Optimal Control Problems with Mixed Constraints: Special Applications

Maria do Rosário de Pinho

Universidade do Porto, FEUP, DEEC, SYSTEC

Control of state constrained dynamical systems
Padova, Italy, September 2017

SYSTEC

We focus on the following

Problem

$$
\text { (P) }\left\{\begin{aligned}
\text { Minimize } I(x(0), x(1)) & \\
\text { subject to } & \text { a.e. } t \in[0,1] \\
\dot{x}(t) & =f(t, x(t), u(t)) \\
(x(t), u(t)) & \in S(t)
\end{aligned} \text { a.e. } t \in[0,1]\right. \text { and er }
$$

Goal

Here we discuss some challenging problems related to (P).

- Main Focus on

How useful are known Necessary Conditions for problems related to OCP with MC?

Outline

Outline of this talk

- Regulary Conditions for MC for Necessary Conditions.
- Different Problems (re)formulated as OCP with Mixed constraints:
- Implicit Control Systems;
- Applied Problems
- Biomath Problems;
- Robotics Problems;
- Sweeping Process.

Known NCO for (P) under regularity conditions on mixed constraints.
Is this enough for applications? We will see it is not!

Importance of Regularity Conditions

Under regularity conditions multipliers associated with mixed constraints are not meaures!

Literature is sparse as far as NCO for irregular mixed constraints!!!

Importance of Regularity Conditions

Under regularity conditions multipliers associated with mixed constraints are not meaures!

Literature is sparse as far as NCO for irregular mixed constraints!!!

See V. Dmitruk, On the development of Pontryagins maximum principle in the works of A. Ya. Dubovitskii and A. A. Milyutin, Control Cybernet., 38 (2009) on Dubovitskii-Milyutin scheme for irregular mixed constraints : multipliers in dual of (L^{∞}).

General Form of Mixed Constraints

$$
(x, u) \in S(t)
$$

Radius Multifunction

Let R be multifunction:

$$
R(t) \text { open, convex and } \forall t \exists r_{0}>0: r_{0} \mathbf{B} \subset R(t)
$$

Set

$$
S_{\epsilon}^{*}(t):=S(t) \cap\left(x^{*}(t)+\epsilon \mathbf{B}\right) \times R(t)
$$

Regularity Conditions for General Form of MC

Let R be multifunction:
$R(t)$ open, convex and $\forall t \exists r_{0}>0: r_{0} \mathbf{B} \subset R(t)$.

Regularity Conditions for General Form of MC

Let R be multifunction:
$R(t)$ open, convex and $\forall t \exists r_{0}>0: r_{0} \mathbf{B} \subset R(t)$.

Regularity Condition (CdP2010)

- (BS): There exists a measurable function k such that, for almost every $t \in[0,1]$,

$$
(x, u) \in S_{\epsilon}^{*}(t), \quad(\alpha, \beta) \in N_{S(t)}^{P}(x, u) \Longrightarrow|\alpha| \leq k(t)|\beta|
$$

and $k(t) \geq k_{0}>0$ a.e.

Regularity Conditions for General Form of MC

Let R be multifunction:
$R(t)$ open, convex and $\forall t \exists r_{0}>0: r_{0} \mathbf{B} \subset R(t)$.

Regularity Condition (CdP2010)

- (BS): There exists a measurable function k such that, for almost every $t \in[0,1]$,

$$
(x, u) \in S_{\epsilon}^{*}(t), \quad(\alpha, \beta) \in N_{S(t)}^{P}(x, u) \Longrightarrow|\alpha| \leq k(t)|\beta|
$$

and $k(t) \geq k_{0}>0$ a.e.

Observation

Regularity Condition (CdP2010)

- (BS): There exists a measurable function k such that, for almost every $t \in[0,1]$,

$$
\begin{aligned}
& \qquad \quad(x, u) \in S_{\epsilon}^{*}(t), \quad(\alpha, \beta) \in N_{S(t)}^{P}(x, u) \Longrightarrow|\alpha| \leq k(t)|\beta| \\
& \text { and } k(t) \geq k_{0}>0 \text { a.e. }
\end{aligned}
$$

This condition naturally excludes the case where

$$
S(T)=X(t) \times U(t)
$$

Question

- Is (BS) in some sense a minimal regularity condition?

