Lack of BV bounds in impulsive control systems

Caterina Sartori
in collaboration with Monica Motta

Dipartimento di Matematica
Università di Padova

Padova, 24-25 Maggio 2018
On the occasion of
Giovanni Colombo and Franco Rampazzo's 60th birthday

Table of contents

(9) Introduction of impulsive control systems: graph completions
(2) New results: $B V_{\text {loc }}$ graph completion solutions
(3) Main theorems
(4) An example
(5) A remark on limit solutions

Impulsive control system

- Consider

$$
\left\{\begin{array}{l}
\dot{x}(t)=g_{0}(x(t), u(t), v(t))+\sum_{i=1}^{m} g_{i}(x(t), u(t)) \dot{u}_{i}(t) \tag{1}\\
(x(0), u(0))=\left(\bar{x}_{0}, \bar{u}_{0}\right)
\end{array}\right.
$$

where

- the control (u, v) ranges over a compact set $U \times V \subset \mathbb{R}^{m} \times \mathbb{R}^{q}$
- u is the impulsive control; v is the ordinary control
- (usual hypotheses on g_{i} : local Lipschitz continuity and linear growth in $(x, u) \ldots$)
- Let $T>0$ and $v \in L^{1}$. A classical, Carathéodory solution x of (1) in $[0, T]$ exists only for $u \in A C$.
- Let $T>0$ and $v \in L^{1}$. A classical, Carathéodory solution x of (1) in $[0, T]$ exists only for $u \in A C$.
- If $\mathbf{u} \in \mathrm{BV}$, there are fairly equivalent concepts of generalized solutions $x \in B V$, which I will refer to as graph completion solutions, ([Rishel, Warga, Bressan, Rampazzo, Dal Maso, Motta, Sartori, Miller, Rubinovich, Vinter, Silva, Arutyunov, Karamzin, de Oliveira, Pereira, Guerra, Sarychev, Wolenski, Zabic', Mazzola,...])
- Let $T>0$ and $v \in L^{1}$. A classical, Carathéodory solution x of (1) in $[0, T]$ exists only for $u \in A C$.
- If $\mathbf{u} \in \mathrm{BV}$, there are fairly equivalent concepts of generalized solutions $x \in B V$, which I will refer to as graph completion solutions, ([Rishel,
Warga, Bressan, Rampazzo, Dal Maso, Motta, Sartori, Miller, Rubinovich, Vinter, Silva, Arutyunov, Karamzin, de Oliveira, Pereira, Guerra, Sarychev, Wolenski, Zabic', Mazzola,...])
- If $\mathbf{u} \in \mathcal{L}^{1}$ (set of pointwisely defined L^{1} functions), there is a notion of solution for commutative systems, where the Lie brackets $\left[\left(\mathbf{e}_{i}, g_{i}\right),\left(\mathbf{e}_{j}, g_{j}\right)\right]=0$ for all $i, j=1, \ldots, m\left(\mathbf{e}_{i}, \mathbf{e}_{i}\right.$ vectors of the canonical basis in \mathbb{R}^{m}) [Bressan, Rampazzo, '91], [A.V. Sarychev, 91], [Dykhta, 94], or other notions when the Lie Algebra is non trivial. (looping controls in [Bressan, Rampazzo, '94], limit solutions in [Aronna, Rampazzo,'15], ...)
- Let $T>0$ and $v \in L^{1}$. A classical, Carathéodory solution x of (1) in $[0, T]$ exists only for $u \in A C$.
- If $\mathbf{u} \in \mathrm{BV}$, there are fairly equivalent concepts of generalized solutions $x \in B V$, which I will refer to as graph completion solutions, ([Rishel,
Warga, Bressan, Rampazzo, Dal Maso, Motta, Sartori, Miller, Rubinovich, Vinter, Silva, Arutyunov, Karamzin, de Oliveira, Pereira, Guerra, Sarychev, Wolenski, Zabic', Mazzola,...])
- If $\mathbf{u} \in \mathcal{L}^{1}$ (set of pointwisely defined L^{1} functions), there is a notion of solution for commutative systems, where the Lie brackets $\left[\left(\mathbf{e}_{i}, g_{i}\right),\left(\mathbf{e}_{j}, g_{j}\right)\right]=0$ for all $i, j=1, \ldots, m\left(\mathbf{e}_{i}, \mathbf{e}_{i}\right.$ vectors of the canonical basis in \mathbb{R}^{m}) [Bressan, Rampazzo, '91], [A.V. Sarychev, 91], [Dykhta, 94], or other notions when the Lie Algebra is non trivial. (looping controls in [Bressan, Rampazzo, '94], limit solutions in [Aronna, Rampazzo,'15], ...)
- For commutative systems, all these concepts of solution coincide

BV inputs u and graph completions

Let us first illustrate the graph completion approach for $\mathbf{u} \in \mathbf{B V}$
(we assume that $U \subset \mathbb{R}^{m}$ has the Whitney property; e.g. let U be a compact, star-shaped set):

Graph reparametrization ($\varphi_{0}(\mathbf{s}), \varphi(\mathbf{s})$) of the completion of ($\mathbf{t}, \mathbf{u}(\mathbf{t})$)

- Using the arc-length parametrization, $\left(\varphi_{0}, \varphi\right)$ is 1-Lipschitz and

$$
\varphi_{0}^{\prime}(s)+\left|\varphi^{\prime}(s)\right|=1 \text { for a.e.s }
$$

- $\varphi_{0}(S)=T \Longrightarrow S=T+\operatorname{Var}_{[0, S]}[\varphi]$.
- $\varphi_{0}^{-1}:[0, T] \rightarrow[0, S]$ is set-valued

The space-time system associated to the graph completion

- Let ξ be the solution of the ORDINARY space-time system:

$$
\left\{\begin{array}{l}
\xi^{\prime}(s)=g_{0}\left(\xi, \varphi, v \circ \varphi_{0}\right) \varphi_{0}^{\prime}(s)+\sum_{i=1}^{m} g_{i}(\xi, \varphi) \varphi_{i}^{\prime}(s), \tag{2}\\
\xi(0)=\bar{x}_{0} .
\end{array}\right.
$$

