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An Optimal Control Problem

Cauchy Problem

ẋ(t) = f (t , x(t)) x(0) = x0

u Predicting but no altering the evolution

Control System

ẋ(t) = f (t , x(t),u(t)) x(0) = x0

u u(t) control. Evolution of the system affected

Control System with unknown parameters

ẋ(t) = f (t , x(t , ω),u(t), ω) x(0, ω) = x0

u ω ∈ Ω unknown set. Uncertainties are taken into
account

+ Performance Criterion ? Optimal Control
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ẋ(t) = f (t , x(t),u(t)) x(0) = x0

u u(t) control. Evolution of the system affected

Control System with unknown parameters
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ẋ(t) = f (t , x(t , ω),u(t), ω) x(0, ω) = x0

u ω ∈ Ω unknown set. Uncertainties are taken into
account

+ Performance Criterion ?

Optimal Control

Nathalie T. Khalil Average Cost Minimization Problems 3/17



Average cost
problem

Motivating
problem

Link with
previous works

Novelty and
necessary
conditions

Proof

Conclusion and
Perspective

An Optimal Control Problem

Cauchy Problem
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An Optimal Control Problem

For a given µ (probability measure on Ω) and g(x , ω)

minimize
∫

Ω
g(x(T , ω);ω) dµ(ω) average cost

over u : [0,T ]→ Rm and W 1,1 arcs {x(., ω)}
such that u(t) ∈ U(t) a.e. t ∈ [0,T ]

and, for each ω ∈ Ω,

ẋ(t , ω) = f (t , x(t , ω),u(t), ω) a.e. t ∈ [0,T ],

x(0, ω) = x0 and x(T , ω) ∈ C(ω) .

Ω (set of unknown parameters) is a complete
separable metric space

Goal: characterize the optimal control independently
of the unknown parameter action
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Example from aerospace engineering:
Spacecraft1

Dynamics q̇ =
1
2

Q(r)q

ṙ = I−1(−r × I · r − r ×mc(δ)− A(δ)u)

δ̇ = u

q ∈ R4 (attitude), r ∈ R3 (body rate), δ Nc−vector of gimbals angles
(associate with the onboard control moment gyros CMG), I inertia
matrix, Q(r) a given matrix, mc(δ) angular momentum of CMG, A(δ) is
a 3× Nc matrix associated with the control u ∈ U.

Goal: minimize the time between two collects of
images

1
Ross, I. M., Karpenko M., and Proulx J. R. "A Lebesgue-Stieltjes Framework For Optimal Control

and Allocation." American Control Conference (ACC) 2015.
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Example from aerospace engineering:
Spacecraft2

if δ(0) =mean value of δ0 Uncontrollable system!

Optimal control problem with average cost

Satisfactory results"

2
Ross, I. M., Karpenko M., and Proulx J. R. "A Lebesgue-Stieltjes Framework For Optimal Control

and Allocation." American Control Conference (ACC) 2015.
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Some literature on average control...

Zuazua, Average control, Automatica 50 (12), 2014

Agrachev, Baryshnikov, and Sarychev, Ensemble
controllability by Lie algebraic methods, ESAIM:
Control, Optimisation and Calculus of Variations 22
(4), 2016

Caillau, Cerf, Sassi, Trélat, and Zidani, Solving
chance-constrained optimal control problems in
aerospace engineering via Kernel Density Estimation,
preprint, 2016

BUT...

NO Results For Necessary Optimality Conditions
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Minimax problem

minimize max
ω∈Ω

g(x(T , ω);ω) over u ∈ U(t)

u Standard criterion, unknown parameter ω and Ω
is a compact metric space

Goal: characterize a solution considered for the worst
performance case for all the values of the uncertain
parameter ω ∈ Ω

Works by: Vinter3, Boltyanski4, Karamzin, Oliveira,
Pereira, Silva 5

3
Vinter, R. B. "Minimax optimal control." SIAM journal on control and optimization 44.3 (2005).

4
Boltyanski, V. G. "Robust maximum principle." Advanced Motion Control, 2006. 9th IEEE

International Workshop on. IEEE, 2012.
5

Karamzin, D. et al. "Minimax optimal control problem with state constraints." European Journal of
Control 32 (2016).
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Novelty

minimize
∫

Ω
g(x(T , ω);ω) dµ(ω) over u ∈ U(t)

u the probability measure µ is given

u integrate over Ω (‘uncertainty’ set) instead of
maximizing over ω ∈ Ω

u Ω is merely a complete separable metric space, not
necessarily compact
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Assumptions on the data

∃ c > 0 and kf (.) ∈ L1 s.t. |f (t , x , u, ω)| ≤ c∣∣f (t , x , u, ω)− f (t , x ′, u, ω)
∣∣ ≤ kf (t)|x − x ′|

for all x , x ′, u ∈ U(t), ω ∈ Ω a.e. t ∈ [0,T ]

f (t , x ,U(t), ω) closed for all t , x , u

∃ kg > 0 and Mg > 0 s.t. for all ω ∈ Ω |g(x , ω)| ≤ Mg for all x ,

|g(x , ω)− g(x ′, ω)| ≤ kg |x − x ′| for all x , x ′.