Question

- Is (BS) in some sense a minimal regularity condition?
- Can we have "treatable" measures as multipliers for some irregular mixed constraints?

For $t \in[0,1]=\bigcup_{i=1}^{7} I_{i}$ we have
$\left\{\begin{array}{lll}\text { (i) } \quad(\bar{x}(t), \bar{u}(t)) \in \partial S, & \text { if } t \in I_{4} . & \text { (BS) does not holds. } \\ \text { (ii) } \quad(\bar{x}(t), \bar{u}(t)) \in \partial S, & \text { if } t \in I_{6} . & \text { (BS) does not holds. }\end{array}\right.$

Question

In this situation known necessary conditions under regularity conditions do not apply!!!

Multiplier???

Would the multiplier μ associated with Mixed Constraint

$$
\begin{gathered}
(x, u) \in S(t) \\
t \in I_{4} \text { and } t \in I_{6} \text { behave like }
\end{gathered}
$$

a multiplier for state constraints of the form

$$
x(t) \leq x_{4}, \quad t \in I_{4}, \quad x(t) \leq x_{6}, \quad t \in I_{6} ?
$$

Going Back to Regularity Conditions...

General Form: $(x(t), u(t)) \in S(t), S(t)$ locally closed.

Special Forms of Mixed Constraints:

- $S(t)=\{(x, u): h(t, x, u)=0, u \in U(t)\}:$ equality constraints,
- $S(t)=\{(x, u): g(t, x, u)) \leq 0, u \in U(t)\}$: inequality constraints,
- $S(t)=\{(x, u): h(t, x, u)=0, g(t, x, u) \leq 0, u \in U(t)\}$: both equality and inequality,
- $S(t)=\{(x, u): \phi(t, x, u) \in \Psi(t)\}$,
where $t \rightarrow U(t), \Psi(t), S(t)$ are set-valued functions.

Regularity Conditions for MC

Taking advantage of specific forms of Mixed Constraints

 define Regularity conditions (RC) such that$$
\begin{aligned}
(R C) & \Longrightarrow(B S) \\
& \text { or } \\
(R C) & \Longleftrightarrow(B S)
\end{aligned}
$$

Regularity Conditions for Geometric Form of MC

Take $S(t)=\{(x, u): \phi(t, x, u) \in \Psi(t)\}$ where

$$
\phi(t, x, u)=\left(\phi_{1}(x, u), u\right), \quad \Psi(t)=\Psi_{1} \times U
$$

Regularity Conditions for Geometric Form of MC

Take $S(t)=\{(x, u): \phi(t, x, u) \in \Psi(t)\}$ where

$$
\phi(t, x, u)=\left(\phi_{1}(x, u), u\right), \quad \Psi(t)=\Psi_{1} \times U
$$

Assume ϕ_{1} locally Lipschitz and

Regularity Conditions for Geometric Form of MC

Take $S(t)=\{(x, u): \phi(t, x, u) \in \Psi(t)\}$ where

$$
\phi(t, x, u)=\left(\phi_{1}(x, u), u\right), \quad \Psi(t)=\Psi_{1} \times U
$$

Assume ϕ_{1} locally Lipschitz and

CCQ

there exists constant M such that, for almost every $t \in[0,1]$, all $(x, u) \in S_{\varepsilon}^{*}(t)$ and all $(\lambda, \mu) \in N_{\Psi_{1}}^{L}\left(\phi_{1}(x, u)\right) \times N_{U}^{L}(u)$, we have

$$
(\alpha, \beta-\mu) \in \partial_{x, u}^{L}\left\langle\lambda, \phi_{1}(x, u)\right\rangle \Longrightarrow|\alpha| \leq M|\beta| .
$$

Regularity Conditions for Geometric Form of MC

Take $S(t)=\{(x, u): \phi(t, x, u) \in \Psi(t)\}$ where

$$
\phi(t, x, u)=\left(\phi_{1}(x, u), u\right), \quad \Psi(t)=\Psi_{1} \times U
$$

