Steps of the proof

@ xisaBV SIMPLE LIMIT SOLUTION. The approximating inputs ux have equibounded
variation in [0, t] for every t < T and have "equiuniformity" at T.

@ Define oy := t + Varp q(uk), po, = 0';1, Pk = Uk © Qo -
There exists a subsequence of (o, , ¢x) and of o converging locally uniformly to a (o, ©)
and to o, resp.. Let & be the corresponding solution of the space-time system.

@ (o, ) is a BV graph completion, (¢, ¢) o o = (¢, u(t)) and x(t) = limxk(t) = lim & o o.
= x is a BV, graph completion on [0, T[.

@ Use the "equiuniformity " to show that x is a BV;,c GRAPH COMPLETION ON THE WHOLE
[0, 7].
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BV /o simple limit solutions <= BV, graph completion solutions

Theorem 14 (Motta, Sartori, *18).

Let (u,v) € BVoc x L' with u(0) = ty. Then x is a BV, graph
completion solution of (1) if and only if x is a BV),:S limit solution of (1).

This generalizes the equivalence between usual graph completion solutions and BVS limit solutions
proved in [Aronna, Rampazzo, '15]
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EXAMPLE

Let us consider the control system

X =01(x)U + g(x)l2,  (S)

with x € R®, v e R?and |u| <1,
with initial and terminal conditions

(X7 U)(O) = ((170’ 1)7 (170))’ (X7 U)(T) = ((170a0)7 (170))

where
1 0
gi(x)=1 0 |, go(x)= 1
X3X2 —X3X1
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EXAMPLE

@ For any u € AC verifying u(0) = (1, 0), the corresponding Carathéodory
solution x with x(0) = (1,0,1) is

(X1, X2, X3)(1) = (u1(t), Us(t), e~ Jo(—vein-+unie)(s) dS) vt € [0, T].
In particular, since |f0t(—u2i11 + i p)(s) ds| < Var rj(u),

x3(T) > e @on) > o
and no solutions verifying x3(T) = 0 exist.
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EXAMPLE

@ For any u € AC verifying u(0) = (1, 0), the corresponding Carathéodory
solution x with x(0) = (1,0,1) is

(X1, X2, X3)(1) = (u1(t), Us(t), e~ Jo(—vein-+unie)(s) dS) vt € [0, T].
In particular, since |f0t(—u2i11 + i p)(s) ds| < Var rj(u),

x3(T) > e o) > o
and no solutions verifying x3(T) = 0 exist.
@ Consider u € ACic[0, T[ given by

u(t):= (cos <T%t — ) sin (T %)) , forte [0, T[. (1)

The corresponding solution is (x1, X2, X3)(t) = (u1 (1), uo(t), € T(T[*O)

4
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EXAMPLE

so that lim;_, 7 x3(t) = 0 and the (extended) ACj,. solution:
(Xa U)(T) = Iimk(X7 U)(tk) = ((1 ) 07 0)7 (1 ) O)) where k == %
satisfies the terminal constraint.

The extended map x is a BV ,:S limit solution.
Indeed, for every k, set

2k T?
tk == ma Uk(t) == U(t)X[O,tk](t) + U(tk)X]t;ﬁT](t)a

where u is as in (1), giving u(tx) = (cos(2km), sin(2km)) = (1,0).

x is the pointwise limit of xx, corresponding to ux € AC(T).
and

t

| O, i) (6) — O, ui)(T)| = [x(5) — x(t)| < e 79 =0,
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EXAMPLE

MINIMIZATION PROBLEM FOR THIS SYSTEM
Payoff

-
J(v) :=/O (11— u (O] + [ua(8)] + |xs(8)[|u(t)]] ot
with terminal constraint
(x,u)(T) e C:= (U x {0}) x U.

