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The problem

A major speculator maximizes his profit from selling a stock F0 of
foreign currency under a floating exchange rate z by choosing the
selling rate u. More generally F other assets like shares etc...
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The model

(A. Černý: Currency Crises: Introduction of Spot Speculators, Int.
J. Financ. Econ. 4(1999)): For given F0, z0 maximize J(F0, z0, u)

over u, where

J(F0, z0, u) = E

∫

T :FT=0

0
e−ρtut(zt − ηut)dt (1)

subject to

dF

dt
= rF − u (2)

dz = λzdt + σzdW (3)

r , ρ, η, σ > 0, W the standard Wiener process.
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The dynamic programming equation

Ito formula −→ DP (HJB) equation for the value function

V (F , z) = sup
u

J(F , z , u) :

ρV = sup
u

{u(z − ηu) + DFV (rF − u) + DzVλz +
1

2
σz2D2

zzV };

supremum achieved by u = (z − DFV )/η:

1

2
σ2z2DzzV = −λzDzV − rFDF + ρV − (z − DFV )2

4η
for F > 0

(4)

V (0, z) = 0. (5)
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Basic estimate

If λ+ r < ρ (discount prevails) then

V (F , z) ≤ Fz .

Indeed, for arbitrary T > 0

E

∫

T

0
e−ρtut(zt − ηut)dt ≤ E

∫

T

0
e−ρt(rFt − dFt/dt)ztdt

= F0z0 − EFT zT + E

∫

T

0
e−ρtFtzt [(−ρ+ r + λ)dt + σdWt ]dt

≤ F0z0 + E

∫

T

0
e−ρt(−ρ+ r + λ)Ftztdt + σE

∫

T

0
e−ρtFtztdWtdt

≤ F0z0

because Ft ≥ 0, zt > 0 and

E

∫

T

0
φtdWt = 0

for φ continuous square integrable.
Brunovsky Padova Speculator 5 / 22



Reduction of HJB to ODE equation

Homogeneity V (κF , κz) = κ2V (F , z) =⇒

V (F , z) = (
z

η
)2V (η

F

z
, η) =

z2

η
y(x), x = ηF/z , y(x) =

x2

η
V (x , η);

y(x) satisfies

x2y ′′ = axy ′ + by − c(y ′ − 1)2, x > 0 (6)

y(0) = 0, (7)

with c > 0; ρ > λ+ r > 0 ⇐⇒ a + b > 0.

Questions: Existence, uniqueness (of solutions relevant for original
problem), verification of optimality
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Results

PB, A. Černý, M. Winkler 2013:

• If a + b > 0, ∀x0 > 0, 0 < y0 < x0 ∃ solution on [0, x0] such
that y(x0) = y0,

• If a + b = 0 then y(x) = x is a solution on [0,∞),

• No solution for a+ b < 0.
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Results - Continuation

• each solution satisfies

y ′(0) = 1, lim
x→0

y ′(x) − 1√
x

= −
√

a + b

c

• there is a unique solution such that 0 ≤ y(x) ≤ x on [0,∞),
satisfies y ′ > 0, y ′′ < 0, y ′′′ > 0,

lim
x→∞

y ′(x) = 0, y(x)/x < (1 + y ′(x))/2

• this solution represents the value function of the problem

Note y(x) ≤ x ⇐⇒ V (F , x) ≤ Fx
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x

y y=x

y=y(x)
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Outlines of proofs - (non)existence

• Existence for a + b > 0 on [ǫ, x0], 0 < ǫ < x0 follows from
Nagumo (1938) because y(x) = x , y(x) are super- resp.
subsolution. For ǫ = 0, x0 = ∞ it follows by principle of
nested intervals.