Assume ϕ_{1} locally Lipschitz and

CCQ

there exists constant M such that, for almost every $t \in[0,1]$, all $(x, u) \in S_{\varepsilon}^{*}(t)$ and all $(\lambda, \mu) \in N_{\Psi_{1}}^{L}\left(\phi_{1}(x, u)\right) \times N_{U}^{L}(u)$, we have

$$
(\alpha, \beta-\mu) \in \partial_{x, u}^{L}\left\langle\lambda, \phi_{1}(x, u)\right\rangle \Longrightarrow|\alpha| \leq M|\beta| .
$$

Then
$\mathbf{C C Q} \Longrightarrow \mathbf{B S}$ with $k(t)=M L_{x}^{\phi_{1}}(t)$

Example: Implicit Systems

Example: Implicit Systems

$$
(I) \quad \begin{cases}\text { Minimize } & I(x(0), x(1)) \\ \text { subject to } & \\ & f(t, x(t), \dot{x}(t), u(t)) \in \Psi \text { a.e. } \\ & u(t) \in U \text { a.e. } \\ & (x(0), x(1)) \in E .\end{cases}
$$

Reformulation as a OCP with MC

$$
(f(t, x, \dot{x}, u), u) \in \Psi \times U
$$

reformulated as

$$
\begin{array}{cl}
\dot{x}(t) & =v(t) \\
(f(t, x(t), v(t), u(t)), u(t)) & \in \Psi \times U .
\end{array}
$$

MP for OCP with Implicit Systems

Strict Differentiable Version of MP

Let $\left(x^{*}, u^{*}\right)$ be a strong local minimizer for (I) where f strictly differentiable and Ψ, U regular sets.
There exist $p \in W^{1,1}\left([a, b] ; \mathbf{R}^{n}\right)$, measurable functions $\lambda(t) \in N_{\Psi_{1}}^{C}\left(x^{*}(t), \dot{x}^{*}(t), u^{*}(t)\right)$ and $\mu(t) \in N_{U}^{C}\left(u^{*}(t)\right)$, and a scalar $\lambda_{0} \geq 0$ such that:

$$
\|p\|_{\infty}+\lambda_{0}>0
$$

$$
(p(0),-p(1)) \in N_{E}^{L}\left(x^{*}(0), x^{*}(1)\right)+\lambda_{0} \partial^{L} I\left(x^{*}(0), x^{*}(1)\right)
$$

$$
(-\dot{p}(t), 0,-\mu(t)) \in \partial_{x, v, u}^{C}\left\langle p(t), \dot{x}^{*}(t)\right\rangle-\partial_{x, v, u}^{C}\left\langle\lambda(t), f\left(t, x^{*}(t), \dot{x}^{*}(t), u^{*}(t)\right)\right\rangle
$$ and, for all (v, u) such that $u \in U$ and $f\left(t, x^{*}(t), v, u\right) \in \Psi$, we have

$$
\langle p(t), v\rangle \leq\left\langle p(t), \dot{x}^{*}(t)\right\rangle .
$$

MP for OCP with Implicit Systems

Assume further that $(x, v, u) \rightarrow f(x, v, u)$ is smooth, $\Psi=\{0\}$. Then

Smooth Version of MP: Adjoint Inclusion

$$
\lambda(t)=f_{v}^{+}\left(t, x^{*}(t), \dot{x}^{*}(t), u^{*}(t)\right) p(t)
$$

and

$$
\begin{aligned}
\dot{p}(t) & =\left(\nabla_{x} f\left(t, x^{*}(t), \dot{x}^{*}(t), u^{*}(t)\right)\right)^{T} f_{v}^{+}\left(t, x^{*}(t), \dot{x}^{*}(t), u^{*}(t)\right) p(t) \\
-\mu(t) & =\left(\nabla_{u} f\left(t, x^{*}(t), \dot{x}^{*}(t), u^{*}(t)\right)\right)^{T} f_{v}^{+}\left(t, x^{*}(t), \dot{x}^{*}(t), u^{*}(t)\right) p(t),
\end{aligned}
$$

where, as before, $\mu \in N_{U}^{C}\left(u^{*}(t)\right)$ and

$$
f_{v}^{+}(t)=\left(\nabla_{v} f(t)\left(\nabla_{v} f(t)\right)^{T}\right)^{-1} \nabla_{v} f(t)
$$

