An introduction to rate-independent soft crawlers

Paolo Gidoni

CMAF-CIO, Universidade de Lisboa, Portugal

Padova, 28 September 2017

An <u>illustrated</u> introduction to rate-independent soft crawlers

Paolo Gidoni

CMAF-CIO, Universidade de Lisboa, Portugal

Padova, 28 September 2017

Crawlers in Nature

©Warren Photographic'

Soft robotics

Elastic materials Large deformations Compliance and morphological computation

Menciassi et al., 2006

Noselli& DeSimone, 2014

Seok et al., 2013

Umedachi et al., 2013

Jung et al., 2007

Application fields

Interaction with fragile objects

Activity in unknown/uncertain environment

Medical intervention

Bernth et al., 2017 Sanan et al., 2011

Tolley et al., 2014

Soft robots, are also tough!

Seok et al., 2013

Why rate-independent systems (or SP)?

- \rightarrow Dry friction
- ightarrow Elasticity
- ightarrow No inertial effects

Why crawlers?

- \rightarrow Simple enough for analytical approach
- \rightarrow Complex enough to be meaningful
- $\rightarrow \text{Simplexity}$

A classical system with friction

Dry friction on the contact point z(t)

Force balance on the point $\ell(t)$

Neglect inertia

Energy $\mathcal{E}(t,x) = \frac{k}{2}(\ell(t) - x - L^{\text{rest}})^2$

Dissipation potential $\mathcal{R}(\dot{x}) = \mu \left| \dot{x} \right|$

Force balance: $\mathbf{0} \in \partial_{\dot{z}} \mathcal{R}(\dot{z}) + D_z \mathcal{E}(t, z)$

Play operator

Sweeping process on \mathbb{R} with C(t) = [-a, a] + b(t)

A minimal model of crawler

Energy $\mathcal{E}(t,x) = \frac{k}{2}(x_2 - x_1 - L^{\text{rest}} - L(t))^2 \approx \langle \mathbb{A}x, x \rangle - \langle \ell(t), x \rangle$ Dissipation potential $\mathcal{R}(\dot{x}) = \mu |\dot{x}_1| + \mu |\dot{x}_2|$

Energy is invariant for translation

Our system has dimension 2, our control has dimension 1.

A minimal model of crawler?

Multiple solutions

It is symmetric, so we do not expect it to go anywhere

BAD EXAMPLE! What are we missing?

(Don't worry, it is a pathological example)

Three ways to asymmetry

Anisotropic friction

Complex shape change

Friction manipulation

Anisotropic friction

Noselli & DeSimone, 2014

It moves and the solution is unique!

Bonus question: How do slanted bristles produce anisotropy? [G.& DeSimone, 2017]

Stasis domains

In general, for RIS, we have $-D_x \mathcal{E}(t, x) \in C := \partial \mathcal{R}(0)$ In our case we get more: $-D_x \mathcal{E}(t, x) \in \hat{C}_{sh}$

$$-\dot{u}(t)\in\mathcal{N}_{\widetilde{C}(t,u)}(u)$$
 $\widetilde{C}(t,u)=C-\ell(t)+\hat{\pi}(u)$

Complex shape change

G. & DeSimone, 2016

Uniqueness fails only for $\mu_+ = 2\mu_-$ and $\mu_- = 2\mu_+$.

Three contact points, two scenarios

$$\mu_+ > 2\mu_-$$

(only backwards locomotion)

$$\mu_{-} < \mu_{+} < 2\mu_{-}$$

(locomotion achievable in both directions)

Complex shape change

Seok et al., 2013

Bernth et al., 2017

Onal et al., 2013

Jung et al., 2007

Friction manipulation

Umedachi et al., 2013, Vikas et al. 2016

We control friction coefficients

The dissipation potential \mathcal{R} depends on time An extreme example is two-anchor crawling

What we know

Well-posedness of the approach (existence and uniqueness)

 \rightarrow Coercivity and uniqueness of minimum in the "shape-sections" of ${\cal R}$

 \rightarrow Lipschitz continuity in time

 \rightarrow Bounds and coercivity conditions uniform in time on $\mathcal R$

Abstract theorems on Hilbert spaces

- \rightarrow Discrete and continuous crawlers
- ightarrow Planar crawlers (with modelling issues)

Motility analysis

- \rightarrow Does the crawler move? Can it move in both directions?
- ightarrow Common sense optimization

(DeSimone, G. & Noselli, 2015; G. & DeSimone, 2016; G., prep.)

Some open problems

Optimal control

- \rightarrow Control on actuation or friction
- ightarrow We want to move (fast)
- \rightarrow Constraints on control parameters

Compliance

- $\rightarrow \text{Everything}$
- Dynamical properties
- Problems with variational taste

 \rightarrow State-dependent dissipation (Anisotropic friction for planar crawlers, obstacles)

 \rightarrow Rate-dependent dissipation (mucus of the snail, biological fluids)

Thank you for your attention

⊠ pgidoni@fc.ul.pt