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I. Control systems with discontinuous dynamics

• 1696: Johann Bernoulli’s solution to brachistochrone

• The 1960’s and 70’s: Filippov; Hermes; Krasovskii, Hájek

• Sweeping Process: Moreau; Marques and Kunze, Colombo and
Goncharov, Georgiev and Ribarska

• Multiprocesses (1988): Clarke and Vinter

• Our book (1998): Clarke, Stern, Ledyaev, and PW

• One-sided Lipschitz: Tz. Donchev, Farkhi, Rios and PW

• Stratified Systems: Bressan and Hong, Barnard and PW; Barles,
Briani, and Trelat; Rao and Zidani; Hermosilla, Zidani, and PW.
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Assumptions

on given F : Rn ⇒ Rnwith Hamiltonian H : Rn → R given by H(x , ζ) := sup
v∈F (x)

〈
v , ζ

〉
.

Always (Standing Hypotheses):

(SH)


F (x) is nonempty, convex, and compact ∀x ∈ Rn;

grF :=
{

(x , v) : v ∈ F (x)
}

is closed (⇔ x 7→ H(x , ζ) is usc);

∃c > 0 with
∣∣H(x , ζ)

∣∣ ≤ c ‖ζ‖
(
1 + |x |

)
∀x , ζ ∈ Rn.

Once (One-Sided Lipschitz): There exists c > 0 with

(OSL) H(x , x − y)− H(y , x − y) ≤ c
∥∥x − y

∥∥2 ∀x , y ∈ Rn.

Usually (Locally Lipschitz): For all compact K ⊆ Rn, there exists c > 0

(LL)
∣∣H(x , ζ)− H(y , ζ)

∣∣ ≤ c ‖ζ‖
∥∥x − y

∥∥ ∀x , y ∈ K , ζ ∈ Rn
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Reachable sets
Given a set-valued map F : Rn ⇒ Rn, T > 0 and x ∈ Rn, consider the
Differential inclusion

(DI)

{
x(t) ∈ F

(
x(t)

)
a.e. t ∈ [0,T ]

x(0) = x

The Reachable Set at time T from a closed set S is defined as

R(T )(S) :=
{
x(T ) : ∃x(·) satisfying (DI) where x ∈ S

}
.

Major issue is to characterize R(T )(S)

We’ll characterize when a boundary point of R(T )(S) propagates
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Characterizations of R (T )(x)

1. Constant systems: F (x) = F :

R(T )(S) = S + TF :=
{
x + Tv : x ∈ S , v ∈ F

}
.

2. Linear systems: F (x) = Ax + Bu, u ∈ U:

R(T )(S) = eATS +

∫ T

0
e(T−s)ABU ds.

3. Exponential Formula (PW ’90): Under (LL),

R(T )(S) = lim
k→∞

(
I +

T

k
F

)k

(x).

The power refers to multifunction composition:(
G1 ◦ G2

)
(S) := {z : ∃x ∈ S ,∃y ∈ G2(x) with z ∈ G1(y)}.

Then G 2 := G ◦ G , etc.
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4. Semigroup characterization (PW ’90): Under (LL),

T |⇒ R(T )(·) is the unique one-parameter multifunction semigroup
(under set composition) whose infinitesimal generator is F (·). That
is, R(·)(·) is the unique multifunction satisfying (∀compact S ⊆ Rn)

R(0)(S) = S

∀T1, T2 > 0, one has R(T1+T2)(S) = R(T1)
(
R(T2)(S)

)
dH

(
R(h)(x)− x

h
,F (x)

)
→ 0 uniformly over x ∈ S .

5. Funnel Equation(Panasyuk & Panasyuk ’88): Under (LL),

R(T+h)(x) ≈
⋃{

y + hF (y) : y ∈ R(T )(x)
}

.