(recall: $t=\varphi_{0}(s)$, time-change such that $t_{i}=\varphi_{0}(s)$ for $s \in\left[s_{i}, s_{i+1}\right]$)

The space-time system associated to the graph completion

- Let ξ be the solution of the ORDINARY space-time system:

$$
\left\{\begin{array}{l}
\xi^{\prime}(s)=g_{0}\left(\xi, \varphi, v \circ \varphi_{0}\right) \varphi_{0}^{\prime}(s)+\sum_{i=1}^{m} g_{i}(\xi, \varphi) \varphi_{i}^{\prime}(s), \tag{2}\\
\xi(0)=\bar{x}_{0} .
\end{array}\right.
$$

(recall: $t=\varphi_{0}(s)$, time-change such that $t_{i}=\varphi_{0}(s)$ for $s \in\left[s_{i}, s_{i+1}\right]$)

- If $\sigma:\left[0, T\left[\rightarrow\left[0, S\left[\right.\right.\right.\right.$ is a selection of φ_{0}^{-1}, called a clock, such that

$$
\left(\varphi_{0}, \varphi\right)(\sigma(t))=(t, u(t)) \text { for every } t \in[0, T[, \sigma(0)=0
$$

the function $x:=\xi \circ \sigma$ defines a (single-valued) graph-completion solution associated to $\left(\varphi_{0}, \varphi, S\right)$ and σ.

The space-time system associated to the graph completion

- Let ξ be the solution of the ORDINARY space-time system:

$$
\left\{\begin{array}{l}
\xi^{\prime}(s)=g_{0}\left(\xi, \varphi, v \circ \varphi_{0}\right) \varphi_{0}^{\prime}(s)+\sum_{i=1}^{m} g_{i}(\xi, \varphi) \varphi_{i}^{\prime}(s), \tag{2}\\
\xi(0)=\bar{x}_{0} .
\end{array}\right.
$$

(recall: $t=\varphi_{0}(s)$, time-change such that $t_{i}=\varphi_{0}(s)$ for $s \in\left[s_{i}, s_{i+1}\right]$)

- If $\sigma:\left[0, T\left[\rightarrow\left[0, S\left[\right.\right.\right.\right.$ is a selection of φ_{0}^{-1}, called a clock, such that $\left(\varphi_{0}, \varphi\right)(\sigma(t))=(t, u(t))$ for every $t \in[0, T[, \sigma(0)=0$,
the function $x:=\xi \circ \sigma$ defines a (single-valued) graph-completion solution associated to $\left(\varphi_{0}, \varphi, S\right)$ and σ.
- When $u \in A C$ and $\left(\varphi_{0}, \varphi, S\right)$ is the arc-length parametrization of $(t, u(t))$, graph-completion solution $=$ Carathéodory solution.

Limit Solutions

INDEPENDENTLY FROM GRAPH COMPLETIONS THERE IS THE

 FOLLOWING
Definition 1 (Simple limit solution; Aronna, Rampazzo, '15).

Let $(u, v) \in \mathcal{L}^{1} \times L^{1}$ with $u(0)=\bar{u}_{0}$.

A map x is called a simple limit solution of (1), shortly S limit solution, if, there exists a sequence of controls $\left(u_{k}\right)_{k} \subset A C$ with $u_{k}(0)=\bar{u}_{0}$, pointwisely converging to u, and such that
(i) the sequence $\left(x_{k}\right)_{k}$ of the Carathéodory solutions to (1) corresponding to $\left(u_{k}, v\right)$ is equibounded in $[0, T]$;
(ii) for any $t \in[0, T]$,

$$
\lim _{k} x_{k}(t)=x(t) .
$$

BV Limit Solutions

Definition 2 (Aronna, Rampazzo, '15).

Let $(\mathbf{u}, \mathbf{v}) \in \mathbf{B V} \times \mathbf{L}^{\mathbf{1}}$ with $u(0)=\bar{u}_{0}$. A map x is called a $B V$ simple limit solution of (1) if
i) there exists $\left(u_{k}\right) \subset A C, u_{k}(0)=\bar{u}_{0}$, with equibounded variation, converging pointwisely to u;
ii) the corresponding solutions x_{k} to (1) converge pointwisely to x.

Relation between BV limit solutions and graph completions

Theorem 3 (Representation formula, Aronna, Rampazzo, '15).
Let $(\mathbf{u}, \mathbf{v}) \in \mathbf{B V} \times \mathbf{L}^{\mathbf{1}}$ with $u(0)=\bar{u}_{0}$.
A map x is a graph completion solution IF AND ONLY IF it is a BV simple limit solution.

Inputs $u \in B V_{\text {loc }}$

OUR GOAL IS TO INTRODUCE A NOTION OF GENERALIZED SOLUTION, the $B V_{\text {loc }}$ graph completion solution, in an intermediate situation, for $\mathrm{BV}_{\text {loc }}$ inputs \mathbf{u} where:

Definition 4 ($B V_{l o c}$ controls).

Let $T>0$. We say that $\mathbf{u} \in \mathrm{BV}_{\text {loc }}$ if $u:[0, T] \rightarrow U$ and

$$
\operatorname{Var}_{[0, t]}(u)<+\infty \quad \text { for every } t<T \text {, but } \quad \operatorname{Var}_{[0, T]}(u) \leq+\infty
$$

Inputs $u \in B V_{\text {loc }}$

OUR GOAL IS TO INTRODUCE A NOTION OF GENERALIZED SOLUTION, the $B V_{\text {loc }}$ graph completion solution, in an intermediate situation, for $\mathrm{BV}_{\text {loc }}$ inputs \mathbf{u} where:

Definition 4 ($B V_{l o c}$ controls).

Let $T>0$. We say that $\mathbf{u} \in \mathrm{BV}_{\text {loc }}$ if $u:[0, T] \rightarrow U$ and

$$
\operatorname{Var}_{[0, t]}(u)<+\infty \quad \text { for every } t<T \text {, but } \quad \operatorname{Var}_{[0, T]}(u) \leq+\infty
$$

AGREEING with the concept of simple limit solution

BUT with the advantages of graph completion solutions

Motivations

WHY $B V_{\text {loc }}$ graph completion solutions instead of limit solutions?

