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Introduction

We formulate some control problems in the space of probability measures
endowed with the Wasserstein distance as a natural generalization of the
classical problems in Rd .

Motivations

to model situations in which we
have only a probabilistic
knowledge of the initial state
(e.g. noise in the
measurements).

to model multi-agent systems,
where only a statistical
(macroscopic) description of the
system is available. (e.g.
gas/crowd dynamics).

A. Marigonda Mayer and min. time problem for multi-agent systems 3/46



Classical optimal control system
Controlled dynamics: in form of
di�erential inclusion:{

ẋ(t) ∈ F (x(t)), for a.e. t > 0,

x(0) = x0 ∈ Rd .

Problem: to minimize a given cost
functional J(·) on the set of admissible
trajectories.

Hypothesis: F : Rd ⇒ Rd , F (·) not
empty, convex, compact valued,
continuous w.r.t. the Hausdor� metric
and with linear growth.

S

x0

x(t)

F (x(t))
ẋ(t)

Example: minimum time

Minimum time needed to steer x0 to a given closed target set

∅ 6= S ⊆ Rd :

T (x0) := inf{t̄ > 0 : ∃x(·) sol. of the control system s.t. x(t̄) ∈ S}.
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Generalized Problem - State and Dynamics

Initial state: probability measure µ0 ∈Pp(Rd) with

mp(µ0) :=

∫
Rd

|x |p dµ0(x) < +∞;

Trajectory: time-depending probability measure on Rd ,
µ := {µt}t∈[0,T ], µ|t=0 = µ0, (AC curve in Pp(Rd));

Dynamics: since total mass must be preserved during the evolution,
the process will be described by a (controlled) continuity equation

∂tµt + div(vtµt) = 0, for 0 < t < T ;

Control set: vt to be chosen in the set of L2µt−selections of F for
a.e. t ∈ [0,T ], to respect the classical underlying control problem.
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State Space

Pp(Rd) endowed with the topology induced by the p-Wasserstein
distance Wp(·, ·), p ≥ 1.

Let µ1, µ2 ∈Pp(Rd), the p-Wasserstein distance is de�ned as

Wp(µ1, µ2) :=

(
inf

{∫∫
Rd×Rd

|x1 − x2|p dπ : π ∈ Π(µ1, µ2)

})1/p

Where the set of admissible transport plans Π(µ1, µ2) is de�ned by the
following

Π(µ1, µ2) :=

π ∈Pp(Rd × Rd) :

π(A1 × Rd) = µ1(A1),
π(Rd × A2) = µ2(A2),
∀Ai µi -measurable set ,

i = 1, 2


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Generalized Dynamics and control set

Continuity equation:{
∂tµt(x) + div(vt(x)µt(x)) = 0, for 0 < t < T , x ∈ Rd ,

µ|t=0 = µ0 ∈Pp(Rd).
(1)

which represents the conservation of the total mass µ0(Rd).

We require the velocity �eld vt(·) to satisfy vt(x) ∈ F (x) ∀x ∈ Rd .

If vt(·) is locally Lipschitz in x unif. w.r.t. t, we consider the
characteristic system:{

γ̇(t) = vt(γ(t)), for a.e. t ∈ (0,T )

γ(0) = x

Let Tt(x) denote the unique solution, then: µt = Tt]µ0, where

Tt]µ0(B) := µ0(T−1t (B)), ∀B ⊂ Rd , B Borel set.
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Admissible curves

Let F : Rd ⇒ Rd , τ > 0, α, β ∈P(Rd). We say that
µ = {µt}t∈[0,τ ] ⊆Pp(Rd) is an admissible trajectory de�ned in [0, τ ]

joining α and β, if ∃ν = {νt}t∈[0,τ ] ⊆M (Rd ;Rd) a family of Borel
vector-valued measures s.t.

µ is a narrowly continuous solution of ∂tµt + divνt = 0,
with µt=0 = α, µt=τ = β.

JF (µ,ν) < +∞, where

JF (µ,ν) :=


0, if νt � µt and

νt

µt
(x) ∈ F (x) for a.e. t ∈ [0, τ ], µt -a.e. x ,

+∞, otherwise.

