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Problem Statement

Consider the following optimal control problem with inequality state
constraints.

Minimize ϕ(p),
subject to ẋ = f (x , u, t),

p = (x0, x1) ∈ S ,
u(t) ∈ U a.a. t ∈ [t0, t1],
g(x(t), t) ≤ 0 ∀ t ∈ [t0, t1].

(1)

Here, ẋ =
dx

dt
, t ∈ [0, 1] designates time, x is the state variable

which takes values in Rn; x0 = x(t0), x1 = x(t1); vector
u ∈ U ⊂ Rm is the control parameter. The sets S , U are closed.
Vector p = (x0, x1) is termed endpoint. A measurable function
u : [t0, t1]→ U is termed control (or, control function).
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Maximum Principle

De�nition

The control process (x∗(t), u∗(t)) of (1) satis�es the maximum

principle provided that there exist Lagrange multipliers: a number
λ ∈ [0, 1], a function of bounded variation ψ : [t0, t1]→ Rn, and a
Borel measure η ∈ C ∗([t0, t1]), η ≥ 0, such that

λ+ sup
t∈[t0,t1]

|ψ(t)| = 1,

dψ(t) = −H ′x(x∗(t), u∗(t), ψ(t), t)dt + g ′x(x∗(t), t)dη, t ∈ [t0, t1],

(ψ(t0),−ψ(t1)) ∈ λϕ′(p∗) + NS(p∗),

max
u∈U

H(x∗(t), u, ψ(t), t) = H(x∗(t), u∗(t), ψ(t), t) a.a. t ∈ [t0, t1],∫
[t0,t1]

〈
g(x∗(t), t), dη

〉
= 0.

Here, H(x , u, ψ, t) := 〈ψ, f (x , u, t)〉, p∗ = (x∗(t0), x∗(t1)).
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Maximum Principle

A.Ya Dubovitskii and A.A. Milyutin proposed the following theorem.

Theorem

Suppose that the control process (x∗(t), u∗(t)) is optimal to

problem (1). Then, the process (x∗(t), u∗(t)) satis�es the

maximum principle.
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Degeneracy of the Maximum Principle

Suppose that one of the endpoints, either x0, or x1, is �xed. In this
case, as is easy to verify, the Dubovitskii-Milyutin maximum
principle can be satis�ed by any feasible pair control/trajectory.
Indeed, in order to ensure this we only need to consider the set of
Lagrange multipliers (in case the left endpoint is �xed):

λ = 0, η = δ(t0), ψ(·) : ψ(t) = 0 ∀ t ∈ (t0, t1],

and the multipliers

λ = 0, η = δ(t1), ψ(·) : ψ(t) = 0 ∀ t ∈ [t0, t1),

if the right endpoint is �xed.
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Degeneracy of the Maximum Principle

A.Ya. Dubovitskii and V.A. Dubovitskii found the following
interesting example (1985).

Example

Consider n = m = k = 1, t0 = 0, t1 = 1,

∫
1

0

u(t)dt → min,

ẋ = tu,
x0 = 0,
u(t) ∈ [−1, 1],
x(t) ≥ 0.

The optimal process is x = u = 0, but there are only degenerate
multipliers satisfying the maximum principle for it.
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Conditions for Non-degeneracy

De�nition

The state constraints are said to be regular provided that for all
x , t : g(x , t) ≤ 0 there exists z = z(x , t) such that〈

∂g j

∂x
(x , t), z

〉
> 0 ∀ j ∈ J(x , t).

Here, J(x , t) := {j : g j(x , t) = 0}.
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Conditions for Non-degeneracy

De�nition

The state constraints are said to be compatible at p∗ with the
endpoint constraints provided that

∃ ε > 0 : {p ∈ R2n : |p∗ − p| ≤ ε, p ∈ S} ⊆

{p ∈ R2n : g(x0, t0) ≤ 0, g(x1, t1) ≤ 0}.

The compatibility of constraints is not an extra requirement. It can
always be achieved by replacing the set S with the set

S ∩ {p ∈ R2n : g(x0, t0) ≤ 0, g(x1, t1) ≤ 0}.
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Conditions for Non-degeneracy

Consider the function

Γ(x , u, t) = g ′x(x , t)f (x , u, t) + g ′t(x , t).

De�nition

A feasible arc x∗(t) is said to be controllable at the endpoints w.r.t.
the state constraints, provided that there exist vectors
γr ∈ conv Γ(xr ,U, r) such that:

(−1)rγjr < 0 ∀ j ∈ J(xr , r), r = 0, 1.
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Non-degenerate Maximum Principle

Theorem

Suppose that the control process (x∗(t), u∗(t)) is optimal in

problem (1). Suppose that the state constraints are regular and

compatible with the endpoints constraints at p∗, and the

controllability condition is satis�ed.

