The speculator: a case study of the dynamic programming equation of an infinite horizon stochastic problem

Pavol Brunovský

Faculty of Mathematics, Physics and Informatics
Department of Applied Mathematics and Statistics
Comenius University Bratislava, Slovakia

September 20, 2013
A major speculator maximizes his profit from selling a stock F_0 of foreign currency under a floating exchange rate z by choosing the selling rate u. More generally F other assets like shares etc...
(A. Černý: Currency Crises: Introduction of Spot Speculators, Int. J. Financ. Econ. 4(1999)): For given \(F_0, z_0 \) maximize \(J(F_0, z_0, u) \) over \(u \), where

\[
J(F_0, z_0, u) = E \int_0^{T : F_T = 0} e^{-\rho t} u_t (z_t - \eta u_t) dt
\]

subject to

\[
\frac{dF}{dt} = rF - u \quad (2)
\]

\[
dz = \lambda z dt + \sigma z dW \quad (3)
\]

\(r, \rho, \eta, \sigma > 0 \), \(W \) the standard Wiener process.
Ito formula \rightarrow DP (HJB) equation for the value function

\[V(F, z) = \sup_u J(F, z, u) : \]

\[\rho V = \sup_u \{u(z - \eta u) + D_F V(rF - u) + D_z V \lambda z + \frac{1}{2}\sigma z^2 D_{zz} V\}; \]

supremum achieved by $u = (z - D_F V)/\eta$:

\[\frac{1}{2}\sigma^2 z^2 D_{zz} V = -\lambda z D_z V - rF D_F + \rho V - \frac{(z - D_F V)^2}{4\eta} \quad \text{for } F > 0 \] \hspace{1cm} (4)

\[V(0, z) = 0. \] \hspace{1cm} (5)
If $\lambda + r < \rho$ (discount prevails) then

$$V(F, z) \leq Fz.$$

Indeed, for arbitrary $T > 0$

$$E \int_0^T e^{-\rho t} u_t(z_t - \eta u_t) dt \leq E \int_0^T e^{-\rho t} (rF_t - dF_t/dt)z_t dt$$

$$= F_0z_0 - EF_Tz_T + E \int_0^T e^{-\rho t} F_t z_t [(-\rho + r + \lambda) dt + \sigma dW_t] dt$$

$$\leq F_0z_0 + E \int_0^T e^{-\rho t} (-\rho + r + \lambda) F_t z_t dt + \sigma E \int_0^T e^{-\rho t} F_t z_t dW_t dt$$

$$\leq F_0z_0$$

because $F_t \geq 0$, $z_t > 0$ and

$$E \int_0^T \phi_t dW_t = 0$$

for ϕ continuous square integrable.
Reduction of HJB to ODE equation

Homogeneity \(V(\kappa F, \kappa z) = \kappa^2 V(F, z) \implies \)

\[
V(F, z) = \left(\frac{z}{\eta} \right)^2 V\left(\frac{F}{z}, \eta \right) = \frac{z^2}{\eta} y(x), \quad x = \eta F/z, \quad y(x) = \frac{x^2}{\eta} V(x, \eta);
\]

\(y(x) \) satisfies

\[
x^2 y'' = axy' + by - c(y' - 1)^2, \quad x > 0 \tag{6}
\]

\[
y(0) = 0, \tag{7}
\]

with \(c > 0; \rho > \lambda + r > 0 \iff a + b > 0. \)

Questions: Existence, uniqueness (of solutions relevant for original problem), verification of optimality
PB, A. Černý, M. Winkler 2013:

• If $a + b > 0$, $\forall x_0 > 0$, $0 < y_0 < x_0$ \exists solution on $[0, x_0]$ such that $y(x_0) = y_0$,

• If $a + b = 0$ then $y(x) = x$ is a solution on $[0, \infty)$,

• No solution for $a + b < 0$.
• each solution satisfies

\[y'(0) = 1, \ \lim_{x \to 0} \frac{y'(x) - 1}{\sqrt{x}} = -\sqrt{\frac{a+b}{c}} \]

• there is a unique solution such that \(0 \leq y(x) \leq x \) on \([0, \infty)\), satisfies \(y' > 0, \ y'' < 0, \ y''' > 0 \),

\[\lim_{x \to \infty} y'(x) = 0, \ \frac{y(x)}{x} < \frac{1 + y'(x)}{2} \]

• this solution represents the value function of the problem

Note \(y(x) \leq x \iff V(F, x) \leq Fx \)
$y = x$

$y = y(x)$
• Existence for $a + b > 0$ on $[\epsilon, x_0]$, $0 < \epsilon < x_0$ follows from Nagumo (1938) because $\overline{y}(x) = x$, $\underline{y}(x)$ are super- resp. subsolution. For $\epsilon = 0, x_0 = \infty$ it follows by principle of nested intervals.