In this case, we will shortly say that µ is driven by ν.
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Superposition principle: idea

With milder assumptions on v , the (possible not-unique) solution µt of
the continuity equation can be represented by a superposition of integral
solutions of the underlying characteristic system, i.e. of ODEs of the
form ẋ(t) = v(x(t)), or ẋ(t) = v(t, x(t)).

For this approach, see

L. Ambrosio

The �ow associated to weakly di�erentiable vector �elds: recent results

and open problems, 2011

and the references therein, where it is also shown that in some cases it is
possible to provide conditions on v (assuming for instance Sobolev or BV
regularity, and some bounds on the weak derivatives) to recover
uniqueness and stability of the solutions in a suitable smaller class of
measures (Lagrangian �ow problem). The representation is not unique.
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Superposition principle: idea

µ0

µt = et]η

x1

x2

x3

For every point x ∈ suppµ0, consider the set of all integral solutions of
γ̇(t) = vt ◦ γ(t), γ(0) = x , and de�ne a probability measure ηx on it (if
there is a unique solution, ηx reduces to a Dirac delta). Let
η := µ0 ⊗ ηx be the product measure, which is a probability measure on
Rd × ΓT , where ΓT := C 0([0,T ];Rd). For any γ ∈ ΓT consider the
evaluation operator et(x , γ) = γ(t). Then t 7→ µt = et]η is a solution of
the continuity equation. Conversely, every solution can be represented in
this way for a suitable η.
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Superposition principle: statement

Let µ = {µt}t∈[0,T ] be a solution of the continuity equation ∂tµt + div(vtµt) = 0 for

a suitable Borel vector �eld v : [0,T ]× Rd → Rd satisfying∫
T

0

∫
Rd

|vt(x)|
1 + |x |

dµt(x) dt < +∞ .

Then there exists a probability measure η ∈P(Rd × ΓT ), with ΓT = C0([0,T ];Rd )
endowed with the sup norm, such that

(i) η is concentrated on the pairs (x , γ) ∈ Rd × ΓT such that γ is an absolutely
continuous solution of{

γ̇(t) = vt(γ(t)), for L 1-a.e t ∈ (0,T )

γ(0) = x ,

(ii) for all t ∈ [0,T ] and all ϕ ∈ C0

b
(Rd ) we have∫

Rd
ϕ(x)dµt(x) =

∫∫
Rd×ΓT

ϕ(γ(t)) dη(x , γ).

Conversely, given any η satisfying (i) above and de�ned µ = {µt}t∈[0,T ] as in (ii)
above, we have that ∂tµt + div(vtµt) = 0 and µ|t=0 = e0]η.
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Superposition Principle for Di�erential Inclusions
The Superposition Principle deals with the macroscopic velocity vector �eld vt . However in
many applications the solutions must be constructed by superposition of admissible trajectories
for the �nite-dimensional di�erential inclusion that are not a priori solution of a given vector
�eld. To this aim we provide the following result.

Theorem [SP for di�erential inclusions, Cavagnari-M-Piccoli]

Let η ∈P(Rd × ΓT ) be concentrated on the set of pairs (γ(0), γ) ∈ Rd × ΓT such that

γ ∈ AC([0,T ]; Rd ) is a Carathéodory solution of the di�erential inclusion γ̇(t) ∈ F (γ(t)). For

all t ∈ [0,T ], set µt := et]η, and let {ηt,y}y∈Rd ⊆P(Rd × ΓT ) be the disintegration of η

w.r.t. the evaluation operator et : Rd × ΓT → Rd , i.e. for all ϕ ∈ C0
b

(Rd × ΓT )

∫∫
Rd×ΓT

ϕ(x, γ) dη(x, γ) =

∫
Rd

∫
e−1t (y)

ϕ(x, γ) dηt,y (x, γ) dµt(y).

Then if µ0 ∈Pp(Rd ), the curve µ := {µt}t∈[0,T ] ⊆Pp(Rd ), is an admissible trajectory
driven by ν = {νt}t∈[0,T ], where νt = vtµt and the vector �eld

vt(y) =

∫
e−1t (y)

γ̇(t) dηt,y (x, γ).

is well-de�ned for a.e. t ∈ [0,T ] and µt -a.e. y ∈ Rd .
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SP for Di�erential Inclusions - Comments and an example
We recall that in general there is not an unique η representing a given µ:
in particular, the e�ect in passing from the microscopic point of view
encoded in η to the macroscopic description provided by µ, may cause a
loss of information (due to averaging). An interesting example of this
situation is given below.