• Nonexistence for a + b < 0: Transformation x(t) = −t−1 of
0 < x < ∞ to (−∞ < t < 0) plus comparison of solutions
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ǫ x0 x

y

supersolution

subsolution

solution
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Outlines of proofs - solution properties 1

Proposition const 6= y solving

y ′′ = f (x)y ′ + g(x , y)(y − y∗) on (0,∞)

f , g continuous, g > 0, then:
y ′ has at most one zero x0 and either

y(x) > y(x0) > y∗, y(x1) > y(x0) < y(x2)

for 0 ≤ x1 < x0 < x2 and x > 0

or a symmetric w. r. to y∗ conclusion holds.
Consequences:

• A solution intersecting y = y∗ is monotone

• A solution convergent for t → 0 or t → ∞ converges
monotonically
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y ′′ = f (x)y ′ + g(x , y)(y − y∗), g > 0

y∗

x

y
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Outlines of proofs - solution properties 2

Assumptions satisfied for
• equation (1) with y∗ = c/b for b 6= 0, y∗ = −∞ for
b = 0 =⇒ y(x) either ր c/b or unbounded
• equation for derivative y1 = y ′

x2y ′′1 = (a − 2)xy ′1 + (a + b)y1 − 2c(y ′ − 1)y ′1

with y∗1 = 0 =⇒ y ′ decreases from 1 to 0
• equation for 2nd derivative =⇒ second term for asymptotics at
0, positive profit
• equation for derivative of difference ∆y1 of solutions

x2∆y ′′1 = (a−2)x∆y1+(a+b)∆y1−2cy ′′∆y1−2c(y ′−1)∆y1−2c∆y1∆y ′1

with ∆y∗ = 0 =⇒ uniqueness.
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Outlines of proofs - sufficiency

”Verification” theorem o (Fleming-Soner); ”transversality”
condition

EF0,x0e
−ρtV (Ft , xt) → 0 for t → ∞

following from
V ((F , x) ≤ Fx .
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Conclusions

In case discount outweighes profit from holding the asset the
unique solution 0 ≤ y(x) ≤ x of the ODE

x2y ′′ = axy ′ + by − c(y ′ − 1)2, x > 0

y(0) = 0

is the only one generating by V (F , x) = x2

η
y(ηF/x) the solution of

the HJB equation

1

2
σ2z2DzzV = −λzDzV − rFDF + ρV − (z − DFV )2

4η
for F > 0

V (0, z) = 0

consistent with the known requirements. This solution represents
the value function. In addition, its V satisfies
DFV > 0,D2

FF
< 0,DxV > 0 and yields positive profit. In the

opposite case the ODE has no solution.
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Deterministic optimal control problems

Open loop controls synthesize into optimal feedback =⇒
Pontrjagin maximum principle can be effectively employed
Dynamic programming equation is an unpleasant first order DE -
for infinite horizon problems implicit.

Brunovsky Padova Speculator 17 / 22



Example:Ramsey problem

min
c(.)

∫

∞

0
e−ρtU(c(t))dt

subject to

dk/dt = f (k)− c(t), k(0) = k0, k(t) ≥ 0, c(t) ≥ 0,

in particular

f (k) = kα − µk ,U(c) = (1− θ)−1c1−θ, 0 < θ < 1.

can be fully understood by variational (DP) methods (Jurča 2004)
DP equation

max
c

[(1− θ)−1c1−θ − V ′(k)(f (k)− θ] + ρV = 0.

Minimum achieved for c = V ′(k)−θ =⇒
θ

θ − 1
V ′

θ−1
θ + f (k)V ′ − ρV = 0 −

unpleasant implicit DE.
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I. Ekeland 2010:

Thom’s theory of Pfaff systems yield ”fake” solutions =⇒ need of
”initial condition”

V (k∞) = ρ−1f (k∞),

k∞ ”equlibrium” state provided by PMP theory
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Stochastic problems

PMP not applicable because concept of open loop controls
irrevelant DP much more pleasant because DP(HJB) equation well

behaved explicit equation

• uniformly parabolic for finite horizon and

• uniformly elliptic for autonomous infinite horizon problems

provided stochastic dynamics governed by Wiener process

dyt = f (yt) + σdWt

However: in economics and finance mostly stochastic dynamics
governed by geometric Brownian motion

dyt = ytg(yt) + σytdWt

leading to equation degenerating at yt = 0.
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Rigorous solution methods

Explicit solution approach

• linear-quadratic problem (Rami et al. 2001): more solutions

• Merton’s consumption and investment problem (Karatzas et
al. 1986, Fleming et al. 1991)

”Qualitative” approach

• Merton’s problem (Zariphapoulou 1994, Vila et al. 1997)

• Speculator’s problem (PB et al. 2013)
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Intuitive explicit solutions

Common in macroeconomic models. Danger: possibility of multiple
solutions, in particular in the absence of ”initial condition”.

For example, in our case

y(x) ≡ c/b

if b > 0.
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