1) Because, they have explicit representation formula:

- SUITABLE TO PROVE
- properness of the impulsive problem, HJ equations, approximations
([Aronna, Motta, Rampazzo, '15], [Motta, Sartori,'15]; for $u \in B V$, e.g., [Motta, Rampazzo,'96], [Camilli, Falcone, '99], ...)
- optimality conditions (for $u \in B V$: e.g., [Pereira, Silva, '00], ...)

Motivations

2) They may be the natural setting for:

Controllability issues:

given a closed set $\mathcal{C} \subset \mathbb{R}^{n} \times U$, called target, select (x, u) such that $(x(T), u(T)) \in \mathcal{C}$ for u in $B V$ or in $B V_{\text {loc }}$;

Specific optimal control problems, as

$$
\begin{gathered}
\underset{(x, u, v)}{\operatorname{Minimize}} \int_{0}^{T}\left[\ell_{0}(x(t), u(t), v(t))+\ell_{1}(x(t), u(t))|\dot{u}|\right] d t \\
(x(T), u(T)) \in \mathcal{C}
\end{gathered}
$$

WITH

Motivations

- "target-weighted" weak coercivity:

$$
\ell_{0} \geq 0, \quad \ell_{1}(x, u) \geq c(\mathbf{d}((x, u), \mathcal{C}))
$$

for some strictly increasing, continuous function $c: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$,
\Longrightarrow only $u \in B V_{\text {loc }}$ have finite cost

- GENERALIZATION of the well known weak coercivity:

$$
\ell_{0} \geq 0, \quad \ell_{1} \geq C_{1}>0
$$

\Longrightarrow only $\mathbf{u} \in B V$ have finite cost (assumed in several applications).
I. $B V_{l o c}$ REGULAR inputs u ($=A C_{l o c}$ inputs U)

GIVEN a TARGET $\mathcal{C} \subset \mathbb{R}^{n} \times U$, WHAT DOES IT MEAN $(x(T), u(T)) \in \mathcal{C}$?

- If $\mathbf{u} \in \mathbf{A C}$ and $\mathbf{v} \in \mathbf{L}^{\mathbf{1}}: \exists$! Carathéodory solution x of (1) in $[0, T]$:

($\mathbf{x}(\mathbf{T}), \mathbf{u}(\mathbf{T}))$

Target

A trajectory-control pair (x, u, v) is feasible if and only if $(x(T), u(T)) \in \mathcal{C}$.

I. $B V_{l o c}$ REGULAR inputs u ($=A C_{l o c}$ inputs U)

If $\mathbf{u} \in \mathbf{A C}([\mathbf{0}, \mathbf{t}])$ for every $t<T$, but possibly $\operatorname{Var}_{[0, T]}(u)=+\infty$ $\left(\mathbf{u} \in \mathbf{A C}_{\text {loc }}\right)$, and $\mathbf{v} \in \mathbf{L}^{\mathbf{1}}: \exists$! Carathéodory solution x of (1) in $[0, T[:$

$(\mathbf{x}(\mathbf{T}), \mathbf{u}(\mathbf{T})) \quad \lim _{t \rightarrow T^{-}}(x(t), u(t)) \in \mathcal{C} ;$
Target

$\liminf _{t \rightarrow T^{-}} \mathbf{d}((x(t), u(t)), \mathcal{C})=0$.

WE WANT TO EXTEND the pairs (x, u) at $t=T$, so that WE CAN SAY that all all the previous (x, u) verify

$$
(x(T), u(T)) \in \mathcal{C}!
$$

I. $B V_{l o c}$ REGULAR inputs u ($=A C_{l o c}$ inputs u)

Definition 5 ($A C_{l o c}$ solutions).

Given a control pair $(u, v) \in A C_{\text {loc }} \times L^{1}$, we introduce a set-valued extension of the Carathéodory solution x of (1) and of u to $t=T$:

$$
\left.(\mathbf{x}, \mathbf{u})_{\operatorname{set}}(\mathbf{T}):=\left\{\lim _{j}(x, u)\left(\tau_{j}\right), \quad\left(\tau_{j}\right)\right)_{j} \text { increasing and } \lim _{j} \tau_{j}=T\right\} .
$$

We call (single-valued) $A C_{l o c}$ trajectory-control pair any (x, u, v) with

$$
(x, u)(T) \in(x, u)_{\operatorname{set}}(T) .
$$

I. $B V_{l o c}$ REGULAR inputs u ($=A C_{l o c}$ inputs u)

According to this definition, given a target \mathcal{C} :

There exists $(x, u)(T) \in \mathcal{C} \Longleftrightarrow \liminf _{t \rightarrow T^{-}} \mathbf{d}((x(t), u(t)), \mathcal{C})=0$;

TOWARDS THE DEFINITION of $B V_{\text {loc }}$ graph completion solution

（＂compatible＂with an endpoint constraint $(x(T), u(T)) \in \mathcal{C}$ ）

$B V_{l 0 c}$ graph completion solutions

WE EXTEND the graph completion approach to $\mathbf{u} \in \mathrm{BV}_{\text {loc }}$, where it may happen that (using the arc-length parametrization)

$$
S=T+\operatorname{Var}_{[0, S]}[\varphi]=+\infty \quad\left(\Longleftrightarrow \operatorname{Var}_{[0, S]}[\varphi]=+\infty\right) .
$$

GENERALIZED CONTROLS:

Definition 6 ($B V_{l o c}$ graph completions).