We start with some weighted Dirac deltas on the y -axis and made them
evolve along the characteristics. We re�ne the distribution of delats to
obtain the 1-dimensional Lebesgue measure restricted to {0} × [−1, 1].
The averaged vector �eld is drawed (dotted characteristics are neglible).
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Properties of the set of admissible trajectories - 1

Theorem[Cavagnari-M-Nguyen-Priuli, Cavagnari-M-Piccoli,
M-Quincampoix]

Let a, b, c ∈ R, a < b < c, F : Rd ⇒ Rd be satisfying (F ). Recalling
that the space X := C 0([a, b]; Pp(Rd)) with the metric

dX (µ,ν) = sup
t∈[a,b]

Wp(µt , νt), for all µ = {µt}t∈[a,b], ν = {νt}t∈[a,b],

is a complete metric space, we have that

1 the set of admissible trajectories is closed in (X , dX );

2 if {µN}N∈N is a sequence of admissible trajectories satisfying
sup
N∈N
{mp(µN0 )} <∞, then it admits a dX -convergent subsequence.

3 given µ ∈Pp(Rd), µ = {µt}t∈[a,b] ∈ A F
[a,b](µ),

ν = {νt}t∈[b,c] ∈ A F
[b,c](µa) then the concatenation is an admissible

trajectory.
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Properties of the set of admissible trajectories - 2

(continued)

4 if µ = {µt}t∈[a,b] is an admissible trajectory, and η ∈P(Rd ×Γ[a,b])
satis�es µt = et]η for all t ∈ [a, b], then for s1, s2 ∈ [a, b] we have

‖es1 − es2‖L2η ≤ Ce2(b−a)C

(
1 + min

i=1,2
m

1/2
2 (µsi )

)
|s1 − s2|,

where C = max
y∈F (0)

|y |+ Lip(F ).

5 if µ = {µt}t∈[a,b] is an admissible trajectory, and η ∈P(Rd ×Γ[a,b])
satis�es µt = et]η for all t ∈ [a, b], given t̄ ∈ [a, b], every limit for

i → +∞ of a L2η-weak converging sequence
et − et̄
t − t̄

belongs to the

set {v ◦ et̄ : v ∈ L2µ̄t , v(x) ∈ F (x) for µt̄-a.e. x ∈ Rd}.

Proof is based on Superposition Principle and Gronwall estimates.
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Properties of the set of admissible trajectories - 3

Proposition [Prescribed Initial velocity of measure trajectories]

Let a, b ∈ R, a < b, µ ∈P2(Rd), F : Rd ⇒ Rd be satisfying the
standing assumptions, µ ∈P2(Rd). Then for every va ∈ L2µ(Rd) such

that va(x) ∈ F (x) for µ-a.e. x ∈ Rd there exist η ∈P(Rd × Γ[a,b]) such

that µ = {et]η}t∈[a,b] ∈ A F
[a,b](µ) and

lim
t→a+

∫
Rd×Γ[a,b]

〈ϕ ◦ e0(x , γ),
et(x , γ)− ea(x , γ)

t − a
〉 dη(x , γ) =

=

∫
Rd

〈ϕ(x), va(x)〉 dµ(x).

Proof is based essentialy on the possibility to parametrize F , and on the
Filippov's Lemma.
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Cost functionals - Overview

We decribed up to now the macroscopic dynamic of the agents,
supposing conservation of the total mass.

In real-life models, the agents also interact between them, and the
interaction can be of local or nonlocal type.

The e�ects of these interactions will be encoded in the cost
functional that we want to minimize.

To this aim convexity and lower semicontinuity of functional
depending on measures will play a crucial role.

Extensions to situations where the total mass is not preserved during
the evolution (e.g. evacuation problems) are very di�cult due to the
lack of a general superposition principle allowing us to represent
them as superposition of weighted characteristics. Nevertheless,
such a representation can be built by hand in many interesting cases.
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Extensions - Some natural cost functional

Here we present some natural cost functions.

A functional with a local constraints on velocities and position.