∃ a modulus of continuity θg(.) s.t. for all ω ∈ Ω and x

|g(x , ω1)− g(x , ω2)| ≤ θg(ρΩ(ω1, ω2)) for all ω1, ω2 ∈ Ω .

∃ modulus of continuity θf (.) s.t. for all ω, ω1, ω2 ∈ Ω,∫ T

0
sup
x, u
|f (t , x , u, ω1)− f (t , x , u, ω2)| dt ≤ θf (ρΩ(ω1, ω2)).
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Necessary optimality conditions

Theorem (Bettiol-Khalil 2017)
Let (ū, {x̄(., ω) : ω ∈ Ω}) be a W 1,1−local minimizer in which µ is
given. Then, there exist λ ≥ 0, a L × BΩ measurable function
p(., .) : [0,T ]× Ω→ Rn, and a countable dense subset Ω̂ of supp(µ)

p(., ω) ∈ W 1,1([0,T ],Rn) for all ω ∈ Ω̂ ;∫
Ω

p(t , ω) · f (t , x̄(t , ω), ū(t), ω) dµ(ω)

= max
u∈U(t)

∫
Ω

p(t , ω) · f (t , x̄(t , ω), u, ω) dµ(ω) a.e. t ∈ [0,T ] ;

p(., ω) ∈ co P(ω) for all ω ∈ Ω̂ where

P(ω) :=

{
q(., ω) ∈ W 1,1 : ‖q(., .)‖L∞ ≤ 1, λ+

∑
ω∈Ω̂

max
t∈[0,T ]

|q(t , ω)| = 1,

− q̇(t , ω) ∈ co ∂x [q(t , ω) · f (t , x̄(t , ω), ū(t), ω)] a.e. t ∈ [0,T ],

and − q(T , ω) ∈ λ∂x g(x̄(T , ω);ω) + NC(ω)(x̄(T , ω))

}
.

Nathalie T. Khalil Average Cost Minimization Problems 11/17
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What if we add more regularity?

g(., ω) is differentiable for each ω ∈ Ω, and ∇xg(., .) is
continuous
f (t , .,u, ω) is continuously differentiable on x̄(t , ω) + δB
for all u ∈ U(t) and ω ∈ Ω a.e. t ∈ [0,T ], and
ω → ∇x f (t , x ,u, ω) is uniformly continuous with respect
to (t , x ,u) ∈ {(t ′, x ′,u′) ∈ [0,T ]× Rn × Rm | u′ ∈ U(t ′)}
C(ω) := Rn

Nathalie T. Khalil Average Cost Minimization Problems 12/17
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Ω p(t , ω) · f (t , x̄(t , ω),u, ω) dµ(ω) a.e. t
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Steps of the proof (inspired by Vinter6)

¶ approximate µ by convex combination of Dirac
measures (finite support)

· Apply Ekeland variational principle

¸ obtain an auxiliary (discretized) problem:
apply Maximum Principle

¹ ‘double’ limit-taking: â adjoint system/transversality condition

â Weierstrass condition
(weak∗−convergence of measures)

6
Vinter, R. B. "Minimax optimal control." SIAM journal on control and optimization 44.3 (2005).
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â Weierstrass condition
(weak∗−convergence of measures)

6
Vinter, R. B. "Minimax optimal control." SIAM journal on control and optimization 44.3 (2005).
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Conclusion and Perspectives

Conclusion: establish necessary optimality conditions for
average cost minimization problems using approach of
the minimax problem

Perspectives:
â Add a state constraint condition (work in progress)

â Study stronger necessary optimality conditions
(nondegeneracy, normality)
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Perspective: add a state constraint (in
progress)

u Theoretical reasons: preliminary results

u Applications7: aerospace engineering

Dynamics q̇ =
1
2

Q(r)q

ṙ = I−1(−r × I · r − r ×mc(δ)− A(δ)u)

δ̇ = u

State constraint t 7→ S(δ) :=
√

det[A(δ)AT (δ)] ≥ α ∀t
(α > 0 is an engineering decision)

7
Ross, I. M., Karpenko M., and Proulx J. R. "Path constraints in tychastic and unscented optimal

control: Theory, application and experimental results." American Control Conference (ACC). IEEE, 2016.
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Grazie!
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