Given $\mathbf{u} \in \mathbf{B V}_{\text {loc }}$, we say that $\left(\varphi_{0}, \varphi, S\right)$ with $S=+\infty$, is a $\mathbf{B V}_{\text {loc }}$ graph completion of u if
i) $\forall t \in\left[0, T\left[, \exists s \in\left[0, S\left[\right.\right.\right.\right.$ such that $\left(\varphi_{0}, \varphi\right)(s)=(t, u(t))$;
ii) moreover,

$$
\lim _{s \rightarrow+\infty} \varphi_{0}(s)=T, \quad \lim _{j} \varphi\left(s_{j}\right)=u(T) \text { for some } s_{j} \nearrow+\infty
$$

$B V_{l o c}$ graph completion solutions

Recall the space-time system introduced before.
Let ξ be the solution of the ORDINARY space-time system:

$$
\left\{\begin{array}{l}
\xi^{\prime}(s)=g_{0}\left(\xi, \varphi, v \circ \varphi_{0}\right) \varphi_{0}^{\prime}(s)+\sum_{i=1}^{m} g_{i}(\xi, \varphi) \varphi_{i}^{\prime}(s) \tag{3}\\
\xi(0)=\bar{x}_{0}
\end{array}\right.
$$

$B V_{l o c}$ graph completion solutions

 GENERALIZED SOLUTIONS:
Definition 7 ($B V_{l o c}$ graph completion solutions).

Given a $B V_{\text {loc }}$ graph completion $\left(\varphi_{0}, \varphi,+\infty\right)$ of $\mathbf{u} \in \mathbf{B V}_{\text {loc }}$ and a clock $\sigma:\left[0, T\left[\rightarrow\left[0,+\infty\left[\right.\right.\right.\right.$ selection of φ_{0}^{-1} and a control $\mathbf{v} \in \mathbf{L}^{1}$, let ξ be the solution of the space-time system (3).

We call (single-valued) $B V_{l o c}$ graph completion solution to (1), the map

$$
x(t):=\xi \circ \sigma(t) \quad \text { for } t \in[0, T[
$$

extended to $t=T$ by considering $(x(T), u(T)) \in(\xi, \varphi)_{\text {set }}(+\infty)$, where

$$
(\xi, \varphi)_{\text {set }}(+\infty):=\left\{\lim _{j}(\xi, \varphi)\left(s_{j}\right): s_{j} \nearrow+\infty \text { s. t. } \lim _{j} \varphi\left(s_{j}\right)=u(T)\right\}
$$

$B V_{l o c}$ graph completion solutions

When $u \in A C_{\text {loc }}$ and $\left(\varphi_{0}, \varphi,+\infty\right)$ is the arc-length parametrization of $(t, u(t))$,
$B V_{l o c}$ graph completion solution $=A C_{l o c}$ graph completion solution.
When $u \in B V_{l o c}$, however, we DON'T require that

$$
(x, u)(T)=\lim _{t_{j} \rightarrow T}(x, u)\left(t_{j}\right) \quad \text { for some } t_{j} \nearrow T
$$

but only the WEAKER assumption:

$$
(x, u)(T)=\lim _{s_{j} \rightarrow+\infty}(\xi, \varphi)\left(s_{j}\right) \quad \text { for some } s_{j} \nearrow+\infty
$$

$B V_{l o c}$ graph completion solutions

This last condition DOES NOT IMPLY regularity of (x, u) at $t=T$. E.g., considering just u :

$B V_{l o c}$ graph completion solutions

The EXISTENCE of graph completions is NOT OBVIOUS and depends on the FORM of U :

Definition 8 (Whitney property).

A compact set $U \subset \mathbb{R}^{m}$ has the Whitney property if there is some $C \geq 1$ such that for all $u_{1}, u_{2} \in U$, there exists $\tilde{u} \in A C([0,1], U)$ verifying

$$
\tilde{u}(0)=u_{1}, \quad \tilde{u}(1)=u_{2}, \quad \operatorname{Var}_{[0,1]}[\tilde{u}] \leq C\left|u_{1}-u_{2}\right| .
$$

For instance, compact, star-shaped sets verify the Whitney property.

$B V_{l o c}$ graph completion solutions

Existence of $B V_{l o c}$ graph completion solutions

Theorem 9.

If U has the Whitney property, for any $u \in B V_{\text {loc }}$ there exists a graph-completion $\left(\varphi_{0}, \varphi,+\infty\right)$.

Comparison with limit solutions

RECALL the definition already introduced above:

Definition 10 (Simple limit solution; Aronna, Rampazzo, '15).

Let $(u, v) \in \mathcal{L}^{1} \times L^{1}$ with $u(0)=\bar{u}_{0}$.
(1) A map x is called a simple limit solution of (1), shortly S limit solution, if, there exists a sequence of controls $\left(u_{k}\right)_{k} \subset A C$ such that $u_{k}(0)=\bar{u}_{0}$ and,
(i) the sequence $\left(x_{k}\right)_{k}$ of the Carathéodory solutions to (1) corresponding to $\left(u_{k}, v\right)$ is equibounded in $[0, T]$;
(ii) for any $t \in[0, T], \lim _{k}\left(x_{k}, u_{k}\right)(t)=(x, u)(t)$.
(2) An S limit solution x is called $B V S$ limit solution of (1) if the approximating inputs u_{k} have equibounded variation.

Main theorems

Theorem 11 (Motta, Sartori, '18).

Let $(\mathbf{u}, \mathbf{v}) \in \mathbf{B V}_{\text {loc }} \times \mathbf{L}^{\mathbf{1}}$ with $u(0)=\bar{u}_{0}$. Then any $B V_{\text {loc }}$ graph completion solution x of (1) is an S limit solution of (1).

- The proof IS NOT a routine adaptation of an analogous result for $B V$ inputs and solutions due to Aronna and Rampazzo, since we loose any compactness. Indeed, $x=\xi \circ \sigma$ may correspond to a graph completion $\left(\varphi_{0}, \varphi, S\right)$ with $S=+\infty$ and a clock $\sigma:[0, T[\rightarrow[0,+\infty[$.

Main theorems

Steps of the proof

- x is a $\mathrm{BV}_{l o c}$ GRAPH COMPLETION SOLUTION

It is associated to $\left(\varphi_{0}, \varphi, \psi\right)$, to ξ solution of the space-time system and to a clock $\sigma:\left[0, T\left[\rightarrow \mathbb{R}_{+}\right.\right.$such that $x(t):=\xi \circ \sigma(t)$ and $\left(\varphi_{0}, \varphi\right)(\sigma(t))=(t, u(t))$.