Ĵsys(T ,µ, ν) :=



∫ T

0

∫
Rd

L
a
c

(
t, x,

νt

µt
(x)

)
dµt(x) dt, if νt � µt ,

νt

µt
(x) ∈ F (x)

for a.e. t ∈ [0,T ], µt − a.e. x ∈ Rd

+∞, otherwise,

(2)

A functional penalizing density concentration w.r.t. a given measure.
Given σ ∈M +(Rd), we de�ne the functional

Ĵ
σ
dens(T ,µ, ν) :=



∫ T

0

∫
Rd

Ldens

(
t, x,

µt

σ
(x),

νt

σ
(x)

)
dσ dt, if µt � σ and |νt | � σ

for a.e. t ∈ [0,T ],

+∞, otherwise,

(3)
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Extensions - Some natural cost functional, continued

A functional describing an interaction between position and velocities.

Jinter(T ,η) =

∫
Xinter

∫ T

0
Linter (t, γx (t), γy (t), γ̇x (t), γ̇y (t)) dt dη(x, γx ) dη(y , γy ),

(4)

Ĵinter(T ,µ, ν) =



∫ T

0

∫∫
Rd×Rd

Linter

(
t, x, y ,

νt

µt
(x),

νt

µt
(y)

)
dµt(x) dµt(y) dt, if νt � µt ,

νt

µt
(x) ∈ F (x)

a.e. t ∈ [0,T ],

µt − a.e. x ∈ Rd ,

+∞, otherwise,

(5)
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State of art, so far...

Natural questions

Existence of optimal trajectories?

Dynamic programming principle?

Smoothness of the value function?

Hamilton-Jacobi-Bellman equation?

Necessary conditions?

Up to now

Dynamic programming principle for all the functionals

Mayer problem with smooth terminal cost function and no
interaction

Minimum time problem with no interaction

Some cases of problems with mass loss (optimal equipment and
evacuation)

Application to some simple pursuit-evasion games
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Generalized Target in Wasserstein space - Overview

Target set: de�ned by duality (an observer wants to steer the system
into states in which the results of some measurements are below a
�xed threshold);

Minimum time: straightforward generalization of the classical one.

µ0 µt1

µt2
µt3 µT

S̃
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De�nition and basic properties of the generalized target

For p ≥ 1, Φ ⊆ C 0(Rd ,R) s.t. ∃x0 ∈ Rd with φ(x0) ≤ 0 ∀φ ∈ Φ, and for
all φ ∈ Φ there exists Dφ > 0 s.t. φ(x) ≥ −Dφ ∀x ∈ Rd :

S̃Φ
p :=

{
µ ∈Pp(Rd) :

∫
Rd

φ(x) dµ(x) ≤ 0 for all φ ∈ Φ

}
.

We say that Φ satis�es property (Tp) with p > 0 if

(Tp) for all φ ∈ Φ there exist Aφ,Cφ > 0 such that φ(x) ≥ Aφ|x |p − Cφ.

We obtain that:

S̃Φ
p is closed and convex;

if (Tp) holds, then S̃Φ
p is compact in the Wp-topology (hence in the

w∗-topology).

We say that S̃Φ
p admits a classical counterpart if ∃S ⊆ Rd s.t.

S̃Φ
p = {µ ∈Pp(Rd) : suppµ ⊆ S}
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Generalized minimum time

We de�ne the generalized minimum time function
T̃Φ
p : Pp(Rd)→ [0,+∞] as:

T̃Φ
p (µ0) := inf

JF (µ,ν) :

µ is an admissible curve in [0, τ ]

driven by ν, with
µ|t=0 = µ0
µ|t=τ ∈ S̃Φ

p

 ,

where, by convention, inf ∅ = +∞.

Given µ0 ∈Pp(Rd), an admissible curve
µ = {µt}t∈[0,T̃Φ

p (µ0)] ⊆Pp(Rd), driven by a family of Borel

vector-valued measures ν = {νt}t∈[0,T̃Φ
p (µ0)], s.t. µ|t=0 = µ0 and

µ|t=T̃Φ
p (µ0) ∈ S̃Φ

p is optimal for µ0 if

T̃Φ
p (µ0) = JF (µ,ν).
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Dynamic programming principle

Theorem

Let 0 ≤ s ≤ τ ,
F : Rd ⇒ Rd be a set-valued function,
µ = {µt}t∈[0,τ ] be an admissible curve for ΣF .