6. (HJ) inequalities (Clarke ’00): For S ⊆ Rn closed, denote the

graph of T |⇒ RT (S) by R =
{

(T , y) : T ≥ 0, y ∈ R(T )(x), x ∈ S
}

.
Then under (LL), the closed set R is characterized by the HJ property

σ + H(y , ζ) = 0 ∀(T , y) ∈ R, (σ, ζ) ∈ NP
R(T , y).
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7. Levels sets to minimal time function (PW & Y. Zhuang ’98):
For S ⊆ Rn closed and x ∈ Rn, the least time T for which ∃ a trajectory
x(·) of (DI) satisfying x(T ) ∈ S is denoted by T (x).
Then for r > 0, the sub-level set is the reachable set in reversed time:

lev≤r
(
T (·)

)
:= {x : T (x) ≤ r} = R

(≤r)
−F (S).

Under (LL), we showed T (·) is the unique lsc solution to the
proximal HJ equation plus a boundary condition:

1− H(x ,−ζ) = 0 ∀x 6∈ S , ζ ∈ ∂PT (x);
1− H(x ,−ζ) ≥ 0 ∀x ∈ S , ζ ∈ ∂PT (x).

8. Approximate HJ equation (Donchev, Rios, & PW ’12)

Under (OSL), T (·) is the unique lsc function satisfying1− H(x ,−ζ) ≤ 0

1− lim sup
y→ζx

H(y ,−ζ) ≥ 0

 ∀x 6∈ S , ζ ∈ ∂PT (x);

1− lim sup
y→ζx

H(y ,−ζ) ≥ 0 ∀x ∈ S , ζ ∈ ∂PT (x).
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General framework: Structured discontinuous systems

Stratified domains: The state space is partitioned into a finite
collection {M1, . . . ,MM} of smooth manifolds embedded in RN such that

1 RN =
⋃M

i=1Mi ; Mi ∩Mj = ∅ for all i 6= j .

2 If Mi ∩Mj 6= ∅ , then Mj ⊆Mi .

3 Each Mi is proximally smooth of radius δ > 0;

4 Each Mi is relatively wedged.

M Proximally smooth: The distance function dM(x) := infy∈M ||x − y ||
is differentiable on

{
M+ δB}\M. One consequence: The Clarke

normal cone NM(x) is the proximal one, and has closed graph.

M relatively wedged: The dimension of the relative interior of the
tangent cone TM(x) is the dimension of M for all x ∈M.
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2-D manifolds: M1 −M4

M1 M1

M2 M3

M4
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1-D manifolds: M5 −M10

M5

M6

M7

M8

M9

M10
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0-D manifolds: M11 −M13

M11

M12

M13
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Stratified dynamics: Associated to each manifold Mi is a multifunction

Fi :Mi ⇒ RN for which (Mi ,Fi ) satisfies the Basic Assumptions (BA):

(BA)


1) gr F (·) :=

{
(x , v) : v ∈ F (x)

}
is closed w.r.t. M,

2)∀ x ∈M, F (x) ⊆ TM(x) is nonempty, convex, and compact,

3)∃ r > 0 so that max{|v | : v ∈ F (x)} ≤ r(1 + |x |), and
4)F (·) is Lipschitz on bounded sets of M.

The basic velocity multifunction F : RN ⇒ RN is defined by

F (x) = Fi (x) whenever x ∈Mi .

This multifunction induces a differential inclusion with no general
existence theory or compactness of trajectories. The Krasovskii
regularization G : RN ⇒ RN

G (x) =
⋂
ε>0

co
⋃{

F (y) : ‖y − x‖ < ε
}

= co
⋃

x∈Mi

F i (x).

rectifies that issue, but is generally discontinuous on RN .
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Proposed research program:

Extend and develop the elements of
optimal control theory to

structured discontinuous systems
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Major difficulties:

1. Need a structural assumption to have well-posed optimization
problems and to possibly describe how arcs can enter and cross
the submanifolds.

