Average Cost Minimization Problems

Nathalie T. Khalil

Université de Bretagne Occidentale, France

Conference, Control of state constrained dynamical systems Università degli Studi di Padova September 29, 2017

nathalie.khalil@univ-brest.fr

Outline

- Average cos problem
- Motivating problem
- Link with previous works
- Novelty and necessary conditions
- Proof
- Conclusion and Perspective

- Our problem on average cost
- Motivation
- 3 Link with previous works
- 4 Novelty and necessary conditions for optimality
- 5 Conclusion and perspectives

Joint work with Piernicola Bettiol

Cauchy Problem

Average cost problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

$$\dot{x}(t) = f(t, x(t))$$
 $x(0) = x_0$

Cauchy Problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

$$\dot{x}(t) = f(t, x(t))$$
 $x(0) = x_0$

Predicting but no altering the evolution

Cauchy Problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

$\dot{x}(t) = f(t, x(t))$ $x(0) = x_0$

Predicting but no altering the evolution

Control System

$$\dot{x}(t) = f(t, x(t), u(t))$$
 $x(0) = x_0$

Cauchy Problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

$\dot{x}(t) = f(t, x(t)) \qquad x(0) = x_0$

Predicting but no altering the evolution

Control System

$$\dot{x}(t) = f(t, x(t), u(t))$$
 $x(0) = x_0$

• u(t) control. Evolution of the system affected

Cauchy Problem

- Motivating problem
- Link with previous works
- Novelty and necessary conditions
- Proof
- Conclusion and Perspective

$\dot{x}(t) = f(t, x(t))$ $x(0) = x_0$

Predicting but no altering the evolution

Control System

$$\dot{x}(t) = f(t, x(t), u(t))$$
 $x(0) = x_0$

• u(t) control. Evolution of the system affected

Control System with unknown parameters

$$\dot{x}(t) = f(t, x(t, \omega), u(t), \omega)$$
 $x(0, \omega) = x_0$

Cauchy Problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

$\dot{x}(t) = f(t, x(t)) \qquad x(0) = x_0$

Predicting but no altering the evolution

Control System

$$\dot{x}(t) = f(t, x(t), u(t))$$
 $x(0) = x_0$

• u(t) control. Evolution of the system affected

Control System with unknown parameters

$$\dot{x}(t) = f(t, x(t, \omega), u(t), \omega)$$
 $x(0, \omega) = x_0$

• $\omega \in \Omega$ unknown set. Uncertainties are taken into account

Cauchy Problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

$\dot{x}(t) = f(t, x(t))$ $x(0) = x_0$

Predicting but no altering the evolution

Control System

$$\dot{x}(t) = f(t, x(t), u(t))$$
 $x(0) = x_0$

• u(t) control. Evolution of the system affected

Control System with unknown parameters

$$\dot{x}(t) = f(t, x(t, \omega), u(t), \omega)$$
 $x(0, \omega) = x_0$

• $\omega \in \Omega$ unknown set. Uncertainties are taken into account

+ Performance Criterion ?

Cauchy Problem

Motivating problem

- Link with previous works
- Novelty and necessary conditions

Proof

Conclusion and Perspective

$\dot{x}(t) = f(t, x(t))$ $x(0) = x_0$

Predicting but no altering the evolution

Control System

$$\dot{x}(t) = f(t, x(t), u(t))$$
 $x(0) = x_0$

• u(t) control. Evolution of the system affected

Control System with unknown parameters

$$\dot{x}(t) = f(t, x(t, \omega), u(t), \omega)$$
 $x(0, \omega) = x_0$

• $\omega \in \Omega$ unknown set. Uncertainties are taken into account

+ Performance Criterion ?

Optimal Control

Nathalie T. Khalil

Average Cost Minimization Problems 3/17

Average cost problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective $\begin{array}{ll} \text{minimize} & \int_{\Omega} g(x(T,\omega);\omega) \ d\mu(\omega) & \text{average cost} \\ \text{over } u: [0,T] \to \mathbb{R}^m \text{ and } W^{1,1} \ \text{arcs } \{x(.,\omega)\} \\ \text{such that} & u(t) \in U(t) \quad \text{a.e. } t \in [0,T] \\ \text{and, for each } \omega \in \Omega, \\ & \dot{x}(t,\omega) = f(t,x(t,\omega),u(t),\omega) \quad \text{a.e. } t \in [0,T], \\ & x(0,\omega) = x_0 \quad \text{and} \quad x(T,\omega) \in C(\omega) . \end{array}$

