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Mathematical tool: convex subdifferential

Let E be a Banach space and E ∗ be its dual.

Definition (convex subdifferential)

Let ϕ : E → R ∪ {+∞} be a convex function. The (convex)
subdifferential of ϕ at x , and is defined by

∂ϕ(x) = { x∗ ∈ E ∗ | ϕ(v) ≥ ϕ(x) + 〈x∗, v − x〉E∗×E for all v ∈ E }.

Sometimes we refer to ∂ϕ as the subdifferential of ϕ in the sense of
convex analysis. Observe that if ϕ(x) = +∞, then ∂ϕ(x) = ∅.
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The Clarke subgradient (1983)

Definition (Clarke subgradient)

Let h : E → R be a locally Lipschitz function on a Banach space E .

The generalized directional derivative of h at x ∈ E in the direction
v ∈ E is defined by

h0(x ; v) = lim sup
y→x , t↓0

h(y + tv)− h(y)

t
.

The generalized subgradient of h at x is given by

∂h(x) = { ζ ∈ E ∗ | h0(x ; v) ≥ 〈ζ, v〉E∗×E for all v ∈ E }.

The locally Lipschitz function h is called regular (in the sense of Clarke) at
x ∈ E if for all v ∈ E the one-sided directional derivative h′(x ; v) exists
and satisfies h0(x ; v) = h′(x ; v) for all v ∈ E .
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Part 1

Dynamic frictional nonsmooth
contact problem
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Physical setting of the contact model

A viscoelastic body occupies an open, bounded and connected set
Ω ⊂ Rd , d = 2, 3.
The boundary Γ is Lipschitz continuous and Γ = ΓD ∪ ΓN ∪ ΓC

with mutually disjoint measurable parts, m(ΓD) > 0.
We denote by ν = (νi ) the outward unit normal at Γ.
The part ΓC the potential contact surface.
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Basic notation

We suppose the body is clamped on ΓD , volume forces of density f 0 act in
Ω and surface tractions of density f N are applied on ΓN .

The notation Sd stands for the space of second order symmetric tensors on
Rd . On Rd and Sd we use the inner products and the Euclidean norms
defined by

u · v = uivi , ‖u‖ = (u · u)1/2 for all u = (ui ), v = (vi ) ∈ Rd ,

σ · τ = σijτij , ‖σ‖ = (σ · σ)1/2 for all σ = (σij), τ = (τij) ∈ Sd ,

respectively.
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Basic notation for the contact problem

Given a vector field u, notation uν and uτ represent its normal and
tangential components on the boundary defined by

uν = u · ν and uτ = u − uνν.

For a tensor σ, the symbols σν and στ denote its normal and tangential
components on the boundary, i.e.,

σν = (σν) · ν and στ = σν − σνν.

Sometimes, we omit the explicit dependence on x ∈ Ω ∪ Γ.
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Problem (Classical model for the contact process)

Find a displacement field u : Ω× (0,T )→ Rd and a stress field
σ : Ω× (0,T )→ Sd such that for all t ∈ (0,T ),

σ(t) = Aε(u ′(t)) + Bε(u(t)) +

∫ t

0
C(t − s)ε(u ′(s)) ds in Ω,

ρu ′′(t) = Divσ(t) + f 0(t) in Ω,

u(t) = 0 on ΓD ,

σ(t)ν = f N(t) on ΓN ,

−σν(t) ∈ k(uν(t)) ∂jν(u′ν(t)) on ΓC ,

‖στ (t)‖ ≤ Fb

(∫ t

0
‖uτ (s)‖ ds

)
,

−στ (t) = Fb
( ∫ t

0
‖uτ (s)‖ ds

) u ′τ (t)

‖u ′τ (t)‖
if u ′τ (t) 6= 0 on ΓC ,

u(0) = u0, u ′(0) = w0 in Ω.

(Jagiellonian University in Krakow) Variational–Hemivariational Inequalities 9 / 50



Comments on the model

Relation

σ(t) = Aε(u ′(t)) + Bε(u(t)) +

∫ t

0
C(t − s)ε(u ′(s)) ds in Ω

represents the viscoelastic constitutive law in which A is the viscosity
operator, B is the elasticity operator, C is the relaxation tensor, and
ε(u) denotes the linearized strain tensor defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui ,j + uj ,i ) in Ω.

Equation
ρu ′′(t) = Divσ(t) + f 0(t) in Ω

represents the equation of motion, where ρ denotes the density of
mass, and f 0 denotes the density of the time-dependent volume
forces. For simplicity, we take ρ = 1.
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Comments on the model

Condition u(t) = 0 on ΓD is the displacement homogeneous
boundary condition which means that the body is fixed on ΓD .