2. No obvious way to characterize the reachable set multifunction.

3. If the submanifold path or index path is known, then the issue
of deriving necessary conditions fits into the Clarke-Vinter
multiprocess (1988) framework. But the optimal submanifold
path is unknown and is part of the optimization; a bilevel-like
problem emerges where the upper problem is discrete but
whose solutions are of indeterminate length.
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A more modest problem

We simplify by assuming:

Each Mi is a convex polytope: Mi =
{
x ∈ Rn : Aix ≤ bi

}
The dynamics are piecewise constant: Fi (x) = Fi

Pitfall: The Zeno effect occurs
when a trajectory makes infinitely
many domain switches in finite time.
For example, an infinite spiral can
reach the origin in finite time. It is
then difficult to capture the behavior
at the origin with first order informa-
tion.
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A much more modest problem
We simplify by assuming:

Each Mi is a convex polytope: Mi =
{
x ∈ Rn : Aix ≤ bi

}
The dynamics are piecewise constant: Fi (x) = Fi

And even more special: Each Fi belongs to F , which is the collection{
F ⊆ Rn : F is compact, convex, bounded, and with 0 ∈ int(F )

}
Default structural assumption: If Mj ⊂Mi , then projMj

(Fi ) ⊆ Fj .

The polar of F ∈ F is defined as

F ◦ =
{
ζ ∈ Rn : 〈ζ, v〉 ≤ 1 ∀v ∈ F

}
,

and one has for any F ⊆ Rn that

F ∈ F ⇐⇒ F ◦ ∈ F
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Gauge functions (aka Minkowski functionals)
Fix F ∈ F . The gauge associated with F is given by

γF (v) = inf
{
t : v ∈ t F

} (
= sup

{
〈v , ζ〉 : ζ ∈ F ◦

}
=
(
IF◦
)∗

(v)

)
Our assumptions imply γF (·) is finite and convex, and its relationship with
γF◦(·) is summarized by: The following are equivalent for v , ζ ∈ Rn:

(a) 〈v , ζ〉 = γF (v) · γF◦(ζ)

(b) ζ
γF◦ (ζ) ∈ ∂γF (v)

(c) ζ ∈ NF

(
v

γF (v)

)
(d) max

{
〈v ′, ζ〉 : v ′ ∈ F

}
=
〈

v
γF (v) , ζ

〉
(e) v

γF (v) ∈ ∂γF◦(ζ)

(f) v ∈ NF◦

(
ζ

γF◦ (ζ)

)
(g) max

{
〈v , ζ ′〉 : ζ ′ ∈ F ◦

}
=
〈
v , ζ

γF◦ (ζ)

〉
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The Minimal time problem
Suppose the target S ⊆ Rn is closed (and later, convex). Firstly, if there is just
one dynamic velocity set F ∈ F , the minimal time function reduces to

T (x) = min
y∈S

{
γF
(
y − x

)}
G. Colombo & PW studied subgradient properties of T (·) in Hilbert space.

(Half of China seems to work on extending these results to more general spaces)

Consider the polytope case, and let x0 ∈ Rn and S ⊆ Rn be closed and convex. A

(velocity) index path is a (finite) collection of indices 〈i1, i2, . . . , ik〉 with the

following property:

∃x1 ∈Mi1 with (x0, x1) ⊆Mi1 ; ∃x2 ∈Mi2 with (x1, x2) ⊂Mi2 ;

∃x3 ∈Mi3 with (x2, x3) ⊂Mi3 ; . . . . . .

∃xk ∈Mik with (xk−1, xk) ⊂Mik and xk ∈ S .

The only feasible trajectories that need be considered are associated with a
velocity index path, and is the linear interpolation of points {x0, . . . , xk}).
Denote this trajectory by X = [x0 → x1 → · · · → xk ].
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M1

M2

M3

M4

x0

S

x1

x2

Path: 1→ 2→ 3

x1

Path: 1→ 3

x1

x2

Path: 1→ 4→ 3
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1
2

3

4

5

6

7

8

10

9

X = [x0 → x1 → x2 → x3 → x4 → S ] with index path 〈10, 8, 3, 4, 7〉
X = [x0 → x1 → x2 → x3 → x4 → S ] with index path 〈10, 9, 8, 6, 7〉

