Mayer and minimum time problem for multi-agent systems

Antonio Marigonda

University of Verona, Italy

Control of state constrained dynamical systems

(CoSCDS 2017)

27th September 2017, Padova, Italy

Our team

Joint work with:

Giulia Cavagnari:	Department of Mathematical Sciences, Rutgers University - Camden 311 N. 5th Street Camden, NJ 08102, U.S.A. giulia.cavagnari@rutgers.edu
Chloé Jimenez:	Laboratoire de Mathématiques de Bretagne Atlantique, CNRS-UMR 6205, Université de Brest 6, avenue Victor Le Gorgeu, CS 93837, 29238 Brest cedex 3, France. chloe.jimenez@univ-brest.fr
Khai T. Nguyen:	Department of Mathematics, North Carolina State University, 2108 SAS Hall, Raleigh, NC 27695, U.S.A. Akal®ath.ncsu.edu
Benedetto Piccoli:	Department of Mathematical Sciences, Rutgers University - Camden 311 N. 5th Street Camden, NJ 08102, U.S.A. piccolifocamden.rutgers.edu
Fabio S. Priuli:	Istituto per le Applicazioni del Calcolo "M.Picone" CNR Via dei Taurini 19, 00185 - Roma, Italy. 1.priuli61ac.onr.it
Marc Quincampoix:	Laboratoire de Mathématiques de Bretagne Atlantique, CNRS-UMR 6205, Université de Brest 6, avenue Victor Le Gorgeu, CS 93837, 29238 Brest cedex 3, France. marc.quincampoixêuniv-brest.fr

Introduction

We formulate some control problems in the space of probability measures endowed with the Wasserstein distance as a natural generalization of the classical problems in \mathbb{R}^d .

Motivations

to model situations in which we have only a probabilistic knowledge of the initial state (e.g. noise in the measurements). to model multi-agent systems, where only a statistical (*macroscopic*) description of the system is available. (e.g. gas/crowd dynamics).

Classical optimal control system

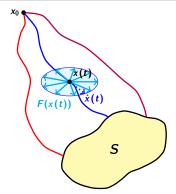
Controlled dynamics: in form of

differential inclusion:

$$\begin{cases} \dot{x}(t) \in F(x(t)), & \text{for a.e. } t > 0, \\ x(0) = x_0 \in \mathbb{R}^d. \end{cases}$$

Problem: to minimize a given cost functional $J(\cdot)$ on the set of admissible trajectories.

Hypothesis: $F : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$, $F(\cdot)$ not empty, convex, compact valued, continuous w.r.t. the Hausdorff metric and with linear growth.



Example: minimum time

Minimum time needed to steer x_0 to a given closed *target set* $\emptyset \neq S \subseteq \mathbb{R}^d$:

 $T(x_0) := \inf\{\overline{t} > 0 : \exists x(\cdot) \text{ sol. of the control system s.t. } x(\overline{t}) \in S\}.$

Generalized Problem - State and Dynamics

- Initial state: probability measure $\mu_0 \in \mathscr{P}_p(\mathbb{R}^d)$ with $m_p(\mu_0) := \int_{\mathbb{R}^d} |x|^p \, d\mu_0(x) < +\infty;$
- Trajectory: time-depending probability measure on \mathbb{R}^d , $\mu := \{\mu_t\}_{t \in [0,T]}, \ \mu_{|t=0} = \mu_0, \ (AC \text{ curve in } \mathscr{P}_p(\mathbb{R}^d));$
- Dynamics: since total mass must be preserved during the evolution, the process will be described by a (controlled) continuity equation

$$\partial_t \mu_t + \operatorname{div}(\mathbf{v}_t \mu_t) = 0, \quad \text{ for } 0 < t < T;$$

 Control set: vt to be chosen in the set of L²_{µt}-selections of F for a.e. t ∈ [0, T], to respect the classical underlying control problem.

State Space

 $\mathscr{P}_p(\mathbb{R}^d)$ endowed with the topology induced by the *p*-Wasserstein distance $W_p(\cdot, \cdot), \ p \geq 1$.

Let $\mu_1, \mu_2 \in \mathscr{P}_p(\mathbb{R}^d)$, the *p*-Wasserstein distance is defined as

$$W_p(\mu_1,\mu_2) := \left(\inf \left\{ \iint_{\mathbb{R}^d \times \mathbb{R}^d} |x_1 - x_2|^p \, d\pi : \, \pi \in \Pi(\mu_1,\mu_2) \right\} \right)^{1/p}$$

Where the set of admissible transport plans $\Pi(\mu_1, \mu_2)$ is defined by the following

$$\Pi(\mu_1,\mu_2) := \begin{cases} \pi(\mathcal{A}_1 \times \mathbb{R}^d) = \mu_1(\mathcal{A}_1), \\ \pi(\mathbb{R}^d \times \mathcal{A}_2) = \mu_2(\mathcal{A}_2), \\ \forall \mathcal{A}_i \ \mu_i \text{-measurable set}, \\ i = 1, 2 \end{cases}$$

Generalized Dynamics and control set

Continuity equation:

$$\begin{aligned} \partial_t \mu_t(x) + \operatorname{div}(v_t(x)\mu_t(x)) &= 0, \quad \text{ for } 0 < t < T, \ x \in \mathbb{R}^d, \\ \mu_{|t=0} &= \mu_0 \in \mathscr{P}_p(\mathbb{R}^d). \end{aligned}$$

which represents the conservation of the total mass $\mu_0(\mathbb{R}^d)$.

We require the velocity field $v_t(\cdot)$ to satisfy $v_t(x) \in F(x) \ \forall x \in \mathbb{R}^d$.

If $v_t(\cdot)$ is locally Lipschitz in x unif. w.r.t. t, we consider the characteristic system:

$$\begin{cases} \dot{\gamma}(t) = v_t(\gamma(t)), & \text{for a.e. } t \in (0, T) \\ \gamma(0) = x \end{cases}$$

Let $T_t(x)$ denote the unique solution, then: $\mu_t = T_t \sharp \mu_0$, where

$$T_t \sharp \mu_0(B) := \mu_0(T_t^{-1}(B)), \qquad \forall B \subset \mathbb{R}^d, \ B \text{ Borel set.}$$

Admissible curves

Let $F : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$, $\tau > 0$, $\alpha, \beta \in \mathscr{P}(\mathbb{R}^d)$. We say that $\mu = \{\mu_t\}_{t \in [0,\tau]} \subseteq \mathscr{P}_p(\mathbb{R}^d)$ is an admissible trajectory defined in $[0,\tau]$ joining α and β , if $\exists \nu = \{\nu_t\}_{t \in [0,\tau]} \subseteq \mathscr{M}(\mathbb{R}^d; \mathbb{R}^d)$ a family of Borel vector-valued measures s.t.