Condition σ(t)ν = f N on ΓN is the traction boundary condition with
surface tractions of density f N acting on ΓN .

Relation
−σν(t) ∈ k(uν(t)) ∂jν(u′ν(t)) on ΓC

represents the multivalued contact condition with nonmonotone
normal damped response in which ∂jν denotes the Clarke subgradient
of a given function jν and k is a damper coefficient which is allowed
to depend on the normal displacement.
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Comments on the model

Condition

‖στ (t)‖ ≤ Fb

(∫ t

0
‖uτ (s)‖ ds

)
,

−στ (t) = Fb
( ∫ t

0
‖uτ (s)‖ ds

) u ′τ (t)

‖u ′τ (t)‖
if u ′τ (t) 6= 0 on ΓC

represents a version of the Coulomb law of dry friction in which Fb is
a given positive function, the friction bound. The friction bound may
depend on the quantity

S(x , t) =

∫ t

0
‖uτ (x , s)‖ ds

which is the total slip (or the accumulated slip) at the point x ∈ Γ3

over the time period [0, t]. Considering such a dependence is
reasonable from the physical point of view, since it incorporates the
changes on the contact surface resulting from sliding.
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A remark

It is well known that a variant of the Coulomb law of dry friction on ΓC

can be equivalently formulated as follows

−στ (t) ∈ Fb

(∫ t

0
‖uτ (s)‖ ds

)
∂‖u ′τ (t)‖Rd on ΓC ,

where

∂ ‖x‖ =


B(0, 1), if x = 0

x
‖x‖

, if x 6= 0

for x ∈ Rd , B(0, 1) denotes the unit closed ball in Rd .
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A remark

J. J. Telega, Variational methods in contact problems in mechanics,
Advances in Mechanics 10 (1987), 3-95.

“Generalizations of subdifferential boundary conditions

−σν ∈ ∂jν(uν), −στ ∈ ∂jτ (uτ ) on ΓC

to the case of nonmonotone relations, with the use of mathematical results
of Rockafellar (1981), are presented by Panagiotopoulos (1983-1985).
These generalizations do not have practical applications so far. This
follows from the fact that the existing notion of the generalized
subdifferential to the case of nonconvex functions is quite complex”.
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Variational formulation of the contact problem

We use the spaces

V = { v ∈ H1(Ω;Rd) | v = 0 on ΓD }, H = L2(Ω;Rd), H = L2(Ω; Sd).

We denote by v the trace on the boundary of an element v ∈ H1(Ω;Rd).
On V we consider the inner product and the corresponding norm given by

(u, v)V = (ε(u), ε(v))H, ‖v‖V = ‖ε(v)‖H for all u, v ∈ V .

Since meas(ΓD) > 0, it follows that V is a Hilbert space. The trace
operator is denoted by γ : V → L2(ΓC ;Rd). The space H is a Hilbert
space endowed with the inner product

(σ, τ )H =

∫
Ω
σij(x)τij(x) dx ,

and the associated norm ‖ · ‖H.
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Variational formulation of the contact problem

Define a space of fourth order tensor fields

Q∞ = { E = (Eijkl) | Eijkl = Ejikl = Eklij ∈ L∞(Ω), 1 ≤ i , j , k , l ≤ d }.

This is a real Banach space with the norm

‖E‖Q∞ =
∑

0≤i ,j ,k,l≤d
‖Eijkl‖L∞(Ω).
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Time dependent spaces

Given 0 < T < +∞, let V = L2(0,T ;V ) and W = {w ∈ V | w ′ ∈ V∗},
where the time derivative w ′ = ∂w/∂t is understood in the sense of
vector-valued distributions and V∗ = L2(0,T ;V ∗).
It is known that the space W endowed with the graph norm

‖w‖W = ‖w‖V + ‖w ′‖V∗

is a separable and reflexive Banach space. We identify H = L2(0,T ;H)
with its dual and obtain the continuous embeddings

W ⊂ V ⊂ H ⊂ V∗.

The embedding
W ⊂ C (0,T ;H)

is continuous, C (0,T ;H) being the space of continuous functions on
[0,T ] with values in H.
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Hypotheses on the viscosity operator

A : Ω× Sd → Sd satisfies

(a) there exists LA > 0 such that
‖A(x , ε1)−A(x , ε2)‖ ≤ LA‖ε1 − ε2‖

for all ε1, ε2 ∈ Sd , a.e. x ∈ Ω.