Then
T̃Φ
p (µ0) ≤ s + T̃Φ

p (µs).

Moreover, if T̃Φ
p (µ0) < +∞, then

equality holds ∀s ∈ [0, T̃Φ
p (µ0)]⇐⇒ µ is optimal for µ0 = µ|t=0.

The proof is based on gluing results for solutions of continuity equation.
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Existence theorem

Theorem (Existence of minimizers)

Assume standard assumptions on F .

Let p > 1,
µ0 ∈Pp(Rd),
Φ ∈ C 0(Rd ;R),
T̃Φ
p (µ0) <∞.

Then there exists an admissible curve µ = {µt}t∈[0,T ] driven by

ν = {νt}t∈[0,T ] which is optimal for µ0, that is T̃
Φ
p (µ0) = JF (µ,ν).

The proof is based on the previous result of compactness of admissible
trajectories in the space of measures, together with the lower
semicontinuity of the minimum time functional JF .
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Comparison results (for S̃Φ = S̃
{dS})

Proposition

Under the standard assumptions on F we have

T̃p(µ0) ≥ ||T ||L∞µ0 ∀µ0 ∈Pp(Rd);

T̃p(δx0) = T (x0) ∀x0 ∈ Rd .

Theorem

Assume the standard hypothesis on F .

Let p > 1,
µ0 ∈Pp(Rd),
S ⊆ Rd be a weakly invariant set for the dynamics ẋ(t) ∈ F (x(t)).

Then
T̃Φ
p (µ0) = ‖T (·)‖L∞µ0 .
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Controllability in the C 1
c case

Theorem [Petrov-like condition]

Assume the standard hypothesis on F , p ≥ 1, µ0 ∈Pp(Rd).

Let Φ ⊆ C 1
c (Rd ;R).

Assume that

∃v : Rd → Rd Borel vector �eld,
∃µ := {µt}t∈[0,+∞[ ⊆Pp(Rd)
adm. traj. driven by ν,
with ν = {νt = vµt}t∈[0,+∞[,
µ|t=0 = µ0,

µ0

x
v(x)

∇φ(x)

such that the following controllability condition holds:

(Cc) for all φ ∈ Φ exists kφ > 0 s.t. 〈∇φ(x), v(x)〉 ≤ −kφ for a.e. t > 0 and
µt-a.e. x ∈ Rd .

Then we have T̃Φ
p (µ0) ≤ sup

φ∈Φ

{
1

kφ

∫
Rd

φ(x) dµ0(x)

}
.

A. Marigonda Mayer and min. time problem for multi-agent systems 27/46



Extensions of the smooth controllability condition

G. Cavagnari has obtained more re�ned controllability conditions in

G. Cavagnari

Regularity results for a time-optimal control problem in the space of

probability measures, Mathematical Control and Related Fields (MCRF),
vol. 7, n. 2, pp. 213-233 (2017)

by weakening the requirements on Φ. In general this operation is highly
nontrivial, since - unless we restrict ourselves on particular class of
measures, the evolution may be highly sensitive to the singularity set of
the functions of Φ.

We are currently investigating so-called higher order controllability
conditions by de�ning a proper notion of commutator for the �ow of the
continuity equation, recalling some ideas of Rampazzo-Sussman
construction for Lie Bracket of nonsmooth vector �elds. Our analysis is
complicated by the possibly highly nonsmoothness of the driving vector
�elds.
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Mayer problem

Given a cost function G : P(Rd)→ R and a time horizon T > 0, we will
consider the problem of minimizing the cost over all the endpoints of the
trajectories in the space of measures that can be represented as a
superposition of trajectories de�ned in [0,T ] of a given di�erential
inclusions ẋ(t) ∈ F (x(t)), weighted by a probability measure µ on the
initial state.

Throughout this section, we will made the following standing
assumptions:

(F ) F : Rd ⇒ Rd is a Lipschitz continuous set-valued map with
nonempty compact convex values;

(G ) G : P2(Rd)→ R is bounded and Lipschitz continuous w.r.t. W2

metric.

