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We focus on the following

Problem

(P)

8
>>>>>>>><

>>>>>>>>:

Minimize l(x(0), x(1))

subject to

ẋ(t) = f (t, x(t), u(t)) a.e. t 2 [0, 1]

(x(t), u(t)) 2 S(t) a.e. t 2 [0, 1]

(x(0), x(1)) 2 E
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Goal

Here we discuss some challenging problems related to (P).

Main Focus on

How useful are known Necessary Conditions for problems related to
OCP with MC?
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Outline

Outline of this talk

Regulary Conditions for MC for Necessary Conditions.

Di↵erent Problems (re)formulated as OCP with Mixed constraints:

Implicit Control Systems;

Applied Problems

Biomath Problems;

Robotics Problems;

Sweeping Process.

Known NCO for (P) under regularity conditions on mixed constraints.

Is this enough for applications? We will see it is not!
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Importance of Regularity Conditions

Under regularity conditions multipliers associated with mixed
constraints are not meaures!

Literature is sparse as far as NCO for irregular mixed constraints!!!

See V. Dmitruk, On the development of Pontryagins maximum principle in
the works of A. Ya. Dubovitskii and A. A. Milyutin, Control Cybernet., 38
(2009) on Dubovitskii–Milyutin scheme for irregular mixed constraints :
multipliers in dual of (L1) .
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General Form of Mixed Constraints

(x , u) 2 S(t)

Radius Multifunction

Let R be multifunction:
R(t) open, convex and 8 t 9r

0

> 0: r
0

B ⇢ R(t).

Set

S⇤
✏ (t) := S(t) \ (x⇤(t) + ✏B)⇥ R(t)
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Regularity Conditions for General Form of MC

Let R be multifunction:
R(t) open, convex and 8 t 9r

0

> 0: r
0

B ⇢ R(t).

Regularity Condition (CdP2010)

(BS): There exists a measurable function k such that, for almost
every t 2 [0, 1],

(x , u) 2 S⇤
✏ (t), (↵,�) 2 NP

S(t)

(x , u) =) |↵|  k(t)|�|
and k(t) � k

0

> 0 a.e.

7 / 28



Regularity Conditions for General Form of MC

Let R be multifunction:
R(t) open, convex and 8 t 9r

0

> 0: r
0

B ⇢ R(t).

Regularity Condition (CdP2010)

(BS): There exists a measurable function k such that, for almost
every t 2 [0, 1],

(x , u) 2 S⇤
✏ (t), (↵,�) 2 NP

S(t)

(x , u) =) |↵|  k(t)|�|
and k(t) � k

0

> 0 a.e.

7 / 28



Regularity Conditions for General Form of MC

Let R be multifunction:
R(t) open, convex and 8 t 9r

0

> 0: r
0

B ⇢ R(t).

Regularity Condition (CdP2010)

(BS): There exists a measurable function k such that, for almost
every t 2 [0, 1],

(x , u) 2 S⇤
✏ (t), (↵,�) 2 NP

S(t)

(x , u) =) |↵|  k(t)|�|
and k(t) � k

0

> 0 a.e.

7 / 28



Observation

Regularity Condition (CdP2010)

(BS): There exists a measurable function k such that, for almost
every t 2 [0, 1],

(x , u) 2 S⇤
✏ (t), (↵,�) 2 NP

S(t)

(x , u) =) |↵|  k(t)|�|
and k(t) � k

0

> 0 a.e.

This condition naturally excludes the case where

S(T ) = X (t)⇥ U(t)
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Question

Is (BS) in some sense a minimal regularity
condition?

Can we have “treatable” measures as multipliers for
some irregular mixed constraints?
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For t 2 [0, 1] =
7[

i=1

I
i

we have

(
(i) (x̄(t), ū(t)) 2 @S , if t 2 I

4

. (BS) does not holds.