For a given μ (probability measure on Ω) and $g(x, \omega)$

Ω (set of unknown parameters) is a complete separable metric space

Average cost problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective $\begin{array}{ll} \text{minimize} & \int_{\Omega} g(x(T,\omega);\omega) \ d\mu(\omega) & \text{average cost} \\ \text{over } u:[0,T] \to \mathbb{R}^m \text{ and } W^{1,1} \ \text{arcs } \{x(.,\omega)\} \\ \text{such that} & u(t) \in U(t) \quad \text{a.e. } t \in [0,T] \\ \text{and, for each } \omega \in \Omega, \\ & \dot{x}(t,\omega) = f(t,x(t,\omega),u(t),\omega) \quad \text{a.e. } t \in [0,T], \\ & x(0,\omega) = x_0 \quad \text{and} \quad x(T,\omega) \in C(\omega) . \end{array}$

For a given μ (probability measure on Ω) and $g(x, \omega)$

 Ω (set of unknown parameters) is a complete separable metric space

Goal: characterize the optimal control independently of the unknown parameter action

Example from aerospace engineering: Spacecraft¹

Average cos problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

Dynamics
$$\dot{q} = \frac{1}{2}Q(r)q$$

 $\dot{r} = I^{-1}(-r \times I \cdot r - r \times m_c(\delta) - A(\delta)u)$
 $\dot{\delta} = u$

 $q \in \mathbb{R}^4$ (attitude), $r \in \mathbb{R}^3$ (body rate), δN_c -vector of gimbals angles (associate with the onboard control moment gyros CMG), *I* inertia matrix, Q(r) a given matrix, $m_c(\delta)$ angular momentum of CMG, $A(\delta)$ is a $3 \times N_c$ matrix associated with the control $u \in U$.

Goal: minimize the time between two collects of images

^I Ross, I. M., Karpenko M., and Proulx J. R. "A Lebesgue-Stieltjes Framework For Optimal Control and Allocation." *American Control Conference (ACC)* 2015.

Example from aerospace engineering: Spacecraft²

Average cosproblem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

if $\delta(0)$ =mean value of δ_0 Uncontrollable system!

² Ross, I. M., Karpenko M., and Proulx J. R. "A Lebesgue-Stieltjes Framework For Optimal Control and Allocation." *American Control Conference (ACC)* 2015.

Example from aerospace engineering: Spacecraft²

Average co problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

² Ross, I. M., Karpenko M., and Proulx J. R. "A Lebesgue-Stieltjes Framework For Optimal Control and Allocation." *American Control Conference (ACC)* 2015.

Example from aerospace engineering: Spacecraft²

Average co problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

Optimal control problem with average cost

Satisfactory results 🗸

² Ross, I. M., Karpenko M., and Proulx J. R. "A Lebesgue-Stieltjes Framework For Optimal Control and Allocation." *American Control Conference (ACC)* 2015.

Nathalie T. Khalil

Average Cost Minimization Problems 6/17

Some literature on average control...

Average cos problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective Zuazua, Average control, Automatica 50 (12), 2014

- Agrachev, Baryshnikov, and Sarychev, Ensemble controllability by Lie algebraic methods, *ESAIM: Control, Optimisation and Calculus of Variations* 22 (4), 2016
- Caillau, Cerf, Sassi, Trélat, and Zidani, Solving chance-constrained optimal control problems in aerospace engineering via Kernel Density Estimation, preprint, 2016

Some literature on average control...

Average cos problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective Zuazua, Average control, Automatica 50 (12), 2014

- Agrachev, Baryshnikov, and Sarychev, Ensemble controllability by Lie algebraic methods, *ESAIM: Control, Optimisation and Calculus of Variations* 22 (4), 2016
- Caillau, Cerf, Sassi, Trélat, and Zidani, Solving chance-constrained optimal control problems in aerospace engineering via Kernel Density Estimation, preprint, 2016

BUT...