(b) there exists mA > 0 such that
(A(x , ε1)−A(x , ε2)) · (ε1 − ε2) ≥ mA ‖ε1 − ε2‖2

for all ε1, ε2 ∈ Sd , a.e. x ∈ Ω.

(c) the mapping x 7→ A(x , ε) is measurable on Ω,
for all ε ∈ Sd .

(d) A(x , 0) = 0 a.e. x ∈ Ω.
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Hypotheses on the elasticity operator

B : Ω× Sd → Sd satisfies

(a) there exists LB > 0 such that
‖B(x , ε1)− B(x , ε2)‖ ≤ LB‖ε1 − ε2‖

for all ε1, ε2 ∈ Sd , a.e. x ∈ Ω.

(b) the mapping x 7→ B(x , ε) is measurable on Ω,
for all ε ∈ Sd .

(c) B(x , 0) = 0 a.e. x ∈ Ω.
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Hypotheses on the relaxation tensor
and the damper coefficient

The relaxation tensor satisfies

C ∈ C (0,T ; Q∞).

k : ΓC × R→ R+ satisfies

(a) the mapping x 7→ k(x , r) is measurable on ΓC ,
for any r ∈ R.

(b) there are constants k1, k2 such that

0 < k1 ≤ k(x , r) ≤ k2 for all r ∈ R, a.e. x ∈ ΓC .

(c) there exists Lk > 0 such that
|k(x , r1)− k(x , r2)| ≤ Lk |r1 − r2|

for all r1, r2 ∈ R, a.e. x ∈ ΓC .
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Hypotheses on the potential function

jν : ΓC × R→ R satisfies

(a) jν(·, r) is measurable on ΓC for all r ∈ R and there
exists e ∈ L2(Γ3) such that jν(·, e(·)) ∈ L1(ΓC ).

(b) jν(x , ·) is locally Lipschitz on R for a.e. x ∈ ΓC .

(c) |∂jν(x , r)| ≤ c0 for a.e. x ∈ ΓC ,
for all r ∈ R with c0 ≥ 0.

(d) j0
ν (x , r1; r2 − r1) + j0

ν (x , r2; r1 − r2) ≤ β |r1 − r2|2
for a.e. x ∈ ΓC , all r1, r2 ∈ R with β ≥ 0.
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Hypotheses on the friction bound,
densities of body forces, surface tractions

and initial data

Fb : ΓC × R→ R+ satisfies

(a) the mapping x 7→ Fb(x , r) is measurable on ΓC ,
for any r ∈ R.

(b) there exists LFb
> 0 such that

|Fb(x , r1)− Fb(x , r2)| ≤ LFb
|r1 − r2|

for all r1, r2 ∈ R, a.e. x ∈ ΓC .

(c) the mapping x 7→ Fb(x , 0) belongs to L2(ΓC ).

f 0 ∈ L2(0,T ; L2(Ω;Rd)), f N ∈ L2(0,T ; L2(ΓN ;Rd)), u0, w0 ∈ V .
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Example 1 of the normal damped response potential

Consider the function p : R→ R defined by

p(r) =



0 if r < 0,

r if 0 ≤ r < 1,

2− r if 1 ≤ r < 2,
√
r − 2 + r − 2 if 2 ≤ r < 6,

r if 6 ≤ r < 7,

7 if r ≥ 7.

The function p is continuous and nonconvex, and it is neither monotone,
nor Lipschitz continuous. Consider the function jν : R→ R defined by

jν(r) =

∫ r

0
p(s) ds for r ∈ R.

Then the Clarke sugradient ∂jν is single-valued and

∂jν(r) = j ′ν(r) = p(r) for all r ∈ R.

The function jν satisfies the hypotheses (a)-(d).
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Example 2 of the normal damped response potential

Let p : R→ R be the discontinuous function given by

p(r) =

{
0 if r < 0,

e−r + a if r ≥ 0,

where a ≥ 0. Then the function jν has the form

jν(r) =

∫ r

0
p(s) ds =

{
0 if r < 0,

−e−r + ar + 1 if r ≥ 0,

its subdifferential is multivalued, and is given by

∂jν(r) =


0 if r < 0,

[0, 1 + a] if r = 0,

e−r + a if r > 0

and jν satisfies the hypotheses (a)-(d).
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Figures of function p, jν and ∂jν in Example 2

function p function jν

Clarke subgradient ∂jν
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Problem (Variational-hemivariational form of the contact problem)

