Lack of BV bounds in impulsive control systems

<u>Caterina Sartori</u> in collaboration with Monica Motta

Dipartimento di Matematica Università di Padova

Padova, 24-25 Maggio 2018 On the occasion of Giovanni Colombo and Franco Rampazzo's 60th birthday

Introduction of impulsive control systems: graph completions

2 New results: *BV_{loc}* graph completion solutions

3 Main theorems

Consider

$$\begin{cases} \dot{x}(t) = g_0(x(t), u(t), v(t)) + \sum_{i=1}^m g_i(x(t), u(t)) \dot{u}_i(t), \\ (x(0), u(0)) = (\bar{x}_0, \bar{u}_0) \end{cases}$$
(1)

where

- the control (u, v) ranges over a compact set $U \times V \subset \mathbb{R}^m \times \mathbb{R}^q$
- *u* is the *impulsive* control; *v* is the *ordinary* control
- (usual hypotheses on g_i : local Lipschitz continuity and linear growth in (x, u)...)

• Let T > 0 and $v \in L^1$. A classical, Carathéodory solution x of (1) in [0, T] exists only for $\mathbf{u} \in A\mathbf{C}$.

• Let T > 0 and $v \in L^1$. A classical, Carathéodory solution x of (1) in [0, T] exists only for $\mathbf{u} \in A\mathbf{C}$.

If u ∈ BV, there are fairly equivalent concepts of generalized solutions x ∈ BV, which I will refer to as graph completion solutions, ([Rishel, Warga, Bressan, Rampazzo, Dal Maso, Motta, Sartori, Miller, Rubinovich, Vinter, Silva, Arutyunov, Karamzin, de Oliveira, Pereira, Guerra, Sarychev, Wolenski, Zabic', Mazzola,...])

- Let T > 0 and $v \in L^1$. A classical, Carathéodory solution x of (1) in [0, T] exists only for $\mathbf{u} \in A\mathbf{C}$.
- If u ∈ BV, there are fairly equivalent concepts of generalized solutions x ∈ BV, which I will refer to as graph completion solutions, ([Rishel, Warga, Bressan, Rampazzo, Dal Maso, Motta, Sartori, Miller, Rubinovich, Vinter, Silva, Arutyunov, Karamzin, de Oliveira, Pereira, Guerra, Sarychev, Wolenski, Zabic', Mazzola,...])
- If u ∈ L¹ (set of pointwisely defined L¹ functions), there is a notion of solution for commutative systems, where the Lie brackets
 [(e_i, g_i), (e_j, g_j)] = 0 for all i, j = 1, ..., m (e_i, e_i vectors of the canonical basis in ℝ^m) [Bressan, Rampazzo, '91], [A.V. Sarychev, 91], [Dykhta, 94], or other notions when the Lie Algebra is non trivial. (looping controls in [Bressan, Rampazzo, '94], limit solutions in [Aronna, Rampazzo,'15], ...)

- Let T > 0 and $v \in L^1$. A classical, Carathéodory solution x of (1) in [0, T] exists only for $\mathbf{u} \in A\mathbf{C}$.
- If u ∈ BV, there are fairly equivalent concepts of generalized solutions x ∈ BV, which I will refer to as graph completion solutions, ([Rishel, Warga, Bressan, Rampazzo, Dal Maso, Motta, Sartori, Miller, Rubinovich, Vinter, Silva, Arutyunov, Karamzin, de Oliveira, Pereira, Guerra, Sarychev, Wolenski, Zabic', Mazzola,...])
- If u ∈ L¹ (set of pointwisely defined L¹ functions), there is a notion of solution for commutative systems, where the Lie brackets [(e_i, g_i), (e_j, g_j)] = 0 for all i, j = 1, ..., m (e_i, e_i vectors of the canonical basis in ℝ^m) [Bressan, Rampazzo, '91], [A.V. Sarychev, 91], [Dykhta, 94], or other notions when the Lie Algebra is non trivial. (looping controls in [Bressan, Rampazzo, '94], limit solutions in [Aronna, Rampazzo,'15], ...)

For commutative systems, all these concepts of solution coincide

BV inputs u and graph completions

Let us first illustrate the graph completion approach for $\mathbf{u} \in \mathbf{BV}$

(we assume that $U \subset \mathbb{R}^m$ has the Whitney property; e.g. let U be a compact, star-shaped set):

Graph reparametrization ($\varphi_0(s),\varphi(s)$) of the completion of (t,u(t)) ((20, (2)) is 1-Lipschitz and

• Using the arc-length parametrization, (φ_0, φ) is 1-Lipschitz and

 $arphi_0'(s) + |arphi'(s)| = 1 ext{ for a.e. } s$

- $\varphi_0(S) = T \implies S = T + Var_{[0,S]}[\varphi].$
- $\varphi_0^{-1}: [0, T] \rightarrow [0, S]$ is set-valued

The space-time system associated to the graph completion

Let ξ be the solution of the ORDINARY space-time system:

$$\begin{cases} \xi'(s) = g_0(\xi, \varphi, \mathbf{v} \circ \varphi_0) \varphi'_0(s) + \sum_{i=1}^m g_i(\xi, \varphi) \varphi'_i(s), \\ \xi(0) = \bar{x}_0. \end{cases}$$