NO Results For Necessary Optimality Conditions

Minimax problem

Average cos problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

• Standard criterion, unknown parameter ω and Ω is a compact metric space

<u>Goal</u>: characterize a solution considered for the worst performance case for all the values of the uncertain parameter $\omega \in \Omega$

Works by: Vinter³, Boltyanski⁴, Karamzin, Oliveira, Pereira, Silva ⁵

³Vinter, R. B. "Minimax optimal control." *SIAM journal on control and optimization* 44.3 (2005).

⁴ Boltyanski, V. G. "Robust maximum principle." Advanced Motion Control, 2006. 9th IEEE International Workshop on. IEEE, 2012.

⁵Karamzin, D. et al. "Minimax optimal control problem with state constraints." *European Journal of Control* 32 (2016).

Nathalie T. Khalil

Average Cost Minimization Problems 8/17

Novelty

Average cos problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

$$\text{minimize } \int_\Omega g(x(\mathcal{T},\omega);\omega) \ \boldsymbol{d} \mu(\omega) \quad \text{over } u \in \boldsymbol{U}(t)$$

• the **probability measure** μ is given

Novelty

Average cos problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

minimize
$$\int_{\Omega} g(x(T,\omega);\omega) \ d\mu(\omega)$$
 over $u \in U(t)$

• the **probability measure** μ is given

♦ integrate over Ω ('uncertainty' set) instead of maximizing over ω ∈ Ω

Novelty

Average cos problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

$$ext{minimize } \int_\Omega g(x(\mathcal{T},\omega);\omega) \; d\mu(\omega) \quad ext{over } u \in U(t)$$

• the **probability measure** μ is given

• integrate over Ω ('uncertainty' set) instead of maximizing over $\omega \in \Omega$

• Ω is merely a **complete separable** metric space, not necessarily compact

Average cos problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

$$\exists c > 0 \text{ and } k_{f}(.) \in L^{1} \text{ s.t. } |f(t, x, u, \omega)| \leq c$$
$$\left|f(t, x, u, \omega) - f(t, x', u, \omega)\right| \leq k_{f}(t)|x - x'|$$
for all $x, x', u \in U(t), \omega \in \Omega$ a.e. $t \in [0, T]$

Average cos problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

■
$$\exists c > 0 \text{ and } k_f(.) \in L^1 \text{ s.t. } |f(t, x, u, \omega)| \le c$$

 $|f(t, x, u, \omega) - f(t, x', u, \omega)| \le k_f(t)|x - x'|$
for all $x, x', u \in U(t), \omega \in \Omega$ a.e. $t \in [0, T]$
 $f(t, x, U(t), \omega)$ closed for all t, x, u

Average cos problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

$$\exists c > 0 \text{ and } k_f(.) \in L^* \text{ s.t. } |f(t, x, u, \omega)| \leq c$$

$$|f(t, x, u, \omega) - f(t, x', u, \omega)| \leq k_f(t)|x - x'|$$
for all $x, x', u \in U(t), \omega \in \Omega \text{ a.e. } t \in [0, T]$

$$f(t, x, U(t), \omega) \text{ closed for all } t, x, u$$

$$\exists k_g > 0 \text{ and } M_g > 0 \text{ s.t. for all } \omega \in \Omega \quad |g(x, \omega)| \leq M_g \text{ for all } x,$$

$$|g(x, \omega) - g(x', \omega)| \leq k_g |x - x'| \text{ for all } x, x'.$$

11 - -

Average cos problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

$$\exists c > 0 \text{ and } k_f(.) \in L^1 \text{ s.t. } |f(t, x, u, \omega)| \leq c$$

$$f(t, x, u, \omega) - f(t, x', u, \omega) \Big| \leq k_f(t) |x - x'|$$

for all $x, x', u \in U(t), \omega \in \Omega$ a.e. $t \in [0, T]$

- $f(t, x, U(t), \omega)$ closed for all t, x, u
- $\exists k_g > 0 \text{ and } M_g > 0 \text{ s.t. for all } \omega \in \Omega \quad |g(x,\omega)| \le M_g \text{ for all } x,$ $|g(x,\omega) - g(x',\omega)| \le k_g |x - x'| \text{ for all } x, x'.$

■ \exists a modulus of continuity $\theta_g(.)$ s.t. for all $\omega \in \Omega$ and x

 $|g(x,\omega_1)-g(x,\omega_2)|\leq heta_g(
ho_\Omega(\omega_1,\omega_2)) \quad ext{for all } \omega_1,\omega_2\in\Omega \;.$