- Find a sequence $\sigma_{h} \rightarrow \sigma$ in $[0, T]$ such that $\varphi_{0_{h}}:=\sigma_{h}^{-1} \rightarrow \varphi_{0}$ in $\left[0,+\infty\left[, \varphi_{0_{h}}\right.\right.$ Lipschitz.
- Define $u_{h}=\varphi \circ \sigma_{h}$. Modify the non (BV) controls u_{h} so that their variation is equibounded in $[0, t]$ for $t<T$.
- For a suitable subsequence of the modified u_{h}, the corresponding trajectories x_{h} converge pointwisely to x. Hence x is S LIMIT SOLUTION.
- It is a $B V_{l o c}$ SIMPLE LIMIT SOLUTION.

Main theorems

VICE-VERSA:

$B V_{\text {loc }}$ graph completion solutions are SPECIAL simple limit solutions:

Definition 12 ($B V_{l o c} S$ limit solution; Motta, Sartori, '16).

An S limit solution x is called a $B V_{l o C}$ simple limit solution of (1), shortly a $B V_{\text {loc }} S$ limit solution, if the approximating inputs u_{k} :
i) have equibounded variation in $[0, t]$ for every $t<T$;
ii) have "equiuniformity" at $T^{(*)}$
${ }^{(*)}: \exists \tilde{\varepsilon}(j) \underset{j}{\rightarrow} 0, \tilde{s}_{j} \nearrow+\infty$ and $k_{j} \geq j$ such that, for τ_{k}^{j} implicitly defined by $\tau_{k}^{j}+\operatorname{Var}_{\left[0, \tau_{k}^{j}\right]}\left(u_{k}\right)=\tilde{s}_{j}$

$$
\left|\left(x_{k}, u_{k}\right)\left(\tau_{k}^{j}\right)-\left(x_{k}, u_{k}\right)(T)\right| \leq \tilde{\varepsilon}(j) \quad \text { for every } k>k_{j}
$$

Main theorems

The $B V_{l o c} S$ limit solution are the right subset to prove the vice-versa of our theorem.

Theorem 13 (Motta, Sartori, '18).

Let $(\mathbf{u}, \mathbf{v}) \in \mathbf{B V}_{\text {loc }} \times \mathbf{L}^{\mathbf{1}}$ with $u(0)=\bar{u}_{0}$.
Then any $B V_{l o c} S$ limit solution x of (1) is a $B V_{\text {loc }}$ graph completion solution of (1).

Main theorems

Steps of the proof

- x is a $B V_{\text {Ioc }}$ SIMPLE LIMIT SOLUTION. The approximating inputs u_{k} have equibounded variation in $[0, t]$ for every $t<T$ and have "equiuniformity" at T.
- Define $\sigma_{k}:=t+\operatorname{Var}_{[0, t]}\left(u_{k}\right), \varphi_{0_{k}}=\sigma_{k}^{-1}, \varphi_{k}:=u_{k} \circ \varphi_{0_{k}}$.
- There exists a subsequence of ($\varphi_{0_{k}}, \varphi_{k}$) and of σ_{k} converging locally uniformly to a (φ_{0}, φ) and to σ, resp.. Let ξ_{k} be the corresponding solution of the space-time system.
- $\left(\varphi_{0}, \varphi\right)$ is a $\mathrm{BV}_{\text {loc }}$ graph completion, $\left(\varphi_{0}, \varphi\right) \circ \sigma=(t, u(t))$ and $x(t)=\lim x_{k}(t)=\lim \xi_{k} \circ \sigma_{k}$. $\Longrightarrow x$ is a $\mathrm{BV}_{l o c}$ graph completion on $[0, T[$.
- Use the "equiuniformity " to show that x is a $\mathrm{BV}_{\text {loc }}$ GRAPH COMPLETION ON THE WHOLE $[0, T]$.

Main theorems

$\mathrm{BV}_{\text {loc }}$ simple limit solutions $\Longleftrightarrow \mathrm{BV}_{\text {loc }}$ graph completion solutions

Theorem 14 (Motta, Sartori, '18).

Let $(\mathbf{u}, \mathbf{v}) \in \mathbf{B V}_{\text {loc }} \times \mathbf{L}^{1}$ with $u(0)=\bar{u}_{0}$. Then x is a $B V_{\text {loc }}$ graph completion solution of (1) if and only if x is a $B V_{\text {loc }} S$ limit solution of (1).

This generalizes the equivalence between usual graph completion solutions and BVS limit solutions proved in [Aronna, Rampazzo, '15]

EXAMPLE

Example 15.

Let us consider the control system

$$
\begin{equation*}
\dot{x}=g_{1}(x) \dot{u}_{1}+g_{2}(x) \dot{u}_{2} \tag{S}
\end{equation*}
$$

with $x \in \mathbb{R}^{3}, u \in \mathbb{R}^{2}$ and $|u| \leq 1$, with initial and terminal conditions

$$
(x, u)(0)=((1,0,1),(1,0)), \quad(x, u)(T)=((1,0,0),(1,0))
$$

where

$$
g_{1}(x):=\left(\begin{array}{c}
1 \\
0 \\
x_{3} x_{2}
\end{array}\right), \quad g_{2}(x):=\left(\begin{array}{c}
0 \\
1 \\
-x_{3} x_{1}
\end{array}\right) .
$$

EXAMPLE

- For any $u \in A C$ verifying $u(0)=(1,0)$, the corresponding Carathéodory solution x with $x(0)=(1,0,1)$ is

$$
\left(x_{1}, x_{2}, x_{3}\right)(t)=\left(u_{1}(t), u_{2}(t), e^{-\int_{0}^{t}\left(-u_{2} \dot{u}_{1}+u_{1} \dot{u}_{2}\right)(s) d s}\right) \quad \forall t \in[0, T] .
$$

In particular, since $\left|\int_{0}^{t}\left(-u_{2} \dot{u}_{1}+u_{1} \dot{u}_{2}\right)(s) d s\right| \leq \operatorname{Var}_{[0, T]}(u)$,

$$
x_{3}(T) \geq e^{-\operatorname{Var}_{[0, T]}(U)}>0
$$

and no solutions verifying $x_{3}(T)=0$ exist.