• μ is a narrowly continuous solution of $\partial_t \mu_t + \operatorname{div} \nu_t = 0$, with $\mu_{t=0} = \alpha$, $\mu_{t=\tau} = \beta$.

•
$$J_F(\mu,
u) < +\infty$$
, where

$$J_F(\mu,\nu) := \begin{cases} 0, & \text{if } \nu_t \ll \mu_t \text{ and } \frac{\nu_t}{\mu_t}(x) \in F(x) \text{ for a.e. } t \in [0,\tau], \ \mu_t\text{-a.e. } x, \\ +\infty, & \text{otherwise.} \end{cases}$$

In this case, we will shortly say that μ is driven by u.

Superposition principle: idea

With milder assumptions on v, the (possible not-unique) solution μ_t of the continuity equation can be represented by a superposition of integral solutions of the underlying characteristic system, i.e. of ODEs of the form $\dot{x}(t) = v(x(t))$, or $\dot{x}(t) = v(t, x(t))$.

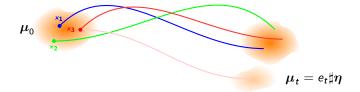
For this approach, see

L. Ambrosio

The flow associated to weakly differentiable vector fields: recent results and open problems, 2011

and the references therein, where it is also shown that in some cases it is possible to provide conditions on v (assuming for instance Sobolev or BV regularity, and some bounds on the weak derivatives) to recover uniqueness and stability of the solutions in a suitable *smaller class* of measures (Lagrangian flow problem). The representation is not unique.

Superposition principle: idea



For every point $x \in \operatorname{supp} \mu_0$, consider the set of all integral solutions of $\dot{\gamma}(t) = v_t \circ \gamma(t)$, $\gamma(0) = x$, and define a probability measure η_x on it (if there is a unique solution, η_x reduces to a Dirac delta). Let $\eta := \mu_0 \otimes \eta_x$ be the product measure, which is a probability measure on $\mathbb{R}^d \times \Gamma_T$, where $\Gamma_T := C^0([0, T]; \mathbb{R}^d)$. For any $\gamma \in \Gamma_T$ consider the evaluation operator $e_t(x, \gamma) = \gamma(t)$. Then $t \mapsto \mu_t = e_t \sharp \eta$ is a solution of the continuity equation. Conversely, every solution can be represented in this way for a suitable η .

Superposition principle: statement

Let $\mu = {\{\mu_t\}}_{t \in [0, T]}$ be a solution of the continuity equation $\partial_t \mu_t + \operatorname{div}(v_t \mu_t) = 0$ for a suitable Borel vector field $v : [0, T] \times \mathbb{R}^d \to \mathbb{R}^d$ satisfying

$$\int_0^T \int_{\mathbb{R}^d} \frac{|v_t(x)|}{1+|x|} \, d\mu_t(x) \, dt < +\infty \, .$$

Then there exists a probability measure $\eta \in \mathscr{P}(\mathbb{R}^d \times \Gamma_T)$, with $\Gamma_T = C^0([0, T]; \mathbb{R}^d)$ endowed with the sup norm, such that

(i) η is concentrated on the pairs $(x, \gamma) \in \mathbb{R}^d \times \Gamma_T$ such that γ is an absolutely continuous solution of

$$\begin{cases} \dot{\gamma}(t) = \mathbf{v}_t(\gamma(t)), & \text{for } \mathscr{L}^{1}\text{-a.e } t \in (0, T) \\ \gamma(0) = x, \end{cases}$$

(ii) for all $t \in [0,\,T]$ and all $arphi \in C^0_b(\mathbb{R}^d)$ we have

$$\int_{\mathbb{R}^d} \varphi(x) d\mu_t(x) = \iint_{\mathbb{R}^d \times \Gamma_T} \varphi(\gamma(t)) \, d\eta(x, \gamma).$$

Conversely, given any η satisfying (i) above and defined $\mu = {\mu_t}_{t \in [0, T]}$ as in (ii) above, we have that $\partial_t \mu_t + \operatorname{div}(v_t \mu_t) = 0$ and $\mu_{|t=0} = e_0 \sharp \eta$.

Superposition Principle for Differential Inclusions

The Superposition Principle deals with the macroscopic velocity vector field v_t . However in many applications the solutions must be constructed by superposition of admissible trajectories for the finite-dimensional differential inclusion that are not a priori solution of a given vector field. To this aim we provide the following result.

Theorem [SP for differential inclusions, Cavagnari-M-Piccoli]

Let $\eta \in \mathscr{P}(\mathbb{R}^d \times \Gamma_T)$ be concentrated on the set of pairs $(\gamma(0), \gamma) \in \mathbb{R}^d \times \Gamma_T$ such that $\gamma \in AC([0, T]; \mathbb{R}^d)$ is a Carathéodory solution of the differential inclusion $\dot{\gamma}(t) \in F(\gamma(t))$. For all $t \in [0, T]$, set $\mu_t := e_t \sharp \eta$, and let $\{\eta_{t,y}\}_{y \in \mathbb{R}^d} \subseteq \mathscr{P}(\mathbb{R}^d \times \Gamma_T)$ be the disintegration of η w.r.t. the evaluation operator $e_t : \mathbb{R}^d \times \Gamma_T \to \mathbb{R}^d$, i.e. for all $\varphi \in C_b^0(\mathbb{R}^d \times \Gamma_T)$

$$\iint_{\mathbb{R}^d \times \Gamma_T} \varphi(x, \gamma) \, d\eta(x, \gamma) = \int_{\mathbb{R}^d} \int_{e_t^{-1}(y)} \varphi(x, \gamma) \, d\eta_{t, y}(x, \gamma) \, d\mu_t(y).$$

Then if $\mu_0 \in \mathscr{P}_p(\mathbb{R}^d)$, the curve $\mu := \{\mu_t\}_{t \in [0,T]} \subseteq \mathscr{P}_p(\mathbb{R}^d)$, is an admissible trajectory driven by $\nu = \{\nu_t\}_{t \in [0,T]}$, where $\nu_t = v_t \mu_t$ and the vector field

$$v_t(y) = \int_{e_t^{-1}(y)} \dot{\gamma}(t) \, d\eta_{t,y}(x,\gamma).$$

is well-defined for a.e. $t \in [0, T]$ and μ_t -a.e. $y \in \mathbb{R}^d$.

To Differential Inclusions - Comments and an example

We recall that in general there is not an unique η representing a given μ : in particular, the effect in passing from the microscopic point of view encoded in η to the macroscopic description provided by μ , may cause a loss of information (due to averaging). An interesting example of this situation is given below.