(recall: $t = \varphi_0(s)$, time-change such that $t_i = \varphi_0(s)$ for $s \in [s_i, s_{i+1}]$)

(2)

The space-time system associated to the graph completion

Let ξ be the solution of the ORDINARY space-time system:

$$\begin{cases} \xi'(s) = g_0(\xi, \varphi, \mathbf{v} \circ \varphi_0)\varphi'_0(s) + \sum_{i=1}^m g_i(\xi, \varphi)\varphi'_i(s), \\ \xi(0) = \bar{x}_0. \end{cases}$$

(recall: $t = \varphi_0(s)$, time-change such that $t_i = \varphi_0(s)$ for $s \in [s_i, s_{i+1}]$)

• If $\sigma : [0, T[\rightarrow [0, S[$ is a **selection** of φ_0^{-1} , called a **clock**, such that $(\varphi_0, \varphi)(\sigma(t)) = (t, u(t))$ for every $t \in [0, T[, \sigma(0) = 0,$

the function $x := \xi \circ \sigma$ defines a (single-valued) graph-completion solution associated to (φ_0, φ, S) and σ .

(2)

The space-time system associated to the graph completion

Let ξ be the solution of the ORDINARY space-time system:

$$\begin{cases} \xi'(\boldsymbol{s}) = g_0(\xi, \varphi, \boldsymbol{v} \circ \varphi_0) \varphi_0'(\boldsymbol{s}) + \sum_{i=1}^m g_i(\xi, \varphi) \varphi_i'(\boldsymbol{s}), \\ \xi(0) = \bar{x}_0. \end{cases}$$

(recall: $t = \varphi_0(s)$, time-change such that $t_i = \varphi_0(s)$ for $s \in [s_i, s_{i+1}]$)

• If $\sigma : [0, T[\rightarrow [0, S[$ is a selection of φ_0^{-1} , called a clock, such that $(\varphi_0, \varphi)(\sigma(t)) = (t, u(t))$ for every $t \in [0, T[, \sigma(0) = 0,$

the function $x := \xi \circ \sigma$ defines a (single-valued) graph-completion solution associated to (φ_0, φ, S) and σ .

• When $u \in AC$ and (φ_0, φ, S) is the arc-length parametrization of (t, u(t)), graph-completion solution = Carathéodory solution.

C. Sartori, M. Motta (Un. Padova)

■▶▲■▶ ■ の�?

(2)

INDEPENDENTLY FROM GRAPH COMPLETIONS THERE IS THE FOLLOWING

Definition 1 (Simple limit solution; Aronna, Rampazzo, '15).

Let $(u, v) \in \mathcal{L}^1 \times L^1$ with $u(0) = \overline{u}_0$.

A map *x* is called a **simple limit solution** of (1), shortly *S* **limit solution**, if, there exists a sequence of controls $(u_k)_k \subset AC$ with $u_k(0) = \bar{u}_0$, pointwisely converging to *u*, and such that

(i) the sequence (x_k)_k of the Carathéodory solutions to (1) corresponding to (u_k, v) is equibounded in [0, T];

(ii) for any $t \in [0, T]$,

 $\lim_k x_k(t) = x(t).$

Definition 2 (Aronna, Rampazzo, '15).

Let $(\mathbf{u}, \mathbf{v}) \in \mathbf{BV} \times \mathbf{L}^1$ with $u(0) = \overline{u}_0$. A map x is called a *BV* simple limit solution of (1) if

- i) there exists $(u_k) \subset AC$, $u_k(0) = \overline{u}_0$, with equibounded variation, converging pointwisely to u;
- ii) the corresponding solutions x_k to (1) converge pointwisely to x.

Relation between *BV* limit solutions and graph completions

Theorem 3 (Representation formula, Aronna, Rampazzo, '15).

Let $(\mathbf{u}, \mathbf{v}) \in \mathbf{BV} \times \mathbf{L}^1$ with $u(0) = \overline{u}_0$.

A map x is a graph completion solution IF AND ONLY IF it is a BV simple limit solution.

C. Sartori, M. Motta (Un. Padova)

< □ > < 合

COLONY OF

Э

OUR GOAL IS TO INTRODUCE A NOTION OF GENERALIZED SOLUTION, the BV_{loc} graph completion solution, in an intermediate situation, for BV_{loc} inputs u where:

Definition 4 (BV_{loc} controls).

Let T > 0. We say that $\mathbf{u} \in \mathbf{BV}_{\mathsf{loc}}$ if $u : [0, T] \to U$ and

 $Var_{[0,t]}(u) < +\infty$ for every t < T, but $Var_{[0,T]}(u) \leq +\infty$.

OUR GOAL IS TO INTRODUCE A NOTION OF GENERALIZED SOLUTION, the BV_{loc} graph completion solution, in an intermediate situation, for BV_{loc} inputs u where:

Definition 4 (BV_{loc} controls).

Let T > 0. We say that $\mathbf{u} \in \mathbf{BV}_{\mathsf{loc}}$ if $u : [0, T] \to U$ and

 $Var_{[0,t]}(u) < +\infty$ for every t < T, but $Var_{[0,T]}(u) \le +\infty$.