Then, the process (x∗(t), u∗(t)) satis�es the maximum principle,

and the following strengthened non-triviality condition is valid

λ+ `(t ∈ [t0, t1] : |ψ(t)| 6= 0) > 0,

where ` stands for the Lebesgue measure.
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Pointwise Controllability

De�nition

A feasible arc x∗(t) is said to be controllable w.r.t. the state
constraints, provided that it is controllable at the endpoints and for
every t ∈ (t0, t1) there exist vectors γr ,t ∈ Rk , r = 0, 1, such that

γr ,t ∈ conv Γ(x∗(t),U, t),

(−1)rγjr ,t < 0 ∀ j ∈ J(x∗(t), t), r = 0, 1.

A.V. Arutyunov Investigation of Optimality Conditions...



Pointwise Controllability

Theorem

Suppose that the control process (x∗(t), u∗(t)) is optimal in

problem (1). Suppose that the state constraints are regular and

compatible with the endpoints constraints at p∗, and the pointwise

controllability condition is satis�ed.

Then, the process (x∗(t), u∗(t)) satis�es the maximum principle,

and the following strengthened non-triviality condition is valid

λ+ |ψ(t)| 6= 0 ∀ t ∈ (t0, t1).
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Maximum Principle in the Gamkrelidze form

Consider the extended Hamilton-Pontryagin function:

H̄(x , u, ψ, µ, t) = 〈ψ, f (x , u, t)〉 − 〈µ, Γ(x , u, t)〉 .

De�nition

The control process (x∗(t), u∗(t)) of (1) satis�es the
non-degenerate maximum principle provided that there exist
Lagrange multipliers λ ∈ [0, 1], ψ ∈W1,∞([t0, t1]), and decreasing
functions µj , j = 1, ..., k , such that

ψ̇(t) = −H̄ ′x(x∗(t), u∗(t), ψ(t), µ(t), t) a.a. t ∈ [t0, t1],

(ψ(t0),−ψ(t1)) ∈
λϕ′(p∗) + (µ(t0)g ′x(x∗

0
, t0),−µ(t1)g ′x(x∗

1
, t1)) + NS(p∗),
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Maximum Principle in the Gamkrelidze form

De�nition

max
u∈U

H̄(x∗(t), u, ψ(t), µ(t), t) =

H̄(x∗(t), u∗(t), ψ(t), µ(t), t) a.a. t ∈ [t0, t1],∫ t1

t0

〈
g(x∗(t), t), dµ(t)

〉
= 0,

λ+ `
(
t ∈ [t0, t1] : ψ(t)− µ(t)g ′x(x∗(t), t) 6= 0

)
> 0.
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Maximum Principle in the Gamkrelidze form

Theorem

Suppose that the control process (x∗(t), u∗(t)) is optimal to

problem (1). Suppose that the state constraints are regular and

compatible with the endpoints constraints at the point p∗, and the

controllability condition is satis�ed.

Then, the process (x∗(t), u∗(t)) satis�es non-degenerate maximum

principle in the Gamkrelidze form.
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Maximum Principle in the Gamkrelidze form

REMARK. Suppose that the set NS(p∗) is convex. Then, in the
Maximum Principle, we can additionally require that µ is
continuous at t0, t1, and µ(t1) = 0,

+ the conventional transversality condition is valid

(ψ(t0),−ψ(t1)) ∈ λϕ′(p∗) + NS(p∗),

+ the conventional non-triviality condition is valid

λ+ max
t∈[t0,t1]

|ψ(t)|+ Var |t1t0µ 6= 0.
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Relation between the two sets of NOC

Under the assumption that g is twice continuously di�erentiable,
the two above forms of the Maximum Principle are equivalent. This
is so due to the following Lagrange multipliers change:

µ(t) :=

∫
[t,t1]

dη ∀ t < t1, µ(t1) = 0,

φ(t) := ψ(t) + µ(t)g ′x(x∗(t), t), t ∈ [t0, t1].
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Some Further Re�nements

These results were later re�ned regarding the continuity properties
of the measure. Namely, it was proved that, under the regularity
assumptions proposed by Gamkrelidze, the measure-multiplier is
continuous. Moreover, under the additional assumption that the
data are twice continuously di�erentiable w.r.t. u, it was proved
that the measure enjoys even the H�older property, that is,

|µ(t)− µ(s)| ≤ const
√
|t − s| ∀ t, s ∈ [t0, t1].

The above results were also generalized onto the control problems
with equality state constraints.
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