We start with some weighted Dirac deltas on the y-axis and made them evolve along the characteristics. We refine the distribution of delats to obtain the 1-dimensional Lebesgue measure restricted to $\{0\} \times [-1, 1]$. The averaged vector field is drawed (dotted characteristics are neglible).

Properties of the set of admissible trajectories - 1

Theorem[Cavagnari-M-Nguyen-Priuli, Cavagnari-M-Piccoli, M-Quincampoix]

Let $a, b, c \in \mathbb{R}$, a < b < c, $F : \mathbb{R}^d \Rightarrow \mathbb{R}^d$ be satisfying (F). Recalling that the space $X := C^0([a, b]; \mathscr{P}_p(\mathbb{R}^d))$ with the metric

 $d_X(\mu,\nu) = \sup_{t \in [a,b]} W_{\rho}(\mu_t,\nu_t), \text{ for all } \mu = \{\mu_t\}_{t \in [a,b]}, \nu = \{\nu_t\}_{t \in [a,b]},$

is a complete metric space, we have that

• the set of admissible trajectories is closed in (X, d_X) ;

- if {µ^N}_{N∈ℕ} is a sequence of admissible trajectories satisfying sup {m_p(µ^N₀)} < ∞, then it admits a d_X-convergent subsequence. N∈ℕ
- given $\mu \in \mathscr{P}_p(\mathbb{R}^d)$, $\mu = \{\mu_t\}_{t \in [a,b]} \in \mathscr{A}_{[a,b]}^F(\mu)$,

 $\nu = \{\nu_t\}_{t \in [b,c]} \in \mathscr{A}_{[b,c]}^F(\mu_a)$ then the concatenation is an admissible trajectory.

Properties of the set of admissible trajectories - 2

(continued)

• if $\mu = {\{\mu_t\}_{t \in [a,b]}}$ is an admissible trajectory, and $\eta \in \mathscr{P}(\mathbb{R}^d \times \Gamma_{[a,b]})$ satisfies $\mu_t = e_t \sharp \eta$ for all $t \in [a, b]$, then for $s_1, s_2 \in [a, b]$ we have

$$\|e_{s_1} - e_{s_2}\|_{L^2_{\eta}} \le C e^{2(b-a)C} \left(1 + \min_{i=1,2} m_2^{1/2}(\mu_{s_i})\right) |s_1 - s_2|$$

where $C = \max_{y \in F(0)} |y| + \operatorname{Lip}(F)$.

• if $\mu = {\{\mu_t\}_{t \in [a,b]}}$ is an admissible trajectory, and $\eta \in \mathscr{P}(\mathbb{R}^d \times \Gamma_{[a,b]})$ satisfies $\mu_t = e_t \sharp \eta$ for all $t \in [a,b]$, given $\overline{t} \in [a,b]$, every limit for $i \to +\infty$ of a L^2_{η} -weak converging sequence $\frac{e_t - e_{\overline{t}}}{t - \overline{t}}$ belongs to the set $\{v \circ e_{\overline{t}} : v \in L^2_{\overline{\mu}_t}, v(x) \in F(x) \text{ for } \mu_{\overline{t}}\text{-a.e. } x \in \mathbb{R}^d\}$.

<u>Proof</u> is based on Superposition Principle and Gronwall estimates.

Properties of the set of admissible trajectories - 3

Proposition [Prescribed Initial velocity of measure trajectories]

Let $a, b \in \mathbb{R}$, a < b, $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, $F : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ be satisfying the standing assumptions, $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Then for every $v_a \in L^2_{\mu}(\mathbb{R}^d)$ such that $v_a(x) \in F(x)$ for μ -a.e. $x \in \mathbb{R}^d$ there exist $\eta \in \mathscr{P}(\mathbb{R}^d \times \Gamma_{[a,b]})$ such that $\mu = \{e_t \sharp \eta\}_{t \in [a,b]} \in \mathscr{A}^F_{[a,b]}(\mu)$ and

$$\lim_{t \to a^+} \int_{\mathbb{R}^d \times \Gamma_{[a,b]}} \langle \varphi \circ e_0(x,\gamma), \frac{e_t(x,\gamma) - e_a(x,\gamma)}{t-a} \rangle \, d\eta(x,\gamma) = \\ = \int_{\mathbb{R}^d} \langle \varphi(x), v_a(x) \rangle \, d\mu(x).$$

<u>**Proof</u>** is based essentialy on the possibility to parametrize F, and on the Filippov's Lemma.</u>

Cost functionals - Overview

- We decribed up to now the macroscopic dynamic of the agents, supposing conservation of the total mass.
- In real-life models, the agents also interact between them, and the interaction can be of local or nonlocal type.
- The effects of these interactions will be encoded in the cost functional that we want to minimize.
- To this aim convexity and lower semicontinuity of functional depending on measures will play a crucial role.
- Extensions to situations where the total mass is not preserved during the evolution (e.g. evacuation problems) are very difficult due to the lack of a general superposition principle allowing us to represent them as superposition of weighted characteristics. Nevertheless, such a representation can be built by hand in many interesting cases.

Extensions - Some natural cost functional

Here we present some natural cost functions.

A functional with a local constraints on velocities and position.

$$\hat{J}_{sys}(T,\mu,\nu) := \begin{cases} \int_0^T \int_{\mathbb{R}^d} L_{\mathbf{c}}^{\mathbf{a}}\left(t,x,\frac{\nu_{\mathbf{t}}}{\mu_{\mathbf{t}}}(x)\right) d\mu_{\mathbf{t}}(x) dt, & \text{if } \nu_{\mathbf{t}} \ll \mu_{\mathbf{t}}, \frac{\nu_{\mathbf{t}}}{\mu_{\mathbf{t}}}(x) \in F(x) \\ & \text{for a.e. } t \in [0,T], \ \mu_{\mathbf{t}} - \text{a.e. } x \in \mathbb{R}^d \\ +\infty, & \text{otherwise}, \end{cases}$$

$$(2)$$

A functional penalizing density concentration w.r.t. a given measure. Given $\sigma \in \mathscr{M}^+(\mathbb{R}^d)$, we define the functional

$$\hat{J}_{dens}^{\sigma}(T, \mu, \nu) := \begin{cases} \int_{0}^{T} \int_{\mathbb{R}^{d}} L_{dens}\left(t, x, \frac{\mu_{t}}{\sigma}(x), \frac{\nu_{t}}{\sigma}(x)\right) d\sigma dt, & \text{ if } \mu_{t} \ll \sigma \text{ and } |\nu_{t}| \ll \sigma \\ & \text{ for a.e. } t \in [0, T], \\ +\infty, & \text{ otherwise,} \end{cases}$$

(3)

Extensions - Some natural cost functional, continued

A functional describing an interaction between position and velocities.