AGREEING with the concept of simple limit solution

BUT with the advantages of graph completion solutions

WHY BV_{loc} graph completion solutions instead of limit solutions?

- 1) Because, they have explicit representation formula:
- SUITABLE TO PROVE
 - properness of the impulsive problem, HJ equations, approximations

([Aronna, Motta, Rampazzo, '15], [Motta, Sartori,'15]; for $u \in BV$, e.g., [Motta, Rampazzo,'96], [Camilli, Falcone, '99], ...)

• **optimality conditions** (for $u \in BV$: e.g., [Pereira, Silva, '00], ...)

2) They may be the natural setting for:

Controllability issues:

given a closed set $C \subset \mathbb{R}^n \times U$, called target, select (x, u) such that $(x(T), u(T)) \in C$ for u in BV or in BV_{loc} ;

Specific optimal control problems, as

 $\begin{array}{l} \underset{(x,u,v)}{\text{Minimize }} \int_{0}^{T} [\ell_{0}(x(t), u(t), v(t)) + \ell_{1}(x(t), u(t)) |\dot{u}|] \, dt, \\ (x(T), u(T)) \in \mathcal{C} \end{array}$

WITH

"target-weighted" weak coercivity:

$$\ell_0 \geq 0, \qquad \ell_1(x,u) \geq c(\mathbf{d}((x,u),\mathcal{C}))$$

for some strictly increasing, continuous function $c : \mathbb{R}_+ \to \mathbb{R}_+$,

 \implies only $\mathbf{u} \in \mathbf{BV}_{\mathsf{loc}}$ have finite cost

• GENERALIZATION of the well known weak coercivity:

 $\ell_0 \geq 0, \qquad \ell_1 \geq C_1 > 0$

 \implies only $\mathbf{u} \in \mathbf{BV}$ have finite cost (assumed in several applications).

I. BV_{loc} REGULAR inputs u (= AC_{loc} inputs U)

GIVEN a TARGET $C \subset \mathbb{R}^n \times U$, WHAT DOES IT MEAN $(x(T), u(T)) \in C$?

• If $\mathbf{u} \in \mathbf{AC}$ and $\mathbf{v} \in \mathbf{L}^1$: \exists ! Carathéodory solution *x* of (1) in [0, *T*]:

A trajectory-control pair (x, u, v) is **feasible** if and only if $(x(T), u(T)) \in C$.

I. BV_{loc} REGULAR inputs u (= AC_{loc} inputs U)

If $\mathbf{u} \in \mathsf{AC}([0, t])$ for every t < T, but possibly $Var_{[0, T[}(u) = +\infty$ ($\mathbf{u} \in \mathsf{AC}_{\mathsf{loc}}$), and $\mathbf{v} \in \mathsf{L}^1$: \exists ! Carathéodory solution x of (1) in [0, T[:

WE WANT TO EXTEND the pairs (x, u) at t = T, so that WE CAN SAY that all all the previous (x, u) verify

 $(x(T), u(T)) \in C!$

Definition 5 (*AC*_{*loc*} **solutions).**

Given a control pair $(u, v) \in AC_{loc} \times L^1$, we introduce a **set-valued** extension of the Carathéodory solution *x* of (1) and of *u* to t = T:

 $(\mathbf{x}, \mathbf{u})_{set}(\mathbf{T}) := \{\lim_{i} (x, u)(\tau_i), (\tau_i)_i \text{ increasing and } \lim_{i} \tau_i = T\}.$

We call (single-valued) AC_{loc} trajectory-control pair any (x, u, v) with

 $(x, u)(T) \in (x, u)_{set}(T).$

I. BV_{loc} REGULAR inputs u (= AC_{loc} inputs u)

According to this definition, given a target C:

There exists $(x, u)(T) \in \mathcal{C} \iff \liminf_{t \to T^-} \mathbf{d}((x(t), u(t)), \mathcal{C}) = 0;$

TOWARDS THE DEFINITION of *BV*_{loc} graph completion solution

("compatible" with an endpoint constraint $(x(T), u(T)) \in C$)

BV_{loc} graph completion solutions

WE EXTEND the graph completion approach to $\mathbf{u} \in \mathbf{BV}_{loc}$, where it may happen that (using the arc-length parametrization)

 $S = T + Var_{[0,S]}[\varphi] = +\infty \quad (\iff Var_{[0,S]}[\varphi] = +\infty).$

GENERALIZED CONTROLS:

Definition 6 (BV_{loc} graph completions).

Given $\mathbf{u} \in \mathbf{BV}_{loc}$, we say that (φ_0, φ, S) with $S = +\infty$, is a \mathbf{BV}_{loc} graph completion of u if

i) $\forall t \in [0, T[, \exists s \in [0, S[\text{ such that } (\varphi_0, \varphi)(s) = (t, u(t));$

ii) moreover,

$$\lim_{s \to +\infty} \varphi_0(s) = T, \quad \lim_j \varphi(s_j) = u(T) \quad \text{for some } s_j \nearrow +\infty.$$

Recall the space-time system introduced before. Let ξ be the solution of the ORDINARY space-time system:

$$\begin{cases} \xi'(s) = g_0(\xi, \varphi, v \circ \varphi_0)\varphi'_0(s) + \sum_{i=1}^m g_i(\xi, \varphi)\varphi'_i(s), \\ \xi(0) = \bar{x}_0. \end{cases}$$

(3)

GENERALIZED SOLUTIONS:

Definition 7 (*BV*_{loc} graph completion solutions).