Find a displacement field u : (0,T )→ V such that for a.e. t ∈ (0,T ),∫
Ω

u ′′(t) · (v − u ′(t)) dx + (Aε(u ′(t)), ε(v − u ′(t)))H

+(Bε(u(t)), ε(v − u ′(t)))H +
(∫ t

0
C(t − s)ε(u ′(s)) ds, ε(v − u ′(t))

)
H

+

∫
ΓC

Fb

(∫ t

0
‖uτ (s)‖ ds

) (
‖v τ‖ − ‖u ′τ (t)‖

)
dΓ

+

∫
ΓC

k(uν(t)) j0
ν (u′ν(t); vν − u′ν(t)) dΓ ≥ 〈f (t), v − u ′(t)〉V ∗×V ,

u(0) = u0, u ′(0) = w0.

Here f : (0,T )→ V ∗ is defined, for all v ∈ V and t ∈ (0,T ), by

〈f (t), v〉V ∗×V = (f 0(t), v)H + (f N(t), γv)L2(ΓN ;Rd ).
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Unique solvability of the variational-hemivariational
inequality

Theorem (1)

Assume the above hypotheses on the data. If

mA > β k2‖γ‖2,

then the variational-hemivariational inequality has a unique solution with
regularity u ∈ V and u ′ ∈ W.

Conclusion
Under the above hypotheses, the contact problem has a unique weak
solution (u,σ) with the regularity

u ∈ V, u ′ ∈ W, σ ∈ L2(0,T ;H), Divσ ∈ V∗.
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Idea of the proof:
a reformulation in terms of velocity

Let Y = Z = L2(Γ3). We introduce operators A : (0,T )× V → V ∗,
R1 : V → V∗, R : V → L2(0,T ;Y ) and S : V → L2(0,T ;Z ) as follows:

〈Aw , v〉V ∗×V = (Fε(w), ε(v))H for all w , v ∈ V , t ∈ (0,T ),

〈(R1w)(t), v〉V ∗×V =
(
B
( ∫ t

0
ε(w(s)) ds + u0

)
, ε(v)

)
H

+
(∫ t

0
C(t − s)ε(w(s)) ds, ε(v)

)
H

for all w ∈ V, v ∈ V , t ∈ (0,T ),

(Rw)(t) =

∫ t

0

∥∥∥∫ s

0
w τ (r) dr + u0τ

∥∥∥ ds for all w ∈ V, t ∈ (0,T ),

(Sw)(t) =

∫ t

0
wν(s) ds + u0ν for all w ∈ V, t ∈ (0,T ).

(Jagiellonian University in Krakow) Variational–Hemivariational Inequalities 28 / 50



Idea of the proof:
a reformulation in terms of velocity

Define J : (0,T )× Z × V → R and ϕ : (0,T )× Y × V → R by

J(t, z , v) =

∫
Γ3

k(z) jν(vν) dΓ for all z ∈ Z , v ∈ V , t ∈ (0,T ),

ϕ(t, y , v) =

∫
Γ3

Fb(y) ‖v τ‖ dΓ for all y ∈ Y , v ∈ V , t ∈ (0,T ).

We introduce the velocity field w = u ′.
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Idea of the proof:
a reformulation in terms of velocity

With the notation above we consider the following problem in terms of the
velocity.

Problem (V-HVI in terms of velocity)

Find w ∈ W such that

〈w ′(t) + A(t,w(t)) + (R1w)(t)− f (t), v −w(t)〉V ∗×V
+ J0(t, (Sw)(t),w(t); v −w(t))

+ϕ(t, (Rw)(t), v)− ϕ(t, (Rw)(t),w(t)) ≥ 0

for all v ∈ V , a.e. t ∈ (0,T ),

w(0) = w0.
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Idea of the proof

We prove that the V-HVI in terms of velocity has a unique solution
w ∈ W.

Then, we define a function u : (0,T )→ V by

u(t) =

∫ t

0
w(s) ds + u0 for all t ∈ (0,T ).

Hence, the variational-hemivariational inequality has a unique solution
with regularity u ∈ V and u ′ ∈ W.

In what follows, it is enough to prove an existence and uniqueness
result for the problem in terms of velocity.
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Part 2

Abstract first order variational-hemivariational
inequality with history-dependent operators
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Abstract h.-d. variational-hemivariational inequality

Let Y and Z be two Banach spaces.