EXAMPLE

- For any $u \in A C$ verifying $u(0)=(1,0)$, the corresponding Carathéodory solution x with $x(0)=(1,0,1)$ is

$$
\left(x_{1}, x_{2}, x_{3}\right)(t)=\left(u_{1}(t), u_{2}(t), e^{-\int_{0}^{t}\left(-u_{2} \dot{u}_{1}+u_{1} \dot{u}_{2}\right)(s) d s}\right) \quad \forall t \in[0, T] .
$$

In particular, since $\left|\int_{0}^{t}\left(-u_{2} \dot{u}_{1}+u_{1} \dot{u}_{2}\right)(s) d s\right| \leq \operatorname{Var}_{[0, T]}(u)$,

$$
x_{3}(T) \geq e^{-\operatorname{Var}_{[0, T]}(U)}>0
$$

and no solutions verifying $x_{3}(T)=0$ exist.

- Consider $u \in A C_{\text {loc }}[0, T$ given by
$u(t):=\left(\cos \left(\frac{1}{T-t}-\frac{1}{T}\right), \sin \left(\frac{1}{T-t}-\frac{1}{T}\right)\right), \quad$ for $t \in[0, T[$.
The corresponding solution is $\left(x_{1}, x_{2}, x_{3}\right)(t)=\left(u_{1}(t), u_{2}(t), e^{-\frac{t}{T(T-t)}}\right)$

EXAMPLE

so that $\lim _{t \rightarrow T} X_{3}(t)=0$ and the (extended) $A C_{\text {loc }}$ solution:

$$
(x, u)(T):=\lim _{k}(x, u)\left(t_{k}\right)=((1,0,0),(1,0)) \quad \text { where } t_{k}:=\frac{2 k \pi T^{2}}{1+2 k \pi T}
$$

satisfies the terminal constraint.
The extended map x is a $\mathrm{BV}_{l o c} S$ limit solution.
Indeed, for every k, set

$$
t_{k}:=\frac{2 k \pi T^{2}}{1+2 k \pi T}, \quad u_{k}(t):=u(t) \chi_{\left[0, t_{k}\right]}(t)+u\left(t_{k}\right) \chi_{] t_{k}, T\right]}(t)
$$

where u is as in (1), giving $u\left(t_{k}\right)=(\cos (2 k \pi), \sin (2 k \pi))=(1,0)$.
x is the pointwise limit of x_{k}, corresponding to $u_{k} \in A C(T)$. and

$$
\left|\left(x_{k}, u_{k}\right)\left(t_{j}\right)-\left(x_{k}, u_{k}\right)(T)\right|=\left|x\left(t_{j}\right)-x\left(t_{k}\right)\right| \leq e^{-\frac{t}{T\left(T-t_{j}\right)}} \rightarrow 0
$$

EXAMPLE

MINIMIZATION PROBLEM FOR THIS SYSTEM

Payoff

$$
J(u):=\int_{0}^{T}\left[\left|1-u_{1}(t)\right|+\left|u_{2}(t)\right|+\left|x_{3}(t)\right||\dot{u}(t)|\right] d t
$$

with terminal constraint

$$
(x, u)(T) \in \mathbb{C}:=(U \times\{0\}) \times U
$$

We have $\inf _{u \in A C(T)} J(u)=+\infty$. In $\mathrm{AC}_{l o c}$ the terminal constraint is equivalent to

$$
(x, u)(T) \in \mathbb{C} \quad \underset{\ln \mathrm{AC}_{10 c}}{\Longleftrightarrow} \quad \liminf _{t \rightarrow T^{-}} d((x(t), u(t)), \mathbb{C})=0
$$

EXAMPLE

Hence, for every k, implementing the control

$$
u_{k}(t):=(1,0) \chi_{[0, T-(1 / k)]}+\left(\cos \left(\frac{1}{T-t}-k\right), \sin \left(\frac{1}{T-t}-k\right)\right) \chi_{[T-(1 / k), T[}
$$

we get the solution

$$
x_{k}(t)=(1,0,1) \chi_{[0, T-(1 / k)]}+\left(u_{1_{k}}(t), u_{2_{k}}(t), e^{k-\frac{1}{T-t}}\right) \chi_{[T-(1 / k), T[},
$$

with $\left(x_{k}, u_{k}\right)$ verifying the constraints and $1 \leq J\left(u_{k}\right) \leq 1+\frac{3}{k}$, so that $\lim _{k} J\left(u_{k}\right)=1$.

EXAMPLE

The extended cost is

$$
\mathcal{J}\left(\varphi_{0}, \varphi, S\right):=\int_{0}^{S}\left[\left(\left|1-\varphi_{1}(s)\right|+\left|\varphi_{2}(s)\right|\right) \varphi_{0}^{\prime}(s)+\left|\xi_{3}(s)\right|\left|\varphi^{\prime}(s)\right|\right] d s
$$

where $S \leq+\infty$ and $\lim _{s \rightarrow S} \varphi_{0}(s)=T$.
The infimum is a minimum on the set of $\mathrm{BV}_{\text {loc }}$ graph completions, obtained for

$$
\left(\varphi_{0}, \varphi\right)(s):=(s, 1,0) \chi_{[0, T[}(s)+\left(T,(\cos (s-T), \sin (s-T)) \chi_{[T,+\infty[}(s)\right.
$$

and the corresponding trajectory

$$
\xi(s)=(1,0,1) \chi_{[0, T[}(s)+\left(\cos (s-T), \sin (s-T), e^{-s+T}\right) \chi_{[T,+\infty[}(s)
$$

We have

$$
\mathcal{J}\left(\varphi_{0}, \varphi,+\infty\right)=1
$$

EXAMPLE

Q. IS THIS THE MINIMUM ON THE SET OF S LIMIT SOLUTIONS? A. YES!!

Add to the system the variable

$$
\dot{x}_{4}=\left|1-u_{1}(t)\right|+\left|u_{2}(t)\right|+\left|x_{3}(t) \| \dot{u}(t)\right|, \quad x_{4}(0)=0
$$