Given a BV_{loc} graph completion $(\varphi_0, \varphi, +\infty)$ of $\mathbf{u} \in \mathbf{BV}_{loc}$ and a clock $\sigma : [0, T[\rightarrow [0, +\infty[$ selection of φ_0^{-1} and a control $\mathbf{v} \in \mathbf{L}^1$, let ξ be the solution of the space-time system (3).

We call (single-valued) BV_{loc} graph completion solution to (1), the map

 $x(t) := \xi \circ \sigma(t)$ for $t \in [0, T[$

extended to t = T by considering $(x(T), u(T)) \in (\xi, \varphi)_{set}(+\infty)$, where

$$(\xi, \varphi)_{set}(+\infty) := \{\lim_{i} (\xi, \varphi)(s_i) : s_j \nearrow +\infty \text{ s. t. } \lim_{i} \varphi(s_i) = u(T)\}.$$

When $u \in AC_{loc}$ and $(\varphi_0, \varphi, +\infty)$ is the arc-length parametrization of (t, u(t)),

 BV_{loc} graph completion solution = AC_{loc} graph completion solution.

When $u \in BV_{loc}$, however, we DON'T require that

 $(x, u)(T) = \lim_{t_j \to T} (x, u)(t_j)$ for some $t_j \nearrow T$

but only the WEAKER assumption:

 $(x, u)(T) = \lim_{s_j \to +\infty} (\xi, \varphi)(s_j)$ for some $s_j \nearrow +\infty$

C. Sartori, M. Motta (Un. Padova)

三国 ヨー つらの

BV_{loc} graph completion solutions

This last condition DOES NOT IMPLY regularity of (x, u) at t = T. E.g., considering just u:

$$u(T) = \lim_{s_i \to +\infty} \varphi(s_j)$$
 for some $s_j \nearrow +\infty$

The EXISTENCE of graph completions is NOT OBVIOUS and depends on the FORM of *U*:

Definition 8 (Whitney property).

A compact set $U \subset \mathbb{R}^m$ has the **Whitney property** if there is some $C \ge 1$ such that for all $u_1, u_2 \in U$, there exists $\tilde{u} \in AC([0, 1], U)$ verifying

$$ilde{u}(0)=u_1, \quad ilde{u}(1)=u_2, \quad Var_{[0,1]}[ilde{u}]\leq C|u_1-u_2|.$$

For instance, compact, star-shaped sets verify the Whitney property.

Existence of *BV*_{loc} graph completion solutions

Theorem 9.

If U has the Whitney property, for any $u \in BV_{loc}$ there exists a graph-completion $(\varphi_0, \varphi, +\infty)$.

RECALL the definition already introduced above:

Definition 10 (Simple limit solution; Aronna, Rampazzo, '15).

Let $(u, v) \in \mathcal{L}^1 \times L^1$ with $u(0) = \overline{u}_0$.

- A map *x* is called a **simple limit solution** of (1), shortly *S* **limit solution**, if, there exists a sequence of controls $(u_k)_k \subset AC$ such that $u_k(0) = \overline{u}_0$ and,
 - (i) the sequence (x_k)_k of the Carathéodory solutions to (1) corresponding to (u_k, v) is equibounded in [0, T];
 - (ii) for any $t \in [0, T]$, $\lim_{k \to \infty} (x_k, u_k)(t) = (x, u)(t)$.
- 2 An *S* limit solution *x* is called *BVS* limit solution of (1) if the approximating inputs u_k have equibounded variation.

Theorem 11 (Motta, Sartori, '18).

Let $(\mathbf{u}, \mathbf{v}) \in \mathsf{BV}_{\mathsf{loc}} \times \mathsf{L}^1$ with $u(0) = \overline{u}_0$. Then any $\mathsf{BV}_{\mathsf{loc}}$ graph completion solution x of (1) is an S limit solution of (1).

The proof IS NOT a routine adaptation of an analogous result for *BV* inputs and solutions due to Aronna and Rampazzo, since we loose any compactness. Indeed, *x* = ξ ∘ σ may correspond to a graph completion (φ₀, φ, *S*) with *S* = +∞ and a clock σ : [0, *T*[→ [0, +∞[.

Steps of the proof

- *x* is a BV_{loc} GRAPH COMPLETION SOLUTION It is associated to $(\varphi_0, \varphi, \psi)$, to ξ solution of the space-time system and to a clock $\sigma : [0, T[\rightarrow \mathbb{R}_+ \text{ such that } x(t) := \xi \circ \sigma(t) \text{ and } (\varphi_0, \varphi)(\sigma(t)) = (t, u(t)).$
- Find a sequence $\sigma_h \to \sigma$ in [0, T] such that $\varphi_{0_h} := \sigma_h^{-1} \to \varphi_0$ in $[0, +\infty[, \varphi_{0_h} \text{ Lipschitz}.$
- Define u_h = φ ∘ σ_h. Modify the non (BV) controls u_h so that their variation is equibounded in [0, t] for t < T.
- For a suitable subsequence of the modified *u_h*, the corresponding trajectories *x_h* converge pointwisely to *x*. Hence *x* is *S* LIMIT SOLUTION.
- It is a BV_{loc} SIMPLE LIMIT SOLUTION.