$$J_{\text{inter}}(T,\eta) = \int_{\boldsymbol{X}_{\text{inter}}} \int_{\boldsymbol{0}}^{\boldsymbol{T}} L_{\text{inter}}(t,\gamma_{\boldsymbol{x}}(t),\gamma_{\boldsymbol{y}}(t),\dot{\gamma}_{\boldsymbol{x}}(t),\dot{\gamma}_{\boldsymbol{y}}(t)) dt d\eta(\boldsymbol{x},\gamma_{\boldsymbol{x}}) d\eta(\boldsymbol{y},\gamma_{\boldsymbol{y}}),$$

$$\hat{J}_{inter}(T, \mu, \nu) = \begin{cases} \int_{0}^{T} \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} L_{inter}\left(t, x, y, \frac{\nu_{t}}{\mu_{t}}(x), \frac{\nu_{t}}{\mu_{t}}(y)\right) d\mu_{t}(x) d\mu_{t}(y) dt, & \text{if } \nu_{t} \ll \mu_{t}, \\ \frac{\nu_{t}}{\mu_{t}}(x) \in F(x) \\ a.e. \ t \in [0, T], \\ \mu_{t} - a.e. \ x \in \mathbb{R}^{d}, \\ otherwise, \end{cases}$$
(5)

(4)

State of art, so far...

Natural questions

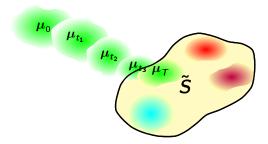
- Existence of optimal trajectories?
- Dynamic programming principle?
- Smoothness of the value function?
- Hamilton-Jacobi-Bellman equation?
- Necessary conditions?

Up to now

- Dynamic programming principle for all the functionals
- Mayer problem with smooth terminal cost function and no interaction
- Minimum time problem with no interaction
- Some cases of problems with mass loss (optimal equipment and evacuation)
- Application to some simple pursuit-evasion games

Generalized Target in Wasserstein space - Overview

- Target set: defined by duality (an observer wants to steer the system into states in which the results of some measurements are below a fixed threshold);
- Minimum time: straightforward generalization of the classical one.



Definition and basic properties of the generalized target

For $p \ge 1$, $\Phi \subseteq C^0(\mathbb{R}^d, \mathbb{R})$ s.t. $\exists x_0 \in \mathbb{R}^d$ with $\phi(x_0) \le 0 \ \forall \phi \in \Phi$, and for all $\phi \in \Phi$ there exists $D_{\phi} > 0$ s.t. $\phi(x) \ge -D_{\phi} \ \forall x \in \mathbb{R}^d$:

$$ilde{S}^{\Phi}_{p} := \left\{ \mu \in \mathscr{P}_{p}(\mathbb{R}^{d}) : \int_{\mathbb{R}^{d}} \phi(x) \, d\mu(x) \leq 0 \text{ for all } \phi \in \Phi
ight\}.$$

We say that Φ satisfies property (T_p) with p > 0 if (T_p) for all $\phi \in \Phi$ there exist $A_{\phi}, C_{\phi} > 0$ such that $\phi(x) \ge A_{\phi}|x|^p - C_{\phi}$.

We obtain that:

- \tilde{S}_p^{Φ} is closed and convex;
- if (T_p) holds, then \tilde{S}_p^{Φ} is compact in the W_p -topology (hence in the w^* -topology).

We say that \tilde{S}^{Φ}_{p} admits a classical counterpart if $\exists S \subseteq \mathbb{R}^{d}$ s.t.

$$ilde{S}^{\Phi}_{p} = \{ \mu \in \mathscr{P}_{p}(\mathbb{R}^{d}) : \operatorname{supp} \mu \subseteq S \}$$

Generalized minimum time

We define the generalized minimum time function $\tilde{T}_p^{\Phi} : \mathscr{P}_p(\mathbb{R}^d) \to [0, +\infty]$ as:

$$ilde{\mathcal{T}}^{\Phi}_{\rho}(\mu_0) := \inf \left\{ egin{array}{cc} \mu \mbox{ is an admissible curve in } [0, au] \\ J_{\mathcal{F}}(\mu, oldsymbol{
u}) : & \mbox{ driven by } oldsymbol{
u}, \mbox{ with } egin{array}{c} \mu_{|t=0} = \mu_0 \\ \mu_{|t= au} \in ilde{\mathcal{S}}^{\Phi}_{
ho} \end{array}
ight\},$$

where, by convention, $\inf \emptyset = +\infty$.

Given $\mu_0 \in \mathscr{P}_p(\mathbb{R}^d)$, an admissible curve $\mu = \{\mu_t\}_{t \in [0, \tilde{T}^{\Phi}_p(\mu_0)]} \subseteq \mathscr{P}_p(\mathbb{R}^d)$, driven by a family of Borel vector-valued measures $\nu = \{\nu_t\}_{t \in [0, \tilde{T}^{\Phi}_p(\mu_0)]}$, s.t. $\mu_{|t=0} = \mu_0$ and $\mu_{|t=\tilde{T}^{\Phi}_p(\mu_0)} \in \tilde{S}^{\Phi}_p$ is optimal for μ_0 if

$$\tilde{T}^{\Phi}_{p}(\mu_{0}) = J_{F}(\boldsymbol{\mu}, \boldsymbol{\nu}).$$

Dynamic programming principle

Theorem

Let
$$0 \le s \le \tau$$
,
 $F : \mathbb{R}^d \Rightarrow \mathbb{R}^d$ be a set-valued function,
 $\mu = \{\mu_t\}_{t \in [0, \tau]}$ be an admissible curve for Σ_F

Then

$$\tilde{T}^{\Phi}_{p}(\mu_{0}) \leq s + \tilde{T}^{\Phi}_{p}(\mu_{s}).$$

Moreover, if $ilde{\mathcal{T}}^{\Phi}_{p}(\mu_{0}) < +\infty$, then

equality holds $\forall s \in [0, \tilde{T}^{\Phi}_{p}(\mu_{0})] \iff \mu$ is optimal for $\mu_{0} = \mu_{|t=0}$.

The proof is based on gluing results for solutions of continuity equation.

Existence theorem

Theorem (Existence of minimizers)

Assume standard assumptions on F.

$$\begin{array}{lll} \mathsf{Let} & p>1,\\ & \mu_0\in\mathscr{P}_p(\mathbb{R}^d),\\ & \Phi\in C^0(\mathbb{R}^d;\mathbb{R})\\ & \tilde{T}_p^{\Phi}(\mu_0)<\infty. \end{array}$$

Then there exists an admissible curve $\boldsymbol{\mu} = \{\mu_t\}_{t \in [0,T]}$ driven by $\boldsymbol{\nu} = \{\nu_t\}_{t \in [0,T]}$ which is optimal for μ_0 , that is $\tilde{T}_p^{\Phi}(\mu_0) = J_F(\boldsymbol{\mu}, \boldsymbol{\nu})$.