In the class of S limit solutions, the problem is equivalent to minimize $x_{4}(T)$. For every sequence $\left(x_{k}, u_{k}\right)_{k}$ of equibounded, absolutely continuous maps defining an S limit solution verifying the terminal constraint, one has $\lim _{k} \operatorname{Var}_{[0, T]}\left(u_{k}\right)=+\infty$ and
$x_{4_{k}}(T)=J\left(u_{k}\right) \geq \int_{0}^{T} e^{-\int_{0}^{t}\left|\dot{u}_{k}\right| d r}\left|\dot{u}_{k}\right| d t=1-e^{-\operatorname{Var}_{[0, T]}\left(u_{k}\right)} \rightarrow 1 \quad$ as $k \rightarrow+\infty$.
Actually, WE PROVE that the minimum value is obtained in the subset of $\mathrm{BV}_{\text {loc }}$ S limit solutions.

An extended notion of limit solution

FOLLOWING [Aronna, Rampazzo, '15],
for any control (\mathbf{u}, \mathbf{v}) we define (simple) limit solutions x using approximating inputs

$$
\left(u_{k}, \mathbf{v}\right)
$$

where the "ordinary" control v is fixed.

An extended notion of limit solution

FOLLOWING [Aronna, Rampazzo, '15],
for any control (\mathbf{u}, \mathbf{v}) we define (simple) limit solutions x using approximating inputs

$$
\left(u_{k}, \mathbf{v}\right)
$$

where the "ordinary" control v is fixed.

WHAT ABOUT CONSIDERING

$$
\left(u_{k}, \mathbf{v}_{\mathbf{k}}\right), \quad v_{k} \rightarrow v \text { in } L^{1} ?
$$

RECALL the control system

$$
\dot{x}=g_{0}(x, u, v)+\sum_{i=1}^{m} g_{i}(x, u) \dot{u}_{i}(t), \quad x(0)=\bar{x}_{0}
$$

where only the the DRIFT depends on v

RECALL the control system

$$
\dot{x}=g_{0}(x, u, v)+\sum_{i=1}^{m} g_{i}(x, u) \dot{u}_{i}(t), \quad x(0)=\bar{x}_{0},
$$

where only the the DRIFT depends on v

NEVERTHELESS, it may happen that
x_{k} corresponding to $\left(\mathbf{u}_{\mathrm{k}}, \mathbf{v}\right) \longrightarrow \mathrm{x}$
and
x_{k} corresponding to $\left(\mathrm{u}_{\mathrm{k}}, \mathrm{v}_{\mathrm{k}}\right) \longrightarrow \mathrm{x}$

WHERE

- $\mathbf{x} \neq \mathrm{x}$;
- x IS NOT a simple limit solution

Example 16.

For $t \in[0,2 \pi]$, let us consider the control system

$$
\begin{equation*}
\dot{x}=g_{0}(x)+g_{1}(x) \dot{u}_{1}+g_{2}(x) \dot{u}_{2}, \quad-1 \leq v \leq 1, \quad|u| \leq 1, \tag{4}
\end{equation*}
$$

with initial condition $(x, u)(0)=((0,0,1,0),(0,0))$, and

$$
g_{0}(x):=\left(\begin{array}{l}
0 \\
0 \\
0 \\
v
\end{array}\right), \quad g_{1}(x):=\left(\begin{array}{c}
1 \\
0 \\
x_{3} x_{2} \\
-x_{4} x_{2}
\end{array}\right), \quad g_{2}(x):=\left(\begin{array}{c}
0 \\
1 \\
-x_{3} x_{1} \\
x_{4} x_{1}
\end{array}\right) .
$$

Let $(u, v) \equiv(0,0)$.

- For every k, set

$$
\begin{aligned}
& u_{k}(t):=\frac{1}{\sqrt[3]{k}}(\cos (k t)-1, \sin (k t)) \chi_{[2 \pi / k, 2 \pi]}(t), \quad \text { for } t \in[0,2 \pi], \\
& v_{k}:=k e^{-2 \pi \sqrt[3]{k}} \chi_{[0,2 \pi / k]} .
\end{aligned}
$$

- The solution x_{k} corresponding to $\left(u_{k}, v\right)$, has $x_{4_{k}} \equiv 0$ and converges to the simple limit solution $x:=(0,0,1,0) \chi_{\{t=0\}}$. In fact, $x_{4} \equiv 0$ for any simple limit solution.
- The solution \tilde{x}_{k} corresponding to (u_{k}, v_{k}) has

$$
\tilde{x}_{4 k}=k e^{-2 \pi \sqrt[3]{k}} \chi_{[0,2 \pi / k[}+2 \pi e^{\sqrt[3]{k}\left(t-2 \pi-\frac{\sin (k)}{k}-\frac{2 \pi}{k}\right)} \chi_{[2 \pi / k, 2 \pi]}
$$

and converges to a map $x \neq x$, since

$$
\mathbf{x}_{4}(2 \pi)=2 \pi \neq 0=\mathbf{x}_{4}(2 \pi) .
$$

Thus x IS NOT a simple limit solution!

This suggest to EXTEND the notion of limit solution, by considering approximating inputs

$$
\left(u_{k}, v_{k}\right) \text { with } v_{k} \rightarrow v \text { in } L^{1} \text { instead of }\left(u_{k}, v\right)
$$

Remark: EXTENDED and USUAL limit solutions coincide in all existing results!

Remark: EXTENDED and USUAL limit solutions coincide in all existing results!

IN PARTICULAR, this is true for $B V S$ and $B V_{l o c} S$ solutions:

```
Theorem 17 (M., Sartori, '18).
Let (\mathbf{u},\mathbf{v})\in\mathbf{BV}\mp@subsup{V}{\mathrm{ loc }}{}\times\mp@subsup{\mathbf{L}}{}{\mathbf{1}}\mathrm{ be such that }u(0)=\mp@subsup{\overline{u}}{0}{}\mathrm{ . Then a map }x\mathrm{ is an}
extended BVS [resp. extended BV loc S] limit solution if and only if it is a \(B V S\) [resp. BV loc \(S\) ] limit solution.
```


LAST, LAST, LAST

Notice that we for a system

$$
\dot{x}(t)=g_{0}(x(t), u(t), v(t))+\sum_{i=1}^{m} g_{i}(x(t), u(t), v(t)) \dot{u}_{i}(t),
$$

we can show that in the BV case extended limit solutions coincide with graph completion solutions.