Main theorems

VICE-VERSA:

BV_{loc} graph completion solutions are SPECIAL simple limit solutions:

Definition 12 (BV_{loc}S limit solution; Motta, Sartori, '16).

An *S* limit solution *x* is called a BV_{loc} simple limit solution of (1), shortly a $BV_{loc}S$ limit solution, if the approximating inputs u_k :

- i) have equibounded variation in [0, t] for every t < T;
- ii) have "equiuniformity" at $T^{(*)}$

(*) : $\exists \tilde{\varepsilon}(j) \rightarrow 0, \tilde{s}_j \nearrow +\infty$ and $k_j \ge j$ such that, for τ_k^j implicitly defined by $\tau_k^j + Var_{[0,\tau_k^j]}(u_k) = \tilde{s}_j$

 $|(x_k, u_k)(au_k^j) - (x_k, u_k)(T)| \leq ilde{arepsilon}(j) \qquad ext{for every } k > k_j,$

The $BV_{loc}S$ limit solution are the right subset to prove the vice-versa of our theorem.

Theorem 13 (Motta, Sartori, '18).

Let $(\mathbf{u}, \mathbf{v}) \in \mathbf{BV}_{loc} \times \mathbf{L}^1$ with $u(0) = \overline{u}_0$. Then any $BV_{loc}S$ limit solution x of (1) is a BV_{loc} graph completion solution of (1).

Steps of the proof

• *x* is a BV_{*loc*} SIMPLE LIMIT SOLUTION. The approximating inputs u_k have equibounded variation in [0, t] for every t < T and have "equiuniformity" at *T*.

• Define
$$\sigma_k := t + Var_{[0,t]}(u_k), \varphi_{0_k} = \sigma_k^{-1}, \varphi_k := u_k \circ \varphi_{0_k}.$$

- There exists a subsequence of (φ_{0k}, φ_k) and of σ_k converging locally uniformly to a (φ₀, φ) and to σ, resp.. Let ξ_k be the corresponding solution of the space-time system.
- (φ₀, φ) is a BV_{loc} graph completion, (φ₀, φ) ∘ σ = (t, u(t)) and x(t) = lim x_k(t) = lim ξ_k ∘ σ_k.
 ⇒ x is a BV_{loc} graph completion on [0, T[.
- Use the "equiuniformity " to show that x is a BV_{loc} GRAPH COMPLETION ON THE WHOLE
 [0, T].

$\mathsf{BV}_{\mathit{loc}}$ simple limit solutions \iff $\mathsf{BV}_{\mathit{loc}}$ graph completion solutions

Theorem 14 (Motta, Sartori, '18).

Let $(\mathbf{u}, \mathbf{v}) \in \mathsf{BV}_{\mathsf{loc}} \times \mathsf{L}^1$ with $u(0) = \overline{u}_0$. Then x is a $\mathsf{BV}_{\mathsf{loc}}$ graph completion solution of (1) if and only if x is a $\mathsf{BV}_{\mathsf{loc}}S$ limit solution of (1).

This generalizes the equivalence between usual graph completion solutions and *BVS* limit solutions proved in [Aronna, Rampazzo, '15]

Example 15.

Let us consider the control system

$$\dot{x} = g_1(x)\dot{u}_1 + g_2(x)\dot{u}_2,$$
 (S)

with $x \in \mathbb{R}^3$, $u \in \mathbb{R}^2$ and $|u| \le 1$, with initial and terminal conditions

$$(x, u)(0) = ((1, 0, 1), (1, 0)), \qquad (x, u)(T) = ((1, 0, 0), (1, 0))$$

where

$$g_1(x) := \begin{pmatrix} 1 \\ 0 \\ x_3 x_2 \end{pmatrix}, \quad g_2(x) := \begin{pmatrix} 0 \\ 1 \\ -x_3 x_1 \end{pmatrix}$$

For any *u* ∈ *AC* verifying *u*(0) = (1,0), the corresponding Carathéodory solution *x* with *x*(0) = (1,0,1) is

 $(x_1, x_2, x_3)(t) = \left(u_1(t), u_2(t), e^{-\int_0^t (-u_2 \dot{u}_1 + u_1 \dot{u}_2)(s) \, ds}\right) \quad \forall t \in [0, T].$ In particular, since $|\int_0^t (-u_2 \dot{u}_1 + u_1 \dot{u}_2)(s) \, ds| \le Var_{[0, T]}(u),$

 $x_3(T) \ge e^{-Var_{[0,T]}(u)} > 0$ and no solutions verifying $x_3(T) = 0$ exist.