Average cos problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

$$\exists c > 0 \text{ and } k_f(.) \in L^1 \text{ s.t. } |f(t, x, u, \omega)| \le c$$
$$|f(t, x, u, \omega) - f(t, x', u, \omega)| \le k_f(t)|x - x'|$$

for all
$$x, x', u \in U(t), \omega \in \Omega$$
 a.e. $t \in [0, T]$

f(
$$t, x, U(t), \omega$$
) closed for all t, x, u

■ $\exists k_g > 0 \text{ and } M_g > 0 \text{ s.t. for all } \omega \in \Omega \quad |g(x,\omega)| \le M_g \text{ for all } x,$ $|g(x,\omega) - g(x',\omega)| \le k_g |x - x'| \text{ for all } x, x'.$

■ \exists a modulus of continuity $\theta_g(.)$ s.t. for all $\omega \in \Omega$ and x

 $|g(x,\omega_1)-g(x,\omega_2)| \le heta_g(
ho_\Omega(\omega_1,\omega_2)) \quad ext{for all } \omega_1,\omega_2\in\Omega \;.$

■ ∃ modulus of continuity $\theta_f(.)$ s.t. for all $\omega, \omega_1, \omega_2 \in \Omega$,

$$\int_0^T \sup_{x, u} |f(t, x, u, \omega_1) - f(t, x, u, \omega_2)| dt \leq \theta_f(\rho_\Omega(\omega_1, \omega_2)).$$

Necessary optimality conditions

Novelty and necessary

Theorem (Bettiol-Khalil 2017)

Let $(\bar{u}, \{\bar{x}(., \omega) : \omega \in \Omega\})$ be a $W^{1,1}$ -local minimizer in which μ is given. Then, there exist $\lambda > 0$, a $\mathcal{L} \times \mathcal{B}_{\Omega}$ measurable function $p(.,.): [0,T] \times \Omega \to \mathbb{R}^n$, and a countable dense subset $\widehat{\Omega}$ of supp (μ) $p(.,\omega) \in W^{1,1}([0,T],\mathbb{R}^n)$ for all $\omega \in \widehat{\Omega}$; $\int_{\Omega} p(t,\omega) \cdot f(t,\bar{x}(t,\omega),\bar{u}(t),\omega) d\mu(\omega)$ $= \max_{u \in U(t)} \int_{\Omega} p(t,\omega) \cdot f(t,\bar{x}(t,\omega),u,\omega) \ d\mu(\omega) \quad a.e. \ t \in [0,T];$ $p(.,\omega) \in co \mathcal{P}(\omega)$ for all $\omega \in \widehat{\Omega}$ where $\mathcal{P}(\omega) := \left\{ q(.,\omega) \in W^{1,1} : \|q(.,.)\|_{L^{\infty}} \leq 1, \ \lambda + \sum_{\iota \in [0,T]} \max_{t \in [0,T]} |q(t,\omega)| = 1, \right.$ $-\dot{q}(t,\omega) \in \operatorname{co} \partial_{x}[q(t,\omega) \cdot f(t,\bar{x}(t,\omega),\bar{u}(t),\omega)]$ a.e. $t \in [0,T]$, and $-q(T,\omega) \in \lambda \partial_x g(\bar{x}(T,\omega);\omega) + N_{\mathcal{C}(\omega)}(\bar{x}(T,\omega)) \Big\}.$ Average Cost Minimization Problems 11/17

What if we add more regularity?

- Average cos problem
- Motivating problem
- Link with previous works
- Novelty and necessary conditions
- Proof
- Conclusion and Perspective

- $g(.,\omega)$ is differentiable for each $\omega \in \Omega$, and $\nabla_x g(.,.)$ is continuous
- f(t,.,u,ω) is continuously differentiable on x̄(t,ω) + δB for all u ∈ U(t) and ω ∈ Ω a.e. t ∈ [0, T], and ω → ∇_xf(t, x, u, ω) is uniformly continuous with respect to (t, x, u) ∈ {(t', x', u') ∈ [0, T] × ℝⁿ × ℝ^m | u' ∈ U(t')}
 C(ω) := ℝⁿ

What if we add more regularity?