A. Marigonda Mayer and min. time problem for multi-agent systems 29/46



Value function for the Mayer problem

Given s ∈ [0,T ], µ ∈P2(Rd), we de�ne the value function

V : [0,T ]×P2(Rd)→ R by setting

V (s, µ) = inf
{

G (µT ) : {µt}t∈[s,T ] ∈ A F
[s,T ](µ)

}
.

We say that {µt}t∈[s,T ] ∈ A F
[s,T ](µ) is an optimal trajectory for

µ ∈P2(Rd) if V (s, µ) = G (µT ).

From the properties of the set of admissible trajectories, since G (·) is
l.s.c., we deduce immediately the existence of optimal trajectories for
every µ ∈P2(Rd).

A. Marigonda Mayer and min. time problem for multi-agent systems 30/46



Regularity of the value function

Proposition

Let T > 0, F ,G be satisfying (F ) and (G ), respectively. Then
V : [0,T ]×P2(Rd)→ R is bounded and for every K ≥ 0, it is Lipschitz
continuous on the set {(t, µ) ∈ [0,T ]×K , m2(µ) ≤ K }.

The proof di�ers from the classical one, since the continuity equation in
general does not enjoy uniqueness and Lipschitz continuous dependence
of the solutions from the initial data: indeed, by means of dynamic
transport plans, it is needed to construct a suitable shifted trajectory
from an optimal one.
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Dynamic Programming Principle for the Mayer problem

Proposition

For all µ ∈P2(Rd) and τ ∈ [0,T ] we have

V (τ, µ) = inf
{
V (s, µs) : {µt}t∈[τ,T ] ∈ A F

[τ,T ](µ), s ∈ [τ,T ]
}
,

i.e., V (τ, µτ ) ≤ V (s, µs) for all τ ≤ s ≤ T and {µt}t∈[τ,T ] ∈ A F
[τ,T ](µ),

and V (τ, µτ ) = V (s, µs) for all τ ≤ s ≤ T if and only if {µt}t∈[τ,T ] is an
optimal trajectory for µ.

The proof is the same of the classical �nite-dimensional case.
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Viscosity sub/super-di�erentials

De�nition [M.-Quincampoix]

Let w : [0,T ]×P2 → R be a map, (t̄, µ̄) ∈]0,T [×P2(Rd ), δ > 0. We say
that (pt̄ , pµ̄) ∈ R× L2µ̄(Rd ) belongs to the viscosity δ-superdi�erential of w at
(t̄, µ̄) if

i.) there exists ν̄ and γ ∈ Πo(µ̄, ν̄) such that for all Borel map φ : Rd → Rd

satisfying φ ∈ L2µ(Rd ) ∩ L2ν(Rd ) we have∫
Rd×Rd

〈φ(x), x − y〉 dγ(x , y) =

∫
Rd
〈φ(x), pµγ (x)〉 dµ(x).

ii.) for all µ ∈P2(Rd ) we have

w(t, µ)− w(t̄, µ̄) ≤ pt(t − t̄) +

∫
Rd×Rd×Rd

〈x2, x3 − x1〉 d µ̃(x1, x2, x3)+

+ δ
√

(t − t̄)2 + W 2

2,µ̃(µ̄, µ) + o(|t − t̄|+ W2,µ̃(µ̄, µ)),

for all µ̃ ∈P(Rd × Rd × Rd ) satisfying π12]µ̃ = (IdRd , pµ̄)]µ̄ and
π13]µ̃ ∈ Π(µ̄, µ).

We denote the set of the viscosity δ-superdi�erentials of w at (t̄, µ̄) by

D+
δ w(t̄, µ̄). Similarly, we de�ne the set of the viscosity δ-subdi�erentials.
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Hamilton-Jacobi-Bellman Equation

We consider an equation in the form

∂tw(t, µ) + H (µ,Dw(t, µ)) = 0, (6)

where H (µ, p) is de�ned for any µ ∈P2(Rd) and p ∈ L2µ(Rd). We say

that a function w : [0,T ]×P2(Rd)→ R is

a subsolution of (6) if w is u.s.c. and there exists a constant C > 0
such that

pt + H (µ, pµ) ≥ −Cδ,

for all (t, µ) ∈]0,T [×P2(Rd), (pt , pµ) ∈ D+
δ w(t0, µ0), and δ > 0.