For any *u* ∈ *AC* verifying *u*(0) = (1,0), the corresponding Carathéodory solution *x* with *x*(0) = (1,0,1) is

 $(x_1, x_2, x_3)(t) = \left(u_1(t), u_2(t), e^{-\int_0^t (-u_2 \dot{u}_1 + u_1 \dot{u}_2)(s) \, ds}\right) \quad \forall t \in [0, T].$ In particular, since $|\int_0^t (-u_2 \dot{u}_1 + u_1 \dot{u}_2)(s) \, ds| \le Var_{[0,T]}(u),$

 $x_3(T) \geq e^{-\operatorname{Var}_{[0,T]}(u)} > 0$

and no solutions verifying $x_3(T) = 0$ exist.

• Consider $u \in AC_{loc}[0, T[$ given by

 $u(t) := \left(\cos\left(\frac{1}{T-t} - \frac{1}{T}\right), \sin\left(\frac{1}{T-t} - \frac{1}{T}\right)\right), \text{ for } t \in [0, T[. (1)]$ The corresponding solution is $(x_1, x_2, x_3)(t) = \left(u_1(t), u_2(t), e^{-\frac{t}{T(T-t)}}\right)$

so that $\lim_{t\to T} x_3(t) = 0$ and the (extended) *AC*_{loc} solution:

 $(x, u)(T) := \lim_{k \to \infty} (x, u)(t_k) = ((1, 0, 0), (1, 0))$ where $t_k := \frac{2k\pi T^2}{1+2k\pi T}$

satisfies the terminal constraint. The extended map x is a BV_{*loc*}S limit solution. Indeed, for every k, set

$$t_k := \frac{2k\pi T^2}{1+2k\pi T}, \quad u_k(t) := u(t)\chi_{[0,t_k]}(t) + u(t_k)\chi_{]t_k,T]}(t).$$

where *u* is as in (1), giving $u(t_k) = (\cos(2k\pi), \sin(2k\pi)) = (1, 0)$.

x is the pointwise limit of x_k , corresponding to $u_k \in AC(T)$. and

$$|(x_k,u_k)(t_j)-(x_k,u_k)(T)|=|x(t_j)-x(t_k)|\leq e^{-\frac{1}{T(T-t_j)}}\to 0,$$

MINIMIZATION PROBLEM FOR THIS SYSTEM

Payoff

$$J(u) := \int_0^T [|1 - u_1(t)| + |u_2(t)| + |x_3(t)||\dot{u}(t)|] dt$$

with terminal constraint

 $(x, u)(T) \in \mathbb{C} := (U \times \{0\}) \times U.$

We have $\inf_{u \in AC(T)} J(u) = +\infty$. In AC_{loc} the terminal constraint is equivalent to

$$(x, u)(T) \in \mathbb{C} \qquad \Longleftrightarrow \qquad \liminf_{t \to T^-} d((x(t), u(t)), \mathbb{C}) = 0.$$

Hence, for every k, implementing the control

$$u_{k}(t) := (1,0)\chi_{[0,T-(1/k)]} + \left(\cos\left(\frac{1}{T-t} - k\right), \sin\left(\frac{1}{T-t} - k\right)\right)\chi_{[T-(1/k),T[t]}(t) = 0$$

we get the solution

$$x_{k}(t) = (1, 0, 1)\chi_{[0, T-(1/k)]} + \left(u_{1_{k}}(t), u_{2_{k}}(t), e^{k-\frac{1}{T-t}}\right)\chi_{[T-(1/k), T[},$$

with (x_k, u_k) verifying the constraints and $1 \le J(u_k) \le 1 + \frac{3}{k}$, so that $\lim_k J(u_k) = 1$.

The extended cost is

 $\mathcal{J}(\varphi_0, \varphi, \boldsymbol{S}) := \int_0^{\boldsymbol{S}} [(|1 - \varphi_1(\boldsymbol{s})| + |\varphi_2(\boldsymbol{s})|) \varphi_0'(\boldsymbol{s}) + |\xi_3(\boldsymbol{s})|| \varphi'(\boldsymbol{s})|] \, d\boldsymbol{s},$

where $S \leq +\infty$ and $\lim_{s\to S} \varphi_0(s) = T$. The infimum is a minimum on the set of BV_{loc} graph completions, obtained for

 $(\varphi_0, \varphi)(s) := (s, 1, 0)\chi_{[0, T[}(s) + (T, (\cos(s - T), \sin(s - T))\chi_{[T, +\infty[}(s)$

and the corresponding trajectory

 $\xi(s) = (1,0,1)\chi_{[0,T[}(s) + (\cos(s-T),\sin(s-T),e^{-s+T})\chi_{[T,+\infty[}(s).$

We have

$$\mathcal{J}(\varphi_0,\varphi,+\infty)=\mathbf{1}.$$

Q. IS THIS THE MINIMUM ON THE SET OF *S* LIMIT SOLUTIONS? A. YES!!

Add to the system the variable

 $\dot{x}_4 = |1 - u_1(t)| + |u_2(t)| + |x_3(t)||\dot{u}(t)|, \qquad x_4(0) = 0$

In the class of *S* limit solutions, the problem is equivalent to minimize $x_4(T)$. For every sequence $(x_k, u_k)_k$ of equibounded, absolutely continuous maps defining an *S* limit solution verifying the terminal constraint, one has $\lim_k Var_{[0,T]}(u_k) = +\infty$ and

$$x_{4_k}(au) = J(u_k) \geq \int_0^T e^{-\int_0^t |\dot{u}_k| \, dr} \, |\dot{u}_k| \, dt = 1 - e^{-Var_{[0,T]}(u_k)} o 1 \quad ext{as } k o +\infty$$

Actually, WE PROVE that the minimum value is obtained in the subset of BV_{loc}S limit solutions.