APPLIED PROBLEMS where mixed constraints (regular or irregular) play a role

Control of Infectious Diseases

SEIR Models with Vaccination

uS

Control of Infectious Diseases

SEIR Models: Equations

$$
\begin{cases}\dot{S}(t) & =b N(t)-d S(t)-c S(t) I(t)-u(t) S(t), S(0)=S_{0} \\ \dot{E}(t) & =c S(t) I(t)-(e+d) E(t), E(0)=E_{0}, \\ \dot{I}(t) & =e E(t)-(g+a+d) I(t), I(0)=I_{0}, \\ \dot{N}(t) & =(b-d) N(t)-a l(t), N(0)=N_{0}, \\ u(t) S(t) & \leq \varphi(t), \text { for a.e. } \quad t \in[0, T], \\ u(t) & \in[0,1] \text { for a.e. } \quad t \in[0, T]\end{cases}
$$

Mixed Constraint: Bound vaccines per unit of time $u(t) S(t) \leq \varphi(t)$: number of vaccinated individuals bounded by $\varphi(t)>0$.

Path Planning of Autonomous Vehiches

Motion of a AUV driven by

$$
\dot{x}(t)=f(x(t))+g(x(t)) u(t)
$$

should go from one point $x(0)$ to a target \mathcal{T} in T units of time such that the vehicle must "live "

- in Ω for more than θ_{1} units of time (e.g., for communications): Ω is a closed set.
- in \mathcal{O} for less than θ_{2} units of time (e.g., dangerous area): \mathcal{O} is an open set.

Formulation (by A. Désille, H. Zidani, dP)

$$
\begin{aligned}
& \binom{\dot{z}_{1}(t)}{\dot{z}_{2}(t)}=\binom{\beta_{1}(t)}{\beta_{2}(t)} \text { where } \\
& \quad \text { - } \beta_{i}(t) \in[0,1], i=1,2 \text {, Set Control Constraints }
\end{aligned}
$$

Formulation (by A. Désille, H. Zidani, dP)

$\binom{\dot{z}_{1}(t)}{\dot{z}_{2}(t)}=\binom{\beta_{1}(t)}{\beta_{2}(t)}$ where

- $\beta_{i}(t) \in[0,1], i=1,2$, Set Control Constraints
- $\beta_{1}(t) d(x(t), \Omega) \leq 0$, Mixed Constraints

Formulation (by A. Désille, H. Zidani, dP)

$\binom{\dot{z}_{1}(t)}{\dot{z}_{2}(t)}=\binom{\beta_{1}(t)}{\beta_{2}(t)}$ where

- $\beta_{i}(t) \in[0,1], i=1,2$, Set Control Constraints
- $\beta_{1}(t) d(x(t), \Omega) \leq 0$, Mixed Constraints
- ($\left.1-\beta_{2}(t)\right) d\left(x(t), \mathcal{O}^{c}\right) \leq 0$, Mixed Constraints

Formulation (by A. Désille, H. Zidani, dP)

$\binom{\dot{z}_{1}(t)}{\dot{z}_{2}(t)}=\binom{\beta_{1}(t)}{\beta_{2}(t)}$ where

- $\beta_{i}(t) \in[0,1], i=1,2$, Set Control Constraints
- $\beta_{1}(t) d(x(t), \Omega) \leq 0$, Mixed Constraints
- ($\left.1-\beta_{2}(t)\right) d\left(x(t), \mathcal{O}^{c}\right) \leq 0$, Mixed Constraints
- $z_{1}(T) \geq \theta_{1}$ and $z_{2}(T) \leq \theta_{2}$, End Point Constraints

Formulation (by A. Désille, H. Zidani, dP)

$\binom{\dot{z}_{1}(t)}{\dot{z}_{2}(t)}=\binom{\beta_{1}(t)}{\beta_{2}(t)}$ where

- $\beta_{i}(t) \in[0,1], i=1,2$, Set Control Constraints
- $\beta_{1}(t) d(x(t), \Omega) \leq 0$, Mixed Constraints
- $\left(1-\beta_{2}(t)\right) d\left(x(t), \mathcal{O}^{c}\right) \leq 0$, Mixed Constraints
- $z_{1}(T) \geq \theta_{1}$ and $z_{2}(T) \leq \theta_{2}$, End Point Constraints

So we guarantee that

- the length of the time interval where x lives in Ω is $\geq \theta_{1}$ and
- the length of the time interval where x lives in \mathcal{O} is $\leq \theta_{2}$.