X = [x0 → x1 → x2 → x3 → x4 → x5 → x6 → S ] with index path 〈10, 8, 1, 3, 5, 4, 7〉

S

x0

x1

x2

x3

x4

x1 x2

x3

x4

x1

x2

x3

x4

x5

x6
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Optimal time problem with a fixed velocity index path
Suppose a velocity index path 〈i1, . . . , ik〉 is fixed and a feasible trajectory
X = [x0 → x1 → · · · → xk ] is given . The time traveled by X is

J(X ) =
k∑

j=1

γFij

(
xj − xj−1

)
.

Minimizing time over all feasible trajectories is the same as minimizing
J(·) over the xj ’s (1 ≤ j ≤ k) under the constraint

xj ∈Mij ∩Mij+1
=: Σij

where Mk+1 := S (which could be any convex set).

This a convex, finite-dimensional
optimization problem!

We solve it using convex calculus.
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Necessary and sufficient conditions
With ΥΣij

(·) as the indicator of Σij =Mij ∩Mij+1
.The problem reduces to

min
xj∈Rn

1≤j≤k

k∑
j=1

{
γFij

(
xj − xj−1

)
+ ΥΣij

(xj)

}

Suppose for a fixed velocity index path that

X = [x0 → x1 → · · · → xk ]

is feasible. Then

0 ∈ ∂J(X )Tr =


∂x1

(
γFi1

(x1 − x0) + γFi2
(x2 − x1) + ΥΣi1

(x1)
)

∂x2

(
γFi2

(x2 − x1) + γFi3
(x3 − x2) + ΥΣi2

(x2)
)

...
∂xk
(
γFik

(xk − xk−1) + ΥS(xk)
)


is both necessary and sufficient for X to be optimal.
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Since each gauge function is finite and convex, Rockafellar’s sum rule
applies and yields: for each j (1 ≤ j ≤ k), one has

∃ ζj ∈ ∂xjγFij
(xj − xj−1) and ∃ ξj ∈ −∂xjγFij+1

(xj+1 − xj)

with
−ζj + ξj ∈ NΣij

(xj) (generalized Snell’s Law)

By the properties of gauge functions,

γF◦ij
(ζj) = 1 = γF◦ij+1

(−ξj) ,

max
v∈Fij

〈v , ζj〉 =

〈
xj − xj−1

γFj
(xj − xj−1)

, ζj

〉
, and

max
v∈Fij+1

〈v ,−ξj〉 =

〈
xj+1 − xj

γFj+1
(xj+1 − xj)

,−ξj
〉
.

The last two statements constitute the Maximum Principle.
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The conditions reduce to Snell’s Law if F1 = r1B and F2 = r2B. In that
case F ◦1 = 1

r1
B and F ◦2 = 1

r2
B, and thus for some angles θ1, θ2, we have

ζ =
1

r1

(
sin(θ1)
cos(θ1)

)
and − ξ =

1

r2

(
sin(θ2)
cos(θ2)

)
The condition −ζ + ξ ∈ NΣ(x1) = y−axis is the classical Snell’s Law.

r1

r2

x1

M1

M2θ2

θ1

x0

x2 = S

sin(θ1)
r1

= sin(θ2)
r2

Σ
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The Brachistochrone

F=-g

Which curve will the bead travel
in least time?
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Johann Bernoulli’s approach (local constant velocities)

θ2

θ3

θ4

θ3

θ4

θ5

r1

r2

r3

r4

r5

sin(θk )
rk

= sin(θk+1)
rk+1

= c
M1

M2

M3

M4

M5
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The condition

sin(θ1)

r1
=

sin(θ2)

r2
= · · · =

sin(θN)

rN
= c

“limits” to

r(y) · c = sin(θ) =
1√

1 + (y ′)2
⇒ t = c

∫
r(y)√

1− c2 r(y)2
dy

θ

y(t)

Brachistochrone has r(y) =
√

2 g (y − y0).
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Observations
Again consider a polytope system where all manifolds Mi are convex
polytopes with a constant velocity set Fi ∈ F .