The proof is based on the previous result of compactness of admissible trajectories in the space of measures, together with the lower semicontinuity of the minimum time functional J_F .

Comparison results (for
$$\tilde{S}^{\Phi} = \tilde{S}^{\{d_{S}\}}$$
)

Proposition

Under the standard assumptions on F we have

$$egin{aligned} & ilde{\mathcal{T}}_{p}(\mu_{0}) \geq ||\mathcal{T}||_{L^{\infty}_{\mu_{0}}} & \forall \mu_{0} \in \mathscr{P}_{p}(\mathbb{R}^{d}); \ & ilde{\mathcal{T}}_{p}(\delta_{x_{0}}) = \mathcal{T}(x_{0}) & \forall x_{0} \in \mathbb{R}^{d}. \end{aligned}$$

Theorem

Assume the standard hypothesis on F.

Let
$$p > 1$$
,
 $\mu_0 \in \mathscr{P}_p(\mathbb{R}^d)$,
 $S \subseteq \mathbb{R}^d$ be a weakly invariant set for the dynamics $\dot{x}(t) \in F(x(t))$.

Then

$$\tilde{T}^{\Phi}_{p}(\mu_{0}) = \|T(\cdot)\|_{L^{\infty}_{\mu_{0}}}.$$

Comparison results (for
$$\tilde{S}^{\Phi} = \tilde{S}^{\{d_{S}\}}$$
)

Proposition

Under the standard assumptions on F we have

$$egin{aligned} & ilde{\mathcal{T}}_p(\mu_0) \geq ||\mathcal{T}||_{L^\infty_{\mu_0}} & & orall \mu_0 \in \mathscr{P}_p(\mathbb{R}^d); \ & ilde{\mathcal{T}}_p(\delta_{x_0}) = \mathcal{T}(x_0) & & orall x_0 \in \mathbb{R}^d. \end{aligned}$$

Theorem

Assume the standard hypothesis on F.

Let
$$p > 1$$
,
 $\mu_0 \in \mathscr{P}_p(\mathbb{R}^d)$,
 $S \subseteq \mathbb{R}^d$ be a weakly invariant set for the dynamics $\dot{x}(t) \in F(x(t))$.

Then

$$\tilde{T}^{\Phi}_{p}(\mu_{0}) = \|T(\cdot)\|_{L^{\infty}_{\mu_{0}}}.$$

Controllability in the C_c^1 case

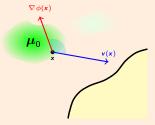
Theorem [Petrov-like condition]

Assume the standard hypothesis on F, $p \geq 1$, $\mu_0 \in \mathscr{P}_p(\mathbb{R}^d)$.

Let $\Phi \subseteq C_c^1(\mathbb{R}^d; \mathbb{R})$.

Assume that

$$\begin{aligned} \exists \boldsymbol{\nu} : \mathbb{R}^d &\to \mathbb{R}^d \text{ Borel vector field,} \\ \exists \boldsymbol{\mu} := \{\mu_t\}_{t \in [0, +\infty[} \subseteq \mathscr{P}_p(\mathbb{R}^d) \\ \text{adm. traj. driven by } \boldsymbol{\nu}, \\ \text{with } \boldsymbol{\nu} = \{\nu_t = \nu\mu_t\}_{t \in [0, +\infty[}, \\ \mu_{|t=0} = \mu_0, \end{aligned}$$



such that the following controllability condition holds:

(*C_c*) for all $\phi \in \Phi$ exists $k^{\phi} > 0$ s.t. $\langle \nabla \phi(x), v(x) \rangle \leq -k^{\phi}$ for a.e. t > 0 and μ_t -a.e. $x \in \mathbb{R}^d$.

Then we have
$$\widetilde{T}^{\Phi}_{p}(\mu_{0}) \leq \sup_{\phi \in \Phi} \left\{ \frac{1}{k^{\phi}} \int_{\mathbb{R}^{d}} \phi(x) \, d\mu_{0}(x) \right\}.$$

Extensions of the smooth controllability condition

G. Cavagnari has obtained more refined controllability conditions in

📄 G. Cavagnari

Regularity results for a time-optimal control problem in the space of probability measures, Mathematical Control and Related Fields (MCRF), vol. 7, n. 2, pp. 213-233 (2017)

by weakening the requirements on Φ . In general this operation is highly nontrivial, since - unless we restrict ourselves on particular class of measures, the evolution may be highly sensitive to the singularity set of the functions of Φ .

We are currently investigating so-called *higher order* controllability conditions by defining a proper notion of *commutator for the flow* of the continuity equation, recalling some ideas of Rampazzo-Sussman construction for Lie Bracket of nonsmooth vector fields. Our analysis is complicated by the possibly highly nonsmoothness of the driving vector fields.

Mayer problem

Given a cost function $\mathscr{G} : \mathscr{P}(\mathbb{R}^d) \to \mathbb{R}$ and a time horizon T > 0, we will consider the problem of minimizing the cost over all the endpoints of the trajectories in the space of measures that can be represented as a superposition of trajectories defined in [0, T] of a given differential inclusions $\dot{x}(t) \in F(x(t))$, weighted by a probability measure μ on the initial state.

Throughout this section, we will made the following standing assumptions:

- (F) $F : \mathbb{R}^d \Rightarrow \mathbb{R}^d$ is a Lipschitz continuous set-valued map with nonempty compact convex values;
- (G) $\mathscr{G}: \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ is bounded and Lipschitz continuous w.r.t. W_2 metric.

Value function for the Mayer problem

Given $s \in [0, T]$, $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, we define the value function $V : [0, T] \times \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ by setting

$$V(s,\mu) = \inf \left\{ \mathscr{G}(\mu_T) : \{\mu_t\}_{t \in [s,T]} \in \mathscr{A}^{\mathsf{F}}_{[s,T]}(\mu) \right\}.$$

We say that $\{\mu_t\}_{t\in[s,T]} \in \mathscr{A}^{\mathsf{F}}_{[s,T]}(\mu)$ is an optimal trajectory for $\mu \in \mathscr{P}_2(\mathbb{R}^d)$ if $V(s,\mu) = \mathscr{G}(\mu_T)$.

From the properties of the set of admissible trajectories, since $\mathscr{G}(\cdot)$ is l.s.c., we deduce immediately the existence of optimal trajectories for every $\mu \in \mathscr{P}_2(\mathbb{R}^d)$.