(ii) (x̄(t), ū(t)) 2 @S , if t 2 I
6

. (BS) does not holds.
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Question

In this situation known necessary conditions under regularity conditions do
not apply!!!

Multiplier???

Would the multiplier µ associated with Mixed Constraint

(x , u) 2 S(t)

t 2 I
4

and t 2 I
6

behave like

a multiplier for state constraints of the form

x(t)  x
4

, t 2 I
4

, x(t)  x
6

, t 2 I
6

?
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Going Back to Regularity Conditions...

General Form: (x(t), u(t)) 2 S(t), S(t) locally closed.

Special Forms of Mixed Constraints:

S(t) = {(x , u) : h(t, x , u) = 0, u 2 U(t)}: equality constraints,

S(t) = {(x , u) : g(t, x , u))  0, u 2 U(t)}: inequality constraints,

S(t) = {(x , u) : h(t, x , u) = 0, g(t, x , u)  0, u 2 U(t)}: both
equality and inequality,

S(t) = {(x , u) : �(t, x , u) 2  (t)},
where t ! U(t),  (t), S(t) are set-valued functions.
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Regularity Conditions for MC

Taking advantage of specific forms of Mixed Constraints

define Regularity conditions (RC) such that

(RC ) =) (BS)

or

(RC ) () (BS).
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Regularity Conditions for Geometric Form of MC

Take S(t) = {(x , u) : �(t, x , u) 2  (t)} where

�(t, x , u) = (�
1

(x , u), u),  (t) =  
1

⇥ U.

Assume �
1

locally Lipschitz and

CCQ

there exists constant M such that, for almost every t 2 [0, 1], all
(x , u) 2 S⇤

" (t) and all (�, µ) 2 NL

 

1

(�
1

(x , u))⇥ NL

U

(u), we have

(↵,� � µ) 2 @L
x ,uh�,�1(x , u)i =) |↵|  M|�|.

Then

CCQ =) BS with k(t) = ML�1

x

(t)
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Example: Implicit Systems

(I )

8
>>>><

>>>>:

Minimize l(x(0), x(1))
subject to

f (t, x(t), ẋ(t), u(t)) 2  a.e.,
u(t) 2 U a.e.,
(x(0), x(1)) 2 E .

Reformulation as a OCP with MC

(f (t, x , ẋ , u), u) 2  ⇥ U

reformulated as

ẋ(t) = v(t),
(f (t, x(t), v(t), u(t)), u(t)) 2  ⇥ U.
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MP for OCP with Implicit Systems

Strict Di↵erentiable Version of MP

Let (x⇤, u⇤) be a strong local minimizer for (I ) where f strictly
di↵erentiable and  ,U regular sets.
There exist p 2 W 1,1([a, b];Rn), measurable functions
�(t) 2 NC

 

1

(x⇤(t), ẋ⇤(t), u⇤(t)) and µ(t) 2 NC

U

(u⇤(t)), and a scalar
�
0

� 0 such that:

||p||1 + �
0

> 0,

(p(0),�p(1)) 2 NL

E

(x⇤(0), x⇤(1)) + �
0

@Ll(x⇤(0), x⇤(1)),

(�ṗ(t), 0,�µ(t)) 2 @C
x ,v ,uhp(t), ẋ⇤(t)i � @C

x ,v ,uh�(t), f (t, x⇤(t), ẋ⇤(t), u⇤(t))i

and, for all (v , u) such that u 2 U and f (t, x⇤(t), v , u) 2  , we have

hp(t), vi  hp(t), ẋ⇤(t)i.
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MP for OCP with Implicit Systems

Assume further that (x , v , u) ! f (x , v , u) is smooth,  = {0}. Then
Smooth Version of MP: Adjoint Inclusion

�(t) = f +
v

(t, x⇤(t), ẋ⇤(t), u⇤(t))p(t)

and

ṗ(t) = (r
x

f (t, x⇤(t), ẋ⇤(t), u⇤(t)))T f +
v

(t, x⇤(t), ẋ⇤(t), u⇤(t))p(t)