Some references

- M.Motta \& C. Sartori, (2018) Lack of BV bounds for impulsive control systems. J. Math. Anal. Appl. 461 (2018), no. 1, 422 Đ 450.
- M.Motta \& C. Sartori, (2018) On \mathcal{L}^{1} limit solutions in impulsive control. DCDS-S vol. 11, no. 6.
- M.Motta \& C. Sartori, (2014) On asymptotic exit-time control problems lacking coercivity. ESAIM Control Optim. Calc. Var. 20, no. 4, 957-982.
- S. Aronna \& F. Rampazzo, (2015) L1 limit solutions for control systems. J. Differential Equations 258, no. 3, 954-979.
- M.S. Aronna \& M. Motta \& F. Rampazzo, (2015) Infimum gaps for limit solutions. Set-Valued Var. Anal. 23, no. 1, 3-22.

Thank you for your attention!

HAPPY BIRTHDAY to GIOVANNI and FRANCO!!

The EXISTENCE of graph completions is NOT OBVIOUS and depends on the FORM of U :

Definition 18 (Whitney property).

A compact set $U \subset \mathbb{R}^{m}$ has the Whitney property if there is some $C \geq 1$ such that for all $u_{1}, u_{2} \in U$, there exists $\tilde{u} \in A C([0,1], U)$ verifying

$$
\tilde{u}(0)=u_{1}, \quad \tilde{u}(1)=u_{2}, \quad \operatorname{Var}_{[0,1]}[\tilde{u}] \leq C\left|u_{1}-u_{2}\right| .
$$

For instance, compact, star-shaped sets verify the Whitney property.

The EXISTENCE of graph completions is NOT OBVIOUS and depends on the FORM of U :

Definition 18 (Whitney property).

A compact set $U \subset \mathbb{R}^{m}$ has the Whitney property if there is some $C \geq 1$ such that for all $u_{1}, u_{2} \in U$, there exists $\tilde{u} \in A C([0,1], U)$ verifying

$$
\tilde{u}(0)=u_{1}, \quad \tilde{u}(1)=u_{2}, \quad \operatorname{Var}_{[0,1]}[\tilde{u}] \leq C\left|u_{1}-u_{2}\right|
$$

For instance, compact, star-shaped sets verify the Whitney property.

Theorem 19.

If U has the Whitney property, for any $u \in B V_{\text {loc }}$ there exists a graph-completion $\left(\varphi_{0}, \varphi,+\infty\right)$.

This result generalizes [Aronna, Rampazzo, '15] for BV inputs

- BOTH CONDITIONS i) and ii) in the definition of $B V_{l o c} S$ limit solution are necessary for its CONSISTENCY with $A C_{\text {loc }}$ solutions:
- BOTH CONDITIONS i) and ii) in the definition of $B V_{l o c} S$ limit solution are necessary for its CONSISTENCY with $A C_{l o c}$ solutions:

Example 20.

Consider the $A C_{l o c}$ control

$$
u(t)=\left(1-\cos \left(\frac{1}{T-t}-\frac{1}{T}\right), \sin \left(\frac{1}{T-t}-\frac{1}{T}\right)\right), \text { for } t \in[0, T[.
$$

If $t_{k}:=\frac{2 k \pi T^{2}}{1+2 k \pi T}$ and $\bar{t}_{k}:=\frac{T^{2}(2 k+1) \pi}{1+T(2 k+1) \pi}$, so that $t_{k}<\bar{t}_{k}, t_{k}, \bar{t}_{k} \nearrow T$, and

$$
u\left(t_{k}\right)=(0,0), \quad u\left(\bar{t}_{k}\right)=(2,0)
$$

the approximating inputs

$$
u_{k}(t):=u(t) \chi_{\left[0, t_{k}\right]}(t)+3 u(t) \chi_{\left[t_{k}, \bar{t}_{k}\right]}(t)+(6,0) \chi_{\left[t_{k}, T\right]}(t),
$$

are in $A C$, have equibounded variation and converge to u in $[0, t]$ for any $t<T$, BUT

$$
\lim _{k} u_{k}(T)=(6,0) \notin u_{\text {set }}(T) \subset[0,2] \times[-1,1] .
$$

Theorem 21.

If $T_{A C_{l o c}}$ is continuous on \mathcal{C}, then

$$
T_{A C_{l o c}}=T_{B V_{l o c} \text { g.c. }}=T_{B V_{l o c} \text { S l.s. }}=T_{\text {l.s. }} \quad\left(\leq T_{B V \text { g.c. }}=T_{B V S \text { l.s. }}<T_{A C}\right)
$$

If $T_{A C}$ is continuous on \mathcal{C}, all these minimum times coincide.

For every $\varepsilon>0$ and $\left(\bar{x}_{0}, \bar{u}_{0}\right)$), let us define the ε-penalized value function

$$
T_{\varepsilon}\left(\bar{x}_{0}, \bar{u}_{0}\right):=\inf _{(u, v) \in A C \times L^{1}} \int_{0}^{t_{(u, v)}}(1+\varepsilon|\dot{u}(s)|) d s
$$

where

$$
t_{(u, v)}:=\inf \{t>0:(x(t), u(t)) \in \mathbb{C}\}
$$

Theorem 22.

For every $\varepsilon>0$, let T_{ε} be continuous on \mathcal{C}. Then $T_{\mathcal{A C}}$ is continuous on \mathcal{C} and

$$
\lim _{\varepsilon \rightarrow 0^{+}} T_{\varepsilon}=T_{\mathcal{A C}} .
$$

If moreover $T_{\mathcal{A C}}$ is continuous in its whole domain, the above limit is locally uniform.