1. A point x ∈ Rn belongs to the boundary of R(T )(x0) if and only if T
is the minimal time to reach x from x0.

2. The Zeno effect has no effect on R(T )(x0) – this follows from the
assumption 0 ∈ intFi ∀i . Thus x ∈ Rn belongs to R(T )(x0) if and
only if there exists an index path with an associated trajectory
X = [x0 → x1 → · · · → xk ] with J(X ) ≤ T and x = xk .

3. If one knew all the possible index paths that produce boundary
trajectories, then one can estimate the reachable set. For Bernoulli’s
discrete brachistochrone, the only such index path has successively
higher indices. It gets much more complicated in general.

4. If a trajectory reaching a point x ∈ bdry
(
R(t)(x0) ∩

(
int(Mi )

)
is

unique, then continuing along with the same velocity will keep it a
boundary trajectory. If not, then ?? - analog to conjugate points??
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M1

M2

M3

M4

x0

S

x1

x2

Path: 1→ 2→ 3

x1

Path: 1→ 3

Also: 1→ 4→ 3
with x1 = x2.

Also: 1→ 2→ 3
with x1 = x2.

x1

x2

Path: 1→ 4→ 3
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The reachable set with two polytopes
Consider M1 , M2 as the upper, lower half-planes in R2, Σ the x-axis,
and F1 = r1B, F2 = r2B. We assume x0 ∈M1.
Case 1: r1 > r2: Only relevant index paths are 〈1〉 and 〈1, 2〉

r1 = 2

r2 = 1

M1

M2

x0

Examples of “optimal” trajectories with T = 3 in Case 1
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Case 2: r1 < r2. Index paths are (a) 〈1〉, (b) 〈1, 2〉, and (c) 〈1, 2, 1〉.
Subcase 2(a): Trajectory remains in M1 for all time.
Subcase 2(b): Trajectory hits M2 and stays in M2 for remaining time.

r1 = 1

r2 = 2

M1

M2

x0

Examples of optimal trajectories of Subcases 2(a) and 2(b)
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Subcase 2(c): The trajectory hits M2 and stays on the interface but
re-enters M1 in remaining time.

r1 = 1

r2 = 2

M1

M2

x0

Examples of trajectories in Subcase 2(c).

The green points lie in the interior of R(6)(x0).
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Maintaining “boundariness” across an interface
Suppose t̄ > 0 and x ∈ bdry

(
R(t̄)(x0)

)
∩ Σ where Σ ⊆ bdry(Mi ).

Question: How can a trajectory enterMi and still maintain being
on the boundary of R(t̄+h)(x0) for small h > 0?

Answer: x comes from somehwere, so there is a polytope Mj , a

point y ∈Mj , a time t ′ > 0, and a velocity v ∈ Fj so that x = y + t ′v .
In fact, v = x−y

γFj (x−y) and t ′ = γFj
(x − y).

Let ζ ∈ NFj
(v) with γF◦j (ζ) = 1. The answer is that w ∈ Fi satisfies (for

small h > 0)

x + hw ∈ bdry
(
R(t̄+h)(x0)

)⋂
Mi

if and only if ∃ ξ ∈ NFi
(w) with γF◦i (ξ) = 1 satisfying

−ζ + ξ ∈ NΣ(x).
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Conclusions and future work

1. Characterizing the reachable set is challenging even when the dynamics
are piecewise constant. It can be done easily if only a small number of
index paths are relevant.

2. Once an index path is fixed, boundary trajectories can be constructed
relative to that path using a generalized form of Snell’s Law.

3. Choosing the right path for a specific choice of data seems quite
challenging since it is a discrete problem.

4. Two distinct index paths may give the same least time for a given
boundary point. I suspect this point could no longer be extended by a
boundary trajectory. This seems analogous to conjugate points from the
calculus of variations.
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And finally,

Thank you

Franco and Giovanni

for the many years of friendship.
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