Regularity of the value function

Proposition

Let T > 0, F, \mathscr{G} be satisfying (F) and (\mathscr{G}) , respectively. Then $V : [0, T] \times \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ is bounded and for every $K \ge 0$, it is Lipschitz continuous on the set $\{(t, \mu) \in [0, T] \times \mathscr{K}, m_2(\mu) \le K\}$.

The proof differs from the classical one, since the continuity equation in general does not enjoy uniqueness and Lipschitz continuous dependence of the solutions from the initial data: indeed, by means of dynamic transport plans, it is needed to construct a suitable shifted trajectory from an optimal one.

Dynamic Programming Principle for the Mayer problem

Proposition

For all $\mu \in \mathscr{P}_2(\mathbb{R}^d)$ and $\tau \in [0, T]$ we have

$$V(\tau,\mu) = \inf \left\{ V(s,\mu_s) : \{\mu_t\}_{t \in [\tau,T]} \in \mathscr{A}^{\mathsf{F}}_{[\tau,T]}(\mu), \, s \in [\tau,T] \right\}$$

i.e., $V(\tau, \mu_{\tau}) \leq V(s, \mu_{s})$ for all $\tau \leq s \leq T$ and $\{\mu_{t}\}_{t \in [\tau, T]} \in \mathscr{A}_{[\tau, T]}^{F}(\mu)$, and $V(\tau, \mu_{\tau}) = V(s, \mu_{s})$ for all $\tau \leq s \leq T$ if and only if $\{\mu_{t}\}_{t \in [\tau, T]}$ is an optimal trajectory for μ .

The proof is the same of the classical finite-dimensional case.

Viscosity sub/super-differentials

Definition [M.-Quincampoix]

Let $w : [0, T] \times \mathscr{P}_2 \to \mathbb{R}$ be a map, $(\bar{t}, \bar{\mu}) \in]0, T[\times \mathscr{P}_2(\mathbb{R}^d), \delta > 0$. We say that $(p_{\bar{t}}, p_{\bar{\mu}}) \in \mathbb{R} \times L^2_{\bar{\mu}}(\mathbb{R}^d)$ belongs to the viscosity δ -superdifferential of w at $(\bar{t}, \bar{\mu})$ if

i.) there exists $\bar{\nu}$ and $\gamma \in \prod_o(\bar{\mu}, \bar{\nu})$ such that for all Borel map $\phi : \mathbb{R}^d \to \mathbb{R}^d$ satisfying $\phi \in L^2_\mu(\mathbb{R}^d) \cap L^2_\nu(\mathbb{R}^d)$ we have

$$\int_{\mathbb{R}^{d}\times\mathbb{R}^{d}} \langle \phi(x), x-y \rangle \, d\gamma(x,y) = \int_{\mathbb{R}^{d}} \langle \phi(x), p_{\gamma}^{\mu}(x) \rangle \, d\mu(x).$$

ii.) for all $\mu\in \mathscr{P}_2(\mathbb{R}^d)$ we have

$$w(t,\mu) - w(\overline{t},\overline{\mu}) \le p_t(t-\overline{t}) + \int_{\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d} \langle x_2, x_3 - x_1 \rangle d\widetilde{\mu}(x_1, x_2, x_3) + \delta \sqrt{(t-\overline{t})^2 + W_{2,\widetilde{\mu}}^2(\overline{\mu}, \mu)} + o(|t-\overline{t}| + W_{2,\widetilde{\mu}}(\overline{\mu}, \mu)),$$

for all $\tilde{\mu} \in \mathscr{P}(\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d)$ satisfying $\pi_{12} \sharp \tilde{\mu} = (\mathrm{Id}_{\mathbb{R}^d}, p_{\tilde{\mu}}) \sharp \tilde{\mu}$ and $\pi_{13} \sharp \tilde{\mu} \in \Pi(\tilde{\mu}, \mu)$.

Hamilton-Jacobi-Bellman Equation

We consider an equation in the form

$$\partial_t w(t,\mu) + \mathscr{H}(\mu, Dw(t,\mu)) = 0,$$
 (6)

where $\mathscr{H}(\mu, p)$ is defined for any $\mu \in \mathscr{P}_2(\mathbb{R}^d)$ and $p \in L^2_{\mu}(\mathbb{R}^d)$. We say that a function $w : [0, T] \times \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ is

• a subsolution of (6) if w is u.s.c. and there exists a constant C > 0 such that

$$p_t + \mathscr{H}(\mu, p_\mu) \geq -C\delta,$$

for all $(t,\mu) \in]0, T[\times \mathscr{P}_2(\mathbb{R}^d), (p_t,p_\mu) \in D^+_{\delta}w(t_0,\mu_0)$, and $\delta > 0$.

• a supersolution of (6) if w is l.s.c. and there exists a constant C > 0 such that

$$p_t + \mathscr{H}(\mu, p_\mu) \leq C\delta,$$

for all $(t,\mu) \in]0, T[imes \mathscr{P}_2(\mathbb{R}^d), (p_t,p_\mu) \in D^-_{\delta}w(t_0,\mu_0)$, and $\delta > 0$.

• a *solution* of (6) if *w* is both a supersolution and a subsolution.

Comparison principle

Theorem [M.-Quincampoix]

Consider the HJB equation for an Hamiltonian function $\mathcal H$ satisfying the following properties

- positive homogenuity: for every $\lambda \geq 0$, $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, $p \in L^2_{\mu}(\mathbb{R}^d)$ we have $\mathscr{H}(\mu, \lambda p) = \lambda \mathscr{H}(\mu, p)$;
- dissipativity: there exists $k \geq 0$ such that for all $\mu, \nu \in \mathscr{P}_2(\mathbb{R}^d)$, $\gamma \in \Pi_o(\mu, \nu)$, defined $p_{\gamma}^{\mu} = \operatorname{Id}_{\mathbb{R}^d} \operatorname{Bar}_1(\gamma)$, $q_{\gamma}^{\nu} = \operatorname{Id}_{\mathbb{R}^d} \operatorname{Bar}_1(\gamma^{-1})$, we have

$$\mathscr{H}_{\mathsf{F}}(\mu, p_{\mu}) - \mathscr{H}_{\mathsf{F}}(\nu, q_{\nu}) \leq k W_2^2(\mu, \nu).$$

Let w_1 be a bounded and Lipschitz continuous subsolution and w_2 be a bounded and Lipschitz continuous supersolution to (6). Then

$$\inf_{\substack{(s,\mu)\in[0,T]\times\mathscr{P}_2(\mathbb{R}^d)}} w_2(s,\mu) - w_1(s,\mu) = \inf_{\mu\in\mathscr{P}_2(\mathbb{R}^d)} w_2(T,\mu) - w_1(T,\mu).$$

In particular, the equation admits at most one Lipschitz continuous bounded solution.