�µ(t) = (r
u

f (t, x⇤(t), ẋ⇤(t), u⇤(t)))T f +
v

(t, x⇤(t), ẋ⇤(t), u⇤(t))p(t),

where, as before, µ 2 NC

U

(u⇤(t)) and

f +
v

(t) =
⇣
r

v

f (t)(r
v

f (t))T
⌘�1r

v

f (t),
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APPLIED PROBLEMS where
mixed constraints (regular or

irregular) play a role
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Control of Infectious Diseases

SEIR Models with Vaccination
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Control of Infectious Diseases

SEIR Models: Equations

8
>>>>>>>>>>><

>>>>>>>>>>>:

Ṡ(t) = bN(t)� dS(t)� cS(t)I (t)� u(t)S(t), S(0) = S
0

,

Ė (t) = cS(t)I (t)� (e + d)E (t), E (0) = E
0

,

İ (t) = eE (t)� (g + a+ d)I (t), I (0) = I
0

,

Ṅ(t) = (b � d)N(t)� aI (t), N(0) = N
0

,

u(t)S(t) '(t), for a.e. t 2 [0,T ],

u(t) 2 [0, 1] for a.e. t 2 [0,T ],

Mixed Constraint: Bound vaccines per unit of time

u(t)S(t)  '(t): number of vaccinated individuals bounded by '(t) > 0.
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Path Planning of Autonomous Vehiches

Motion of a AUV driven by

ẋ(t) = f (x(t)) + g(x(t))u(t)

should go from one point x(0) to a target T in T units of time such that
the vehicle must “live ”

in ⌦ for more than ✓
1

units of time (e.g., for communications): ⌦ is a
closed set.
in O for less than ✓

2

units of time (e.g., dangerous area): O is an
open set.
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Formulation (by A. Désille, H. Zidani, dP)

✓
ż
1

(t)
ż
2

(t)

◆
=

✓
�
1

(t)
�
2

(t)

◆
where

�
i

(t) 2 [0, 1], i = 1, 2, Set Control Constraints

�
1

(t)d(x(t),⌦)0, Mixed Constraints

(1� �
2

(t))d(x(t),Oc)0, Mixed Constraints

z
1

(T ) � ✓
1

and z
2

(T )  ✓
2

, End Point Constraints

So we guarantee that

the length of the time interval where x lives in ⌦ is � ✓
1

and

the length of the time interval where x lives in O is  ✓
2

.
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SP

(SP)

8
>>>>>>>><

>>>>>>>>:

Minimize �(x(1))

over processes (x , u) such that

ẋ(t) 2 f (x(t), u(t))� N
C

(x(t)), a.e. t 2 [0, 1],

u(t) 2 U, a.e. t 2 [0, 1],

(x(0), x(1)) 2 C
0

⇥ C
1

.

where C := {x 2 Rn :  (x)  0} for  : Rn ! R strictly convex and
C 2(Rn;R) function.

23 / 28



SP as OCP with MC

(M)

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

Minimize �(x(1))

over processes (x , u) such that

ẋ(t) = f (x(t), u(t))� �(t)r (x(t)), a.e. t 2 [0, 1],

 (x(t))  0 for all t 2 [0, 1]

��(t) (x(t))0 a.e. t 2 [0, 1],

(u(t),�(t)) 2 U ⇥ {� 2 R : � � 0} , a.e. t 2 [0, 1],

(x(0), x(1)) 2 C
0

⇥ C
1

.
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Challenges

(SP) and (AUV) Mixed Constraints are irregular!!!

Can we have “treatable” measures as multipliers for
these and others irregular mixed constraints?

Can we use the special structure of problems to get
“treatable” measures as multipliers for some irregular
mixed constraints?
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Thank You for your attention!
Questions / Remarks?
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