• Nonexistence for $a + b < 0$: Transformation $x(t) = -t^{-1}$ of $0 < x < \infty$ to $(-\infty < t < 0)$ plus comparison of solutions
Proposition $\text{const} \neq y$ solving

\[y'' = f(x)y' + g(x, y)(y - y^*) \text{ on } (0, \infty) \]

f, g continuous, $g > 0$, then:

y' has at most one zero x_0 and either

\[y(x) > y(x_0) > y^*, \quad y(x_1) > y(x_0) < y(x_2) \]

for $0 \leq x_1 < x_0 < x_2$ and $x > 0$

or a symmetric w. r. to y^* conclusion holds.

Consequences:

- A solution intersecting $y = y^*$ is monotone
- A solution convergent for $t \to 0$ or $t \to \infty$ converges monotonically
\[y'' = f(x)y' + g(x, y)(y - y^*), \quad g > 0 \]
Assumptions satisfied for

- equation (1) with \(y^* = c/b \) for \(b \neq 0 \), \(y^* = -\infty \) for \(b = 0 \) \(\implies y(x) \) either \(\nearrow c/b \) or unbounded

- equation for derivative \(y_1 = y' \)

\[
x^2 y_1'' = (a - 2)xy_1' + (a + b)y_1 - 2c(y' - 1)y_1'
\]

with \(y_1^* = 0 \) \(\implies y' \) decreases from 1 to 0

- equation for 2nd derivative \(\implies \) second term for asymptotics at 0, positive profit

- equation for derivative of difference \(\Delta y_1 \) of solutions

\[
x^2 \Delta y_1'' = (a - 2)x \Delta y_1 + (a + b)\Delta y_1 - 2c y'' \Delta y_1 - 2c(y' - 1)\Delta y_1 - 2c \Delta y_1 \Delta y_1'
\]

with \(\Delta y^* = 0 \) \(\implies \) uniqueness.
"Verification" theorem (Fleming-Soner); "transversality" condition

\[E_{F_0,x_0} e^{-\rho t} V(F_t, x_t) \to 0 \text{ for } t \to \infty \]

following from

\[V((F, x) \leq Fx. \]
Conclusions

In case discount outweighs profit from holding the asset the unique solution $0 \leq y(x) \leq x$ of the ODE

$$x^2 y'' = a x y' + b y - c (y' - 1)^2, \quad x > 0$$

$y(0) = 0$

is the only one generating by $V(F, x) = \frac{x^2}{\eta} y(\eta F/x)$ the solution of the HJB equation

$$\frac{1}{2} \sigma^2 z^2 D_{zz} V = -\lambda z D_z V - r F D_F + \rho V - \frac{(z - D_F V)^2}{4 \eta} \quad \text{for } F > 0$$

$V(0, z) = 0$

consistent with the known requirements. This solution represents the value function. In addition, its V satisfies $D_F V > 0$, $D_{FF}^2 < 0$, $D_x V > 0$ and yields positive profit. In the opposite case the ODE has no solution.
Deterministic optimal control problems

Open loop controls synthesize into optimal feedback \implies
Pontryagin maximum principle can be effectively employed
Dynamic programming equation is an unpleasant first order DE -
for infinite horizon problems implicit.
Example: Ramsey problem

\[\min_{c(\cdot)} \int_0^\infty e^{-\rho t} U(c(t)) dt \]

subject to

\[\frac{dk}{dt} = f(k) - c(t), \quad k(0) = k_0, \quad k(t) \geq 0, \quad c(t) \geq 0, \]

in particular

\[f(k) = k^\alpha - \mu k, \quad U(c) = (1 - \theta)^{-1} c^{1-\theta}, \quad 0 < \theta < 1. \]

can be fully understood by variational (DP) methods (Jurča 2004)

DP equation

\[\max_c [(1 - \theta)^{-1} c^{1-\theta} - V'(k)(f(k) - \theta)] + \rho V = 0. \]

Minimum achieved for \(c = V'(k)^{-\theta} \quad \implies \]

\[\frac{\theta}{\theta - 1} V'^{\theta-1} + f(k)V' - \rho V = 0 \]

unpleasant implicit DE.
Thom’s theory of Pfaff systems yield ”fake” solutions \implies need of ”initial condition”

$$V(k_\infty) = \rho^{-1}f(k_\infty),$$

k_∞ ”equilibrium” state provided by PMP theory
Stochastic problems

PMP not applicable because concept of open loop controls irrelevant. DP much more pleasant because DP(HJB) equation well behaved explicit equation

- uniformly parabolic for finite horizon and
- uniformly elliptic for autonomous infinite horizon problems

provided stochastic dynamics governed by Wiener process

\[dy_t = f(y_t) + \sigma dW_t \]

However: in economics and finance mostly stochastic dynamics governed by \textit{geometric} Brownian motion

\[dy_t = y_t g(y_t) + \sigma y_t dW_t \]

leading to equation degenerating at \(y_t = 0 \).
Explicit solution approach

"Qualitative" approach

- Speculator’s problem (*PB et al.* 2013)
Intuitive explicit solutions

Common in macroeconomic models. Danger: possibility of multiple solutions, in particular in the absence of ”initial condition”.

For example, in our case

\[y(x) \equiv \frac{c}{b} \]

if \(b > 0 \).