We have inf,cac(1) J(U) = +oc. In AC,c the terminal constraint is
equivalent to

(x,u)(T)eC —

oz liminfd((x(1), (1), €) = 0.
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EXAMPLE

Hence, for every k, implementing the control

1 , 1
Uk(t) = (1,0))([077-_(1//()] A <COS (T—t — k) , SIn (T—t = k)) X[T—(1/k),T]

we get the solution

Xe(t) = (1,0, 1)xj0,7— (101 + (14 (8), e (1), €77 ) g1 s, 71

with (xk, uk) verifying the constraints and 1 < J(ux) < 1+ 2, so that
Iimk J(Uk) =1.
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EXAMPLE

The extended cost is

S
T (0,9, S) 12/0 [(11 = @1(8) + la(s))u(s) + [&s(s)l ¢ (s)]] a,

where S < 400 and limg_, s ¢o(s) = T.
The infimum is a minimum on the set of BV/,c graph completions, obtained
for

(0, #)(s) := (s,1,0)x0,7((s) + (T, (cos(s — T),sin(s — T))x[7,+oo((S)
and the corresponding trajectory
&(s) = (1,0, 1)xp0,7((8) + (cos(s — T),sin(s — T), & ")\ 400((S)-

We have
T (o, ¢, +0) = 1.
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EXAMPLE

Q. IS THIS THE MINIMUM ON THE SET OF S LIMIT SOLUTIONS?
A. YES!!
Add to the system the variable

Xo = [1 = ()] + [u2()] + xa(B)]|e(t)],  xa(0) =0

In the class of S limit solutions, the problem is equivalent to minimize
x4(T). For every sequence (xx, Ux)x of equibounded, absolutely
continuous maps defining an S limit solution verifying the terminal
constraint, one has limg Var[oﬁT](uk) = +o00 and

T .
Xa (T) = J(uk) = / e Jolilor |yl gt = 1—e=Yaon) 1 ask - +oo
0

Actually, WE PROVE that the minimum value is obtained in the subset of
BV/ocS limit solutions.
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An extended notion of limit solution

FOLLOWING [Aronna, Rampazzo, '15],

for any control (u, v) we define (simple) limit solutions x using
approximating inputs
(Uk'/ V)

where the ordinary" control v is fixed.
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An extended notion of limit solution

FOLLOWING [Aronna, Rampazzo, '15],

for any control (u, v) we define (simple) limit solutions x using
approximating inputs
(Uk'/ V)

where the ordinary" control v is fixed.

WHAT ABOUT CONSIDERING

(Uk,Vk), Vk — vinL'?
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RECALL the control system

X =go(x,u,v)+ Y gilx,u) ii(t), x(0) = Xo,

i=1

where only the the DRIFT depends on v
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RECALL the control system

x = go(x,u,v)+ Zgi(x, u) Ui(t), x(0) = Xo,

i=1

where only the the DRIFT depends on v

NEVERTHELESS, it may happen that

Xk corresponding to (ug,v) — X
and

Xk corresponding to (uk,vk) — X

WHERE

@ X # X

@ x IS NOT a simple limit solution

C. Sartori, M. Motta (Un. Padova) Lack of BV bounds



Example 16.
For t € [0, 27], let us consider the control system

X=go(x) + g1(X)tn + g2(X)l2, —1<v<a, Ju <1, (4)

with initial condition (x, u)(0) = ((0,0,1,0),(0,0)), and

0 1 0

0 0 1
0= (o @0=| | eo=|_

"4 — X4 X2 X4.Xq

Let (u,v) = (0,0).
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@ For every k, set
uk(t)::%ﬂ(cos(kt) —1,sin(kt)) Xor k2 (1), fort € [0, 2n],

3,
Vk ==k 972”‘/EX[0,2w/k]~

@ The solution xx corresponding to (uk, v), has x4, = 0 and converges to the
simple limit solution x := (0,0,1,0) x{—o0}-
In fact, x4, = 0 for any simple limit solution.