An extended notion of limit solution

FOLLOWING [Aronna, Rampazzo, '15],

for any control (\mathbf{u}, \mathbf{v}) we define (simple) limit solutions x using approximating inputs

 (u_k,\mathbf{v})

where the "ordinary" control v is fixed.

An extended notion of limit solution

FOLLOWING [Aronna, Rampazzo, '15],

for any control (\mathbf{u}, \mathbf{v}) we define (simple) limit solutions x using approximating inputs

 (u_k,\mathbf{v})

where the "ordinary" control v is fixed.

WHAT ABOUT CONSIDERING

 $(u_k, \mathbf{v_k}), v_k \rightarrow v \text{ in } L^1$?

RECALL the control system

$$\dot{x} = g_0(x, u, v) + \sum_{i=1}^m g_i(x, u) \dot{u}_i(t), \quad x(0) = \bar{x}_0,$$

where only the the DRIFT depends on \boldsymbol{v}

RECALL the control system

$$\dot{x} = g_0(x, u, v) + \sum_{i=1}^m g_i(x, u) \dot{u}_i(t), \quad x(0) = \bar{x}_0,$$

where only the the DRIFT depends on v

NEVERTHELESS, it may happen that $\begin{array}{c} x_k \text{ corresponding to } (u_k,v) \ \longrightarrow \ x \\ \text{and} \\ x_k \text{ corresponding to } (u_k,v_k) \ \longrightarrow \ x \\ WHERE \end{array}$

• $\mathbf{x} \neq \mathbf{x};$

• x IS NOT a simple limit solution

Example 16.

For $t \in [0, 2\pi]$, let us consider the control system

$$\dot{x} = g_0(x) + g_1(x)\dot{u}_1 + g_2(x)\dot{u}_2, \qquad -1 \le v \le 1, \quad |u| \le 1, \qquad (4)$$

with initial condition (x, u)(0) = ((0, 0, 1, 0), (0, 0)), and

$$g_0(x) := \begin{pmatrix} 0 \\ 0 \\ 0 \\ \mathbf{v} \end{pmatrix}, \quad g_1(x) := \begin{pmatrix} 1 \\ 0 \\ x_3 x_2 \\ -\mathbf{x}_4 \mathbf{x}_2 \end{pmatrix}, \quad g_2(x) := \begin{pmatrix} 0 \\ 1 \\ -x_3 x_1 \\ \mathbf{x}_4 \mathbf{x}_1 \end{pmatrix}$$

Let $(u, v) \equiv (0, 0)$.

• For every *k*, set

 $u_{k}(t) := \frac{1}{\sqrt[3]{k}} (\cos(kt) - 1, \sin(kt)) \chi_{[2\pi/k, 2\pi]}(t), \quad \text{for } t \in [0, 2\pi],$ $v_{k} := k \, e^{-2\pi \sqrt[3]{k}} \chi_{[0, 2\pi/k]}.$

- The solution x_k corresponding to (u_k, v), has x_{4k} ≡ 0 and converges to the simple limit solution x := (0, 0, 1, 0) χ{t=0}. In fact, x₄ ≡ 0 for any simple limit solution.
- The solution \tilde{x}_k corresponding to (u_k, v_k) has

$$\tilde{x}_{4_k} = k \, e^{-2\pi \sqrt[3]{k}} \, t \chi_{[0,2\pi/k[} + 2\pi \, e^{\sqrt[3]{k} \left(t - 2\pi - rac{\sin(kt)}{k} - rac{2\pi}{k}
ight)} \chi_{[2\pi/k,2\pi]}$$

and converges to a map $x \neq x$, since

$$\mathbf{x}_{4}(2\pi) = 2\pi \neq \mathbf{0} = \mathbf{x}_{4}(2\pi).$$

Thus x IS NOT a simple limit solution!

This suggest to **EXTEND the notion of limit solution**, by considering **approximating inputs**

 (u_k, v_k) with $v_k \rightarrow v$ in L^1 instead of (u_k, v)

Remark: EXTENDED and **USUAL** limit solutions **coincide** in all existing results!

Remark: EXTENDED and **USUAL** limit solutions **coincide** in all existing results!

IN PARTICULAR, this is true for *BVS* and *BV_{loc}S* solutions:

Theorem 17 (M., Sartori, '18).

Let $(\mathbf{u}, \mathbf{v}) \in \mathsf{BV}_{\mathsf{loc}} \times \mathsf{L}^1$ be such that $u(0) = \overline{u}_0$. Then a map x is an **extended** BVS [resp. **extended** BV_{loc}S] limit solution **if and only if** it is a BVS [resp. BV_{loc}S] limit solution.