a supersolution of (6) if w is l.s.c. and there exists a constant C > 0
such that

pt + H (µ, pµ) ≤ Cδ,

for all (t, µ) ∈]0,T [×P2(Rd), (pt , pµ) ∈ D−δ w(t0, µ0), and δ > 0.

a solution of (6) if w is both a supersolution and a subsolution.
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Comparison principle

Theorem [M.-Quincampoix]

Consider the HJB equation for an Hamiltonian function H satisfying the following properties

positive homogenuity: for every λ ≥ 0, µ ∈P2(Rd ), p ∈ L2µ(Rd ) we have

H (µ, λp) = λH (µ, p);

dissipativity: there exists k ≥ 0 such that for all µ, ν ∈P2(Rd ), γ ∈ Πo(µ, ν), de�ned

pµγ = IdRd − Bar1(γ), qνγ = IdRd − Bar1(γ−1), we have

HF (µ, pµ)−HF (ν, qν) ≤ kW
2
2 (µ, ν).

Let w1 be a bounded and Lipschitz continuous subsolution and w2 be a bounded and Lipschitz
continuous supersolution to (6). Then

inf
(s,µ)∈[0,T ]×P2(Rd )

w2(s, µ)− w1(s, µ) = inf
µ∈P2(Rd )

w2(T , µ)− w1(T , µ).

In particular, the equation admits at most one Lipschitz continuous bounded solution.

Proof: based on the doubling variable method and to the analysis of the superdi�erential of the

Wasserstein squared distance given by Ambrosio-Gigli-Savaré.
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Hamiltonian function for the minimum time

Theorem

Assume standard assumptions on F and that F (·) is bounded.
Then T̃2(·) is a viscosity solution of HF (µ,DT̃2(µ)) = 0,

where the Hamiltonian function is de�ned by

HF (µ, pµ) := −1− inf

{∫
Rd

〈pµ(x), vµ(x)〉 dµ(x)

}
,

and the in�mum is taken on the Borel maps vµ : Rd → Rd satisfying
vµ(x) ∈ F (x) for µ-a.e. x ∈ Rd . In the case f Lipschitz continuity, it is
the unique solution.
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HJB equation for the Mayer problem

Theorem

Given µ ∈P2(Rd), pµ ∈ L2µ(Rd ;Rd), we set

HF (µ, pµ) := inf

{∫
Rd

〈pµ(x), vµ(x)〉 dµ(x)

}
,

where the in�mum is taken on the Borel maps vµ : Rd → Rd satisfying
vµ(x) ∈ F (x) for µ-a.e. x ∈ Rd . Then the value function V (·) is the
unique Lipschitz continuous solution of the equation on sets of measures
with uniformly bounded second-order moment.
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Application to a pursuit-evasion game - I

We consider a two player zero sum game, where the two players are two
populations, each of them evolving according to

∂tµ
i
t + div(v itµ

i
t) = 0, i = 1, 2,

where for a.e. t ∈ [0,T ] and µit-a.e. x ∈ Rd we have v it (x) ∈ Fi (x),
i = 1, 2.
We consider �nite horizon T > 0, and a bounded Lipschitz terminal cost
G = G (µ1, µ2). The objective of the �rst and of the second player are to
minimize and to maximize it, respectively.
Due to the ill-posedness of the continuity equation (since in general the
vector �eld vt is not Lipschitz continuous), a convenient choice is to
de�ne the strategy (with delay) directly on the trajectories.
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Application to a pursuit-evasion game

We consider two set-valued map F ,G : Rd ⇒ Rd satisfying (F ). Given
µa ∈P2(Rd), the set of admissible trajectories starting from µa at time
t = a de�ned on [a, b] for the �rst player will be A F

[a,b](µa), and, similarly,

given νa ∈P2(Rd), the set of admissible trajectories starting from νa at
time t = a de�ned on [a, b] for the second player will be A G

[a,b](νa).