SP

$$
(S P)\left\{\begin{array}{l}
\text { Minimize } \phi(x(1)) \\
\text { over processes }(x, u) \text { such that } \\
\quad \dot{x}(t) \in f(x(t), u(t))-N_{C}(x(t)), \quad \text { a.e. } t \in[0,1], \\
\quad u(t) \in U, \quad \text { a.e. } t \in[0,1], \\
(x(0), x(1)) \in C_{0} \times C_{1} .
\end{array}\right.
$$

where $C:=\left\{x \in \mathbf{R}^{n}: \psi(x) \leq 0\right\}$ for $\psi: \mathbf{R}^{n} \rightarrow \mathbf{R}$ strictly convex and $C^{2}\left(\mathbf{R}^{n} ; \mathbf{R}\right)$ function.

SP as OCP with MC

$$
(M)\left\{\begin{array}{l}
\text { Minimize } \phi(x(1)) \\
\text { over processes }(x, u) \text { such that } \\
\dot{x}(t)=f(x(t), u(t))-\lambda(t) \nabla \psi(x(t)), \quad \text { a.e. } t \in[0,1], \\
\begin{array}{lr}
\psi(x(t)) \leq 0 & \text { for all } t \in[0,1] \\
-\lambda(t) \psi(x(t)) \leq 0 & \text { a.e. } t \in[0,1], \\
(u(t), \lambda(t)) \in U \times\{\lambda \in \mathbf{R}: \lambda \geq 0\}, \quad \text { a.e. } t \in[0,1], \\
(x(0), x(1)) \in C_{0} \times C_{1} . &
\end{array}
\end{array}\right.
$$

Challenges

(SP) and (AUV) Mixed Constraints are irregular!!!

- Can we have "treatable" measures as multipliers for these and others irregular mixed constraints?
- Can we use the special structure of problems to get "treatable" measures as multipliers for some irregular mixed constraints?

Literature on this sort of problems

- dP, On necessary conditions for implicit control systems, Pure and Applied Functional Analysis, Vol.1, N.2, pp. 185-196, 2016.
- A. Boccia, dP and R. Vinter, Optimal Control Problems with Mixed and Pure State Constraints, SIAM J. Control Optim., 54(6), pp. 3061-3083.
- F. Clarke and dP, Optimal Control Problems with Mixed Constraints, SIAM Journal on Control and Optimization, Volume 48, Number 7, pp. 4500-4524.
- Silva, Geraldo Nunes, Lobo Pereira, F., Karamzin, D. Yu and Arutyunov, Aram V. Optimization, 2016, Vol. 65.
- An Li and Jane J. Ye, Necessary optimality conditions for optimal control problems with nonsmooth mixed state and control constraints, Set-Valued and Variational Analysis, vol. 24, 449-470, 2016.
- An Li and Jane J. Ye, Necessary optimality conditions for implicit control systems with applications to control of differential algebraic equations, Preprint, 2017.

Acknowledgments-Support

- SFRH/BSAB/114265/2016 funds through FCT - Fundacao para a Ciencia e a Tecnologia.
- Project POCI-01-0145-FEDER-006933 - SYSTEC - Research Center for Systems and Technologies - funded by FEDER funds through COMPETE2020 Programa Operacional Competitividade e Internacionalizao (POCI) and by national funds through FCT Fundacao para a Ciencia e a Tecnologia;
- PTDC/EEI-AUT/2933/2014, TOCCATTA - funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalizao (POCI) and by national funds through FCT Fundacao para a Ciencia e a Tecnologia.

Thank You for your attention! Questions / Remarks?