Average cos problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

Theorem (Bettiol-Khalil 2017)

There exists a $\mathcal{L} \times \mathcal{B}_{\Omega}$ measurable function p(.,.) s.t. **p** $(.,\omega) \in W^{1,1}([0,T], \mathbb{R}^n)$ for all $\omega \in \Omega$ **j** $_{\Omega} p(t,\omega) \cdot f(t, \bar{x}(t,\omega), \bar{u}(t), \omega) d\mu(\omega)$ = max $_{u \in U(t)} \int_{\Omega} p(t,\omega) \cdot f(t, \bar{x}(t,\omega), u, \omega) d\mu(\omega)$ a.e. t **i** $-\dot{p}(t,\omega) = [\nabla_x f(t, \bar{x}(t,\omega), \bar{u}(t), \omega)]^T p(t,\omega)$ a.e. t, for all $\omega \in \Omega$ **i** $-p(T,\omega) = \nabla_x g(\bar{x}(T,\omega); \omega)$, for all $\omega \in \Omega$.

- Average cos problem
- Motivating problem
- Link with previous works
- Novelty and necessary conditions
- Proof
- Conclusion and Perspective

• approximate μ by convex combination of Dirac measures (finite support)

⁶Vinter, R. B. "Minimax optimal control." *SIAM journal on control and optimization* 44.3 (2005).

- Average cos problem
- Motivating problem
- Link with previous works
- Novelty and necessary conditions
- Proof
- Conclusion and Perspective

Apply Ekeland variational principle

Average Cost Minimization Problems 14/17

⁶Vinter, R. B. "Minimax optimal control." *SIAM journal on control and optimization* 44.3 (2005).

- Average cos problem
- Motivating problem
- Link with previous works
- Novelty and necessary conditions
- Proof
- Conclusion and Perspective

• approximate μ by convex combination of Dirac measures (finite support)

Apply Ekeland variational principle

obtain an auxiliary (discretized) problem:
 apply Maximum Principle

Average Cost Minimization Problems 14/17

⁶Vinter, R. B. "Minimax optimal control." *SIAM journal on control and optimization* 44.3 (2005).

- Average cos problem
- Motivating problem
- Link with previous works
- Novelty and necessary conditions
- Proof

Conclusion and Perspective • approximate μ by convex combination of Dirac measures (finite support)

Apply Ekeland variational principle

obtain an auxiliary (discretized) problem:
 apply Maximum Principle

④ 'double' limit-taking: ➤ adjoint system/transversality condition

➤ Weierstrass condition (weak*-convergence of measures)

Average Cost Minimization Problems 14/17

⁶Vinter, R. B. "Minimax optimal control." *SIAM journal on control and optimization* 44.3 (2005).

Conclusion and Perspectives

Average cos problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective **Conclusion:** establish necessary optimality conditions for average cost minimization problems using approach of the minimax problem

Nathalie T. Khalil

Average Cost Minimization Problems 15/17

Conclusion and Perspectives

Average cos problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective **Conclusion:** establish necessary optimality conditions for average cost minimization problems using approach of the minimax problem

Perspectives:

> Add a state constraint condition (work in progress)

Nathalie T. Khalil

Average Cost Minimization Problems 15/17

Conclusion and Perspectives

Average cos problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective **Conclusion:** establish necessary optimality conditions for average cost minimization problems using approach of the minimax problem

Perspectives:

> Add a state constraint condition (work in progress)

 Study stronger necessary optimality conditions (nondegeneracy, normality)

Perspective: add a state constraint (in progress)

Average cos problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

Theoretical reasons: preliminary results

 ⁷ Ross, I. M., Karpenko M., and Proulx J. R. "Path constraints in tychastic and unscented optimal control: Theory, application and experimental results." *American Control Conference (ACC).* IEEE, 2016.
 Nathalie T. Khalil Average Cost Minimization Problems 16/17

Perspective: add a state constraint (in progress)

Average cos problem

Motivating problem

Link with previous works

Novelty and necessary conditions

Proof

Conclusion and Perspective

Theoretical reasons: preliminary results

♦ Applications⁷: aerospace engineering

Dynamics
$$\dot{q} = \frac{1}{2}Q(r)q$$

 $\dot{r} = I^{-1}(-r \times I \cdot r - r \times m_c(\delta) - A(\delta)u)$
 $\dot{\delta} = u$

State constraint $t \mapsto S(\delta) := \sqrt{\det[A(\delta)A^T(\delta)]} \ge \alpha \quad \forall t$ ($\alpha > 0$ is an engineering decision)

The survey

10. 10