<u>Proof:</u> based on the doubling variable method and to the analysis of the superdifferential of the Wasserstein squared distance given by Ambrosio-Gigli-Savaré.

・吊り ・ラト ・ラト

Hamiltonian function for the minimum time

Theorem

Assume standard assumptions on F and that $F(\cdot)$ is bounded. Then $\tilde{T}_2(\cdot)$ is a viscosity solution of $\mathscr{H}_F(\mu, D\tilde{T}_2(\mu)) = 0$,

where the Hamiltonian function is defined by

$$\mathscr{H}_{\mathsf{F}}(\mu, \mathsf{p}_{\mu}) := -1 - \inf \left\{ \int_{\mathbb{R}^d} \langle \mathsf{p}_{\mu}(x), \mathsf{v}_{\mu}(x) \rangle \ d\mu(x) \right\},$$

and the infimum is taken on the Borel maps $v_{\mu} : \mathbb{R}^d \to \mathbb{R}^d$ satisfying $v_{\mu}(x) \in F(x)$ for μ -a.e. $x \in \mathbb{R}^d$. In the case f Lipschitz continuity, it is the unique solution.

HJB equation for the Mayer problem

Theorem

Given $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, $\rho_\mu \in L^2_\mu(\mathbb{R}^d; \mathbb{R}^d)$, we set

$$\mathscr{H}_{F}(\mu, p_{\mu}) := \inf \left\{ \int_{\mathbb{R}^{d}} \langle p_{\mu}(x), v_{\mu}(x) \rangle \ d\mu(x)
ight\},$$

where the infimum is taken on the Borel maps $v_{\mu} : \mathbb{R}^d \to \mathbb{R}^d$ satisfying $v_{\mu}(x) \in F(x)$ for μ -a.e. $x \in \mathbb{R}^d$. Then the value function $V(\cdot)$ is the unique Lipschitz continuous solution of the equation on sets of measures with uniformly bounded second-order moment.

We consider a two player zero sum game, where the two players are two populations, each of them evolving according to

$$\partial_t \mu_t^i + \operatorname{div}(v_t^i \mu_t^i) = 0, \qquad i = 1, 2,$$

where for a.e. $t \in [0, T]$ and μ_t^i -a.e. $x \in \mathbb{R}^d$ we have $v_t^i(x) \in F_i(x)$, i = 1, 2.

We consider finite horizon T > 0, and a bounded Lipschitz terminal cost $\mathscr{G} = \mathscr{G}(\mu_1, \mu_2)$. The objective of the first and of the second player are to minimize and to maximize it, respectively.

Due to the ill-posedness of the continuity equation (since in general the vector field v_t is not Lipschitz continuous), a convenient choice is to define the strategy (with delay) directly on the trajectories.

Application to a pursuit-evasion game

We consider two set-valued map $F, G : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ satisfying (F). Given $\mu_a \in \mathscr{P}_2(\mathbb{R}^d)$, the set of admissible trajectories starting from μ_a at time t = a defined on [a, b] for the first player will be $\mathscr{A}_{[a,b]}^F(\mu_a)$, and, similarly, given $\nu_a \in \mathscr{P}_2(\mathbb{R}^d)$, the set of admissible trajectories starting from ν_a at time t = a defined on [a, b] for the second player will be $\mathscr{A}_{[a,b]}^G(\nu_a)$.

Definition 1 (Nonanticipative strategies)

A strategy for the first player defined on $[t_0, T]$ will be a map $\alpha : \mathscr{A}_{[t_0, T]}^G \to \mathscr{A}_{[t_0, T]}^F$. A strategy for the first player α defined on $[t_0, T]$ will be called *nonanticipative with delay* τ if there exists $\tau > 0$ such that given $t_0 \leq s \leq T$, $\nu^i = \{\nu_t^i\}_{t \in [t_0, T]} \in \mathscr{A}_{[t_0, T]}^G$, i = 1, 2, satisfying $\nu_t^1 = \nu_t^2$ for all $t_0 \leq t \leq s$, and set $\alpha(\nu^i) = \{\mu_t^i\}_{t \in [t_0, T]}$, i = 1, 2, we have $\mu_t^1 = \mu_t^2$ for all $t_0 \leq t \leq \min\{s + \tau, T\}$.

Strategy sets

Definition 2

Given $\mu_0 \in \mathscr{P}_2(\mathbb{R}^d)$, we define

$$\begin{split} \mathcal{A}_{\tau}(t_{0}) &:= \left\{ \alpha : \mathscr{A}_{[t_{0},T]}^{G} \to \mathscr{A}_{[t_{0},T]}^{F} : \alpha \text{ is a nonant. strategy w. delay } \tau \right\}, \\ \mathcal{A}_{\tau}(t_{0},\mu_{0}) &:= \left\{ \alpha \in \mathcal{A}_{\tau}(t_{0}) : \alpha(\mathscr{A}_{[t_{0},T]}^{G}) \subseteq \mathscr{A}_{[t_{0},T]}^{F}(\mu_{0}) \right\}, \\ \mathcal{A}(t_{0}) &:= \bigcup_{\tau > 0} \mathcal{A}_{\tau}(t_{0}), \\ \mathcal{A}(t_{0},\mu_{0}) &:= \left\{ \alpha \in \mathcal{A}(t_{0}) : \alpha(\mathscr{A}_{[t_{0},T]}^{G}) \subseteq \mathscr{A}_{[t_{0},T]}^{F}(\mu_{0}) \right\}. \end{split}$$

By switching the roles of F and G in the previous definitions, we obtain the corresponding definition of strategy and nonanticipative strategy defined on $[t_0, T]$ with delay τ for the second player. The corresponding defined sets are named by $\mathcal{B}_{\tau}(t_0)$, $\mathcal{B}_{\tau}(t_0, \nu_0)$, $\mathcal{B}(t_0)$, $\mathcal{B}(t_0, \nu_0)$, respectively, for any given $\nu_0 \in \mathscr{P}_2(\mathbb{R}^d)$.

Normal form

Lemma 3 (Normal form)

Let $t_0 < \tau < T$. For any $(\alpha, \beta) \in \mathcal{A}_{\tau}(t_0) \times \mathcal{B}_{\tau}(t_0)$ there is a unique pair $(\mu, \nu) \in \mathscr{A}_{[t_0, b]}^F \times \mathscr{A}_{[t_0, b]}^G$ such that $\alpha(\nu) = \mu$ and $\beta(\mu) = \nu$.