Notice that we for a system

$$\dot{x}(t) = g_0(x(t), u(t), v(t)) + \sum_{i=1}^m g_i(x(t), u(t), v(t)) \dot{u}_i(t),$$

we can show that in the BV case extended limit solutions coincide with graph completion solutions.

Some references

- M.Motta & C. Sartori, (2018) Lack of BV bounds for impulsive control systems. J. Math. Anal. Appl. 461 (2018), no. 1, 422 D 450.
- M.Motta & C. Sartori, (2018) On L¹ limit solutions in impulsive control. DCDS-S vol. 11, no. 6.
- M.Motta & C. Sartori, (2014) On asymptotic exit-time control problems lacking coercivity. ESAIM Control Optim. Calc. Var. 20, no. 4, 957–982.
- S. Aronna & F. Rampazzo, (2015) L¹ limit solutions for control systems. J. Differential Equations 258, no. 3, 954–979.
- M.S. Aronna & M. Motta & F. Rampazzo, (2015) Infimum gaps for limit solutions. Set-Valued Var. Anal. 23, no. 1, 3–22.

Thank you for your attention! HAPPY BIRTHDAY to GIOVANNI and FRANCO!!

The EXISTENCE of graph completions is NOT OBVIOUS and depends on the FORM of *U*:

Definition 18 (Whitney property).

A compact set $U \subset \mathbb{R}^m$ has the **Whitney property** if there is some $C \ge 1$ such that for all $u_1, u_2 \in U$, there exists $\tilde{u} \in AC([0, 1], U)$ verifying

$$ilde{u}(0) = u_1, \quad ilde{u}(1) = u_2, \quad Var_{[0,1]}[ilde{u}] \leq C |u_1 - u_2|.$$

For instance, compact, star-shaped sets verify the Whitney property.

The EXISTENCE of graph completions is NOT OBVIOUS and depends on the FORM of *U*:

Definition 18 (Whitney property).

A compact set $U \subset \mathbb{R}^m$ has the **Whitney property** if there is some $C \ge 1$ such that for all $u_1, u_2 \in U$, there exists $\tilde{u} \in AC([0, 1], U)$ verifying

 $\tilde{u}(0) = u_1, \quad \tilde{u}(1) = u_2, \quad Var_{[0,1]}[\tilde{u}] \leq C|u_1 - u_2|.$

For instance, compact, star-shaped sets verify the Whitney property.

Theorem 19.

If U has the Whitney property, for any $u \in BV_{loc}$ there exists a graph-completion $(\varphi_0, \varphi, +\infty)$.

This result generalizes [Aronna, Rampazzo, '15] for BV inputs

• BOTH CONDITIONS i) and ii) in the definition of *BV*_{loc}S limit solution are **necessary** for its CONSISTENCY with *AC*_{loc} solutions:

• BOTH CONDITIONS i) and ii) in the definition of *BV*_{loc}S limit solution are **necessary** for its CONSISTENCY with *AC*_{loc} solutions:

Example 20.

Consider the ACloc control

$$u(t) = \left(1 - \cos\left(\frac{1}{T-t} - \frac{1}{T}\right), \sin\left(\frac{1}{T-t} - \frac{1}{T}\right)\right), \text{ for } t \in [0, T[.$$

If $t_k := \frac{2k\pi T^2}{1+2k\pi T}$ and $\bar{t}_k := \frac{T^2(2k+1)\pi}{1+T(2k+1)\pi}$, so that $t_k < \bar{t}_k$, t_k , $\bar{t}_k \nearrow T$, and $u(t_k) = (0,0), \qquad u(\bar{t}_k) = (2,0),$

the approximating inputs

 $u_k(t) := u(t)\chi_{[0,t_k]}(t) + 3u(t)\chi_{[t_k,\bar{t}_k]}(t) + (6,0)\chi_{[\bar{t}_k,T]}(t),$

are in AC, have equibounded variation and converge to u in [0, t] for any t < T,

BUT

 $\lim_{k} u_{k}(T) = (6,0) \notin u_{set}(T) \subset [0,2] \times [-1,1].$

Theorem 21.

If $T_{AC_{loc}}$ is continuous on C, then

 $T_{AC_{loc}} = T_{BV_{loc} g.c.} = T_{BV_{loc} S.l.s.} = T_{l.s.} \quad (\leq T_{BV g.c.} = T_{BVS l.s.} < T_{AC}).$

If T_{AC} is continuous on C, all these minimum times coincide.

For every $\varepsilon > 0$ and (\bar{x}_0, \bar{u}_0) , let us define the ε -penalized value function

$$T_{\varepsilon}(\bar{x}_0,\bar{u}_0):=\inf_{(u,v)\in AC\times L^1}\int_0^{t_{(u,v)}}(1+\varepsilon|\dot{u}(s)|)\,ds,$$

where

$$t_{(u,v)} := \inf\{t > 0 : (x(t), u(t)) \in \mathbb{C}\}.$$

Theorem 22.

For every $\varepsilon > 0$, let T_{ε} be continuous on C. Then T_{AC} is continuous on C and

$$\lim_{\varepsilon\to 0^+} T_\varepsilon = T_{\mathcal{AC}}.$$

If moreover T_{AC} is continuous in its whole domain, the above limit is locally uniform.