De�nition 1 (Nonanticipative strategies)

A strategy for the �rst player de�ned on [t0,T ] will be a map
α : A G

[t0,T ] → A F
[t0,T ]. A strategy for the �rst player α de�ned on [t0,T ]

will be called nonanticipative with delay τ if there exists τ > 0 such that
given t0 ≤ s ≤ T , ν i = {ν it}t∈[t0,T ] ∈ A G

[t0,T ], i = 1, 2, satisfying ν1t = ν2t
for all t0 ≤ t ≤ s, and set α(ν i ) = {µit}t∈[t0,T ], i = 1, 2, we have
µ1t = µ2t for all t0 ≤ t ≤ min{s + τ,T}.
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Strategy sets

De�nition 2

Given µ0 ∈P2(Rd), we de�ne

Aτ (t0) :=
{
α : A G

[t0,T ] → A F
[t0,T ] : α is a nonant. strategy w. delay τ

}
,

Aτ (t0, µ0) :=
{
α ∈ Aτ (t0) : α(A G

[t0,T ]) ⊆ A F
[t0,T ](µ0)

}
,

A(t0) :=
⋃
τ>0

Aτ (t0),

A(t0, µ0) :=
{
α ∈ A(t0) : α(A G

[t0,T ]) ⊆ A F
[t0,T ](µ0)

}
.

By switching the roles of F and G in the previous de�nitions, we obtain
the corresponding de�nition of strategy and nonanticipative strategy
de�ned on [t0,T ] with delay τ for the second player. The corresponding
de�ned sets are named by Bτ (t0), Bτ (t0, ν0), B(t0), B(t0, ν0),
respectively, for any given ν0 ∈P2(Rd).
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Normal form

Lemma 3 (Normal form)

Let t0 < τ < T. For any (α, β) ∈ Aτ (t0)× Bτ (t0) there is a unique pair

(µ,ν) ∈ A F
[t0,b] ×A G

[t0,b] such that α(ν) = µ and β(µ) = ν.
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Upper and lower value functions

De�nition 4

We consider a payo� function G : P(Rd )× (Rd )→ R bounded and locally
Lipschitz continuous, and we assume that F and G satisfy (F ). Given
t0 ∈ [0,T ], µ0, ν0 ∈P2(Rd ), (α, β) ∈ A(µ0, t0)× B(ν0, t0) we de�ne

J(t0, µ0, ν0, α, β) = G (µT , νT ) ,

where µ = {µt}t∈[0,T ] ∈ A F

[t0,T ](µ0), ν = {νt}t∈[0,T ] ∈ A G

[t0,T ](ν0), and

(µ,ν) ∈ A F

[t0,T ](µ0)×A G

[t0,T ](ν0) is the unique element of

A F

[t0,T ](µ0)×A G

[t0,T ](ν0), given by Lemma 3, satisfying α(ν) = µ and
β(ν) = µ.

The upper and lower value function V± : [0,T ]×P2(Rd )×P2(Rd )→ R are
de�ned by setting

V+(t0, µ0, ν0) = inf
α∈A(t0,µ0)

sup
β∈B(t0,ν0)

J(t0, µ0, ν0, α, β),

V−(t0, µ0, ν0) = sup
β∈B(t0,ν0)

inf
α∈A(t0,µ0)

J(t0, µ0, ν0, α, β).
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Existence of a value and its characterization

De�nition 5 (Hamiltonian function for the pursuit-evasion game)

We consider F ,G satisfying (F ), and de�ne the following Hamiltonian
function for all µ, ν ∈P2(Rd), pµ ∈ L2µ(Rd), pν ∈ L2µ(Rd)

HPE (µ, ν, pµ, pν) = inf
v(·)∈L2µ(Rd )

v(x)∈F (x)µ-a.e.x

∫
Rd

〈pµ(x), v(x)〉 dµ(x)+

+ sup
w(·)∈L2ν(Rd )

w(x)∈G(x) ν-a.e.x

∫
Rd

〈pν(x),w(x)〉 dν(x). (7)

Theorem 6

Consider F ,G satisfying (F ), and a bounded Lipschitz continuous payo�

function G. Then the game has a value, i.e., V+ = V− =: V and V is

the unique viscosity solution of the Hamilton-Jacobi-Bellman equation

∂tV + HPE (µ, ν,DµV ,DνV ) = 0, V (T , µ, ν) = G(µ, ν).
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Work in progress

comparison principle for Hamilton-Jacobi equation under weaker
smoothness assumption of the value function;

Pontryagin maximum principle and necessary conditions;

more general cost functions;

application to pedestrian dynamics (evacuation problem, problems
with mass sources and sinks).
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