Upper and lower value functions

Definition 4

We consider a payoff function $\mathcal{G} : \mathscr{P}(\mathbb{R}^d) \times (\mathbb{R}^d) \to \mathbb{R}$ bounded and locally Lipschitz continuous, and we assume that F and \mathcal{G} satisfy (F). Given $t_0 \in [0, T], \mu_0, \nu_0 \in \mathscr{P}_2(\mathbb{R}^d), (\alpha, \beta) \in \mathcal{A}(\mu_0, t_0) \times \mathcal{B}(\nu_0, t_0)$ we define

$$J(t_0, \mu_0, \nu_0, \alpha, \beta) = \mathcal{G}(\mu_{\tau}, \nu_{\tau}),$$

where $\boldsymbol{\mu} = \{\mu_t\}_{t \in [0, T]} \in \mathscr{A}_{[t_0, T]}^F(\mu_0), \boldsymbol{\nu} = \{\nu_t\}_{t \in [0, T]} \in \mathscr{A}_{[t_0, T]}^G(\nu_0), \text{ and } (\boldsymbol{\mu}, \boldsymbol{\nu}) \in \mathscr{A}_{[t_0, T]}^F(\mu_0) \times \mathscr{A}_{[t_0, T]}^G(\nu_0) \text{ is the unique element of } \mathscr{A}_{[t_0, T]}^F(\mu_0) \times \mathscr{A}_{[t_0, T]}^G(\nu_0), \text{ given by Lemma 3, satisfying } \alpha(\boldsymbol{\nu}) = \boldsymbol{\mu} \text{ and } \beta(\boldsymbol{\nu}) = \boldsymbol{\mu}.$

The upper and lower value function $V^{\pm}:[0,T]\times \mathscr{P}_2(\mathbb{R}^d)\times \mathscr{P}_2(\mathbb{R}^d)\to \mathbb{R}$ are defined by setting

$$V^{+}(t_{0}, \mu_{0}, \nu_{0}) = \inf_{\alpha \in \mathcal{A}(t_{0}, \mu_{0})} \sup_{\beta \in \mathcal{B}(t_{0}, \nu_{0})} J(t_{0}, \mu_{0}, \nu_{0}, \alpha, \beta),$$

$$V^{-}(t_{0}, \mu_{0}, \nu_{0}) = \sup_{\beta \in \mathcal{B}(t_{0}, \nu_{0})} \inf_{\alpha \in \mathcal{A}(t_{0}, \mu_{0})} J(t_{0}, \mu_{0}, \nu_{0}, \alpha, \beta).$$

Existence of a value and its characterization

Definition 5 (Hamiltonian function for the pursuit-evasion game)

We consider F, G satisfying (F), and define the following Hamiltonian function for all $\mu, \nu \in \mathscr{P}_2(\mathbb{R}^d)$, $p_{\mu} \in L^2_{\mu}(\mathbb{R}^d)$, $p_{\nu} \in L^2_{\mu}(\mathbb{R}^d)$

$$\mathcal{H}_{PE}(\mu,\nu,p_{\mu},p_{\nu}) = \inf_{\substack{\nu(\cdot)\in L^{2}_{\mu}(\mathbb{R}^{d})\\\nu(x)\in F(x)\ \mu-\text{a.e.}x}} \int_{\mathbb{R}^{d}} \langle p_{\mu}(x),\nu(x)\rangle \ d\mu(x) + \\ + \sup_{\substack{w(\cdot)\in L^{2}_{\nu}(\mathbb{R}^{d})\\w(x)\in G(x)\ \nu-\text{a.e.}x}} \int_{\mathbb{R}^{d}} \langle p_{\nu}(x),w(x)\rangle \ d\nu(x).$$
(7)

Theorem 6

Consider F, G satisfying (F), and a bounded Lipschitz continuous payoff function G. Then the game has a value, i.e., $V^+ = V^- =: V$ and V is the unique viscosity solution of the Hamilton-Jacobi-Bellman equation $\partial_t V + \mathscr{H}_{PE}(\mu, \nu, D_{\mu}V, D_{\nu}V) = 0, V(T, \mu, \nu) = \mathcal{G}(\mu, \nu).$

Work in progress

- comparison principle for Hamilton-Jacobi equation under weaker smoothness assumption of the value function;
- Pontryagin maximum principle and necessary conditions;
- more general cost functions;
- application to pedestrian dynamics (evacuation problem, problems with mass sources and sinks).

References

- G. Cavagnari, A. Marigonda and B. Piccoli: Optimal synchronization problem for a multi-agent system. Networks and Heterogeneous Media (NHM), vol. 12, n. 2, pp. 277-295 (2017). DOI: 10.3934 /nhm.2017012.
- G. Cavagnari, A. Marigonda, K. T. Nguyen and F. S. Priuli: Generalized control systems in the space of probability measures. Set-Valued and Variational Analysis (SVAA-D-16-00122.1), vol. 25, n. 2, pp.1-29 (2017). DOI: 10.1007/s11228-017-0414-y.
- G. Cavagnari: Regularity results for a time-optimal control problem in the space of probability measures. Mathematical Control and Related Fields (MCRF), vol. 7, n. 2, pp. 213-233 (2017). DOI: 10.3934 /mcrf.2017007.
- G. Cavagnari, A. Marigonda and G. Orlandi: Hamikon-Jacobi-Bellman equation for a time-optimal control problem in the space of probability measures. Bociu, Lorena and Désidéri, Jean-Antoine and Habbal, Abderrahmane (Eds.). System Modeling and Optimization: 27th IFIP TC 7 Conference, CSMO 2015, Sophia Antipolis, France, June 29 - July 3, 2015, Revised Selected Papers, vol. 494, pp. 200-208. Springer, Cham (2016). DOI: 10.1007/978-3319-55795-3 18
- G. Cavagnari and A. Marigonda: Time-optimal control problem in the space of probability measures. I. Lirkov et al. (Eds.). Large-scale scientific computing, Lecture Notes in Computer Science, vol. 9374, pp. 109-116. Springer, Cham (2015). DOI: 10.1007/978-319-265209 11
- G. Cavagnari, A. Marigonda and B. Piccoli: Averaged time-optimal control problem in the space of positive Borel measures, to appear in ESAIM: COCV
- G. Cavagnari and A. Marigonda: Measure-theoretic Lie Brackets for nonsmooth vector fields, to appear in DCDS-S
- G. Cavagnari, A. Marigonda and B. Piccoli: Superposition principle for differential inclusions. Preprint
- G. Cavagnari, A. Marigonda and F. S. Priuli: Attainability property for a probabilistic target in Wasserstein spaces. Preprint.
- A. Marigonda and M. Quincampoix: Mayer Control Problem with Probabilistic Uncertainty on Initial Positions and Velocities. Preprint

医下口 医下

Thank you! antonio.marigonda@univr.it

A. Marigonda Mayer and min. time problem for multi-agent systems 46/46