@ The solution X corresponding to (ug, vx) has

\?/;( t—2m— S\nik/)

% — k —2n Ik v ; o 727»)
Xy = Ke IX[o.2n/k] + 2T € X[2r/k,2x]
and converges to a map x # X, since

X4(27T) = 277& 0= X4(27’l‘).

Thus x IS NOT a simple limit solution!
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This suggest to EXTEND the notion of limit solution, by considering
approximating inputs

(uk, vk) with vx — v in L" instead of (uy, v)
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Remark: EXTENDED and USUAL limit solutions coincide in all existing
results!
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Remark: EXTENDED and USUAL limit solutions coincide in all existing
results!

IN PARTICULAR, this is true for BVS and BV, S solutions:

Theorem 17 (M., Sartori, *18).

Let (u,v) € BVjoc x L' be such that u(0) = Tp. Then a map x is an
extended BVS [resp. extended BV, S] limit solution if and only if it is a
BVS [resp. BV,cS] limit solution.
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LAST, LAST, LAST

Notice that we for a system

x(t) = go(x(1), u +Zg, ), u(t), v(1)) ui(?),

we can show that in the BV case extended limit solutions coincide with
graph completion solutions.
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Thank you for your attention!

HAPPY BIRTHDAY to
GIOVANNI and FRANCO!!




The EXISTENCE of graph completions is NOT OBVIOUS and depends on
the FORM of U:

Definition 18 (Whitney property).

A compact set U C R™ has the Whitney property if there is some C > 1
such that for all uy, u» € U, there exists i € AC([0, 1], U) verifying

u(0)=uw, u(1) = uwo, Var[OJ][D] < Cluy — up|.

For instance, compact, star-shaped sets verify the Whitney property.
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The EXISTENCE of graph completions is NOT OBVIOUS and depends on
the FORM of U:

Definition 18 (Whitney property).

A compact set U C R™ has the Whitney property if there is some C > 1
such that for all uy, u» € U, there exists i € AC([0, 1], U) verifying

u(0)=uw, u(1) = uwo, Var[OJ][D] < Cluy — up|.

For instance, compact, star-shaped sets verify the Whitney property.

Theorem 19.

If U has the Whitney property, for any u € BV, there exists a
graph-completion (o, ¢, +00).

This result generalizes [Aronna, Rampazzo, '15] for BV inputs
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@ BOTH CONDITIONS i) and ii) in the definition of BV/,cS limit solution
are necessary for its CONSISTENCY with AC),¢ solutions:
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@ BOTH CONDITIONS i) and ii) in the definition of BV/,:S limit solution
are necessary for its CONSISTENCY with AC),¢ solutions:

Example 20.

Consider the ACoc control
u(t) = (1 — cos (T%t - ‘7) ,sin (T%t — lT)) fort € [0, T[.

If t == 22T and % .= 1:2%‘7;:3;; so that t < t, t, & /T, and

u(ty) = (0,0), u(t) = (2,0),
the approximating inputs
uk(t) := u(t)xpo,u (1) + 3u(t)x(s 71 (1) + (6,0) x5, 7 (1),
are in AC, have equibounded variation and converge to u in [0, f] forany t < T,

BUT

lim uk(T) = (6,0) & user(T) C [0,2] x [~1,1].
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If Tac,, is continuous on C, then

TaCw: = TBVieg.c. = TBVeSLs. = Tis. (£ TBvge = Tavsis. < Tac)-

If Tpc is continuous on C, all these minimum times coincide.
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For every ¢ > 0 and (Xo, Up)), let us define the e —penalized value function

()
T-(Xo, Up) := inf 1 u(s)|) ds,
Godo) = it [ elis)

where
tu,vy = inf{t >0 (x(t),u(t)) € C}.

Theorem 22.

For everye > 0, let T. be continuous on C. Then T 4¢ is continuous on C
and
lim T. = Tyc.
e—0t
If moreover T 4¢ is continuous in its whole domain, the above limit is locally
uniform.

V.
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