Problem (Abstract h.-d. inequality)

Find w ∈ W such that

〈w ′(t) + A(t,w(t)) + (R1w)(t)− f (t), v − w(t)〉V ∗×V
+ J0(t, (Sw)(t),w(t); v − w(t))

+ϕ(t, (Rw)(t), v)− ϕ(t, (Rw)(t),w(t)) ≥ 0

for all v ∈ V , a.e. t ∈ (0,T )

w(0) = w0.

Here, J : (0,T )×Z ×V → R, ϕ : (0,T )×Y ×V → R, and R1 : V → V∗,
R : V → L2(0,T ;Y ) and S : V → L2(0,T ;Z ) are h.-d. operators.
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Hypotheses (1)

A : (0,T )× V → V ∗ satisfies

(1) A(·, v) is measurable on (0,T ) for all v ∈ V .

(2) A(t, ·) is demicontinuous on V for a.e. t ∈ (0,T ).

(3) ‖A(t, v)‖V ∗ ≤ a0(t) + a1‖v‖V for all v ∈ V , a.e. t ∈ (0,T ) with
a0 ∈ L2(0,T ), a0 ≥ 0 and a1 ≥ 0.

(4) A(t, ·) is strongly monotone for a.e. t ∈ (0,T ), i.e., for a constant
mA > 0,

〈A(t, v1)− A(t, v2), v1 − v2〉V ∗×V ≥ mA‖v1 − v2‖2
V

for all v1, v2 ∈ V , a.e. t ∈ (0,T ).
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Hypotheses (2)

J : (0,T )× Z × V → R satisfies

(1) J(·, z , v) is measurable on (0,T ) for all z ∈ Z , v ∈ V .

(2) J(t, ·, v) is continuous on Z for all v ∈ V , a.e. t ∈ (0,T ).

(3) J(t, z , ·) is locally Lipschitz on V for all z ∈ Z , a.e. t ∈ (0,T ).

(4) ‖∂J(t, z , v)‖V ∗ ≤ c0J(t) + c1J‖z‖Z + c2J‖v‖V for all z ∈ Z , v ∈ V ,

a.e. t ∈ (0,T ) with c0J ∈ L2(0,T ), c0J , c1J , c2J ≥ 0.

(5) J0(t, z1, v1; v2 − v1) + J0(t, z2, v2; v1 − v2) ≤
m2J ‖z1 − z2‖Z‖v1 − v2‖V + m2J ‖v1 − v2‖2

V for all zi ∈ Z , vi ∈ V ,

i = 1, 2, a.e. t ∈ (0,T ) with m2J ≥ 0, m2J ≥ 0.
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Hypotheses (3)

ϕ : (0,T )× Y × V → R satisfies

(1) ϕ(·, y , v) is measurable on (0,T ) for all y ∈ Y , v ∈ V .

(2) ϕ(t, ·, v) is continuous on Y for all v ∈ V , a.e. t ∈ (0,T ).

(3) ϕ(t, y , ·) is convex and l.s.c. on V for all y ∈ Y , a.e. t ∈ (0,T ).

(4) ‖∂ϕ(t, y , v)‖V ∗ ≤ c0ϕ(t) + c1ϕ‖y‖Y + c2ϕ‖v‖V for all y ∈ Y ,
v ∈ V , a.e. t ∈ (0,T ) with c0ϕ ∈ L2(0,T ), c0ϕ, c1ϕ, c2ϕ ≥ 0.

(5) ϕ(t, y1, v2)− ϕ(t, y1, v1) + ϕ(t, y2, v1)− ϕ(t, y2, v2) ≤
βϕ ‖y1 − y2‖Y ‖v1 − v2‖V for all yi ∈ Y , vi ∈ V , i = 1, 2, a.e.

t ∈ (0,T ) with βϕ ≥ 0.
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Hypotheses (4)

R1 : V → V∗, R : V → L2(0,T ;Y ) and S : V → L2(0,T ;Z ) satisfy

(1) ‖(R1v1)(t)− (R1v2)(t)‖V ∗ ≤ cR1

∫ t

0
‖v1(s)− v2(s)‖V ds

for all v1, v2 ∈ V, a.e. t ∈ (0,T ) with cR1 > 0.

(2) ‖(Rv1)(t)− (Rv2)(t)‖Y ≤ cR

∫ t

0
‖v1(s)− v2(s)‖V ds

for all v1, v2 ∈ V, a.e. t ∈ (0,T ) with cR > 0.

(3) ‖(Sv1)(t)− (Sv2)(t)‖Z ≤ cS

∫ t

0
‖v1(s)− v2(s)‖V ds

for all v1, v2 ∈ V, a.e. t ∈ (0,T ) with cS > 0.
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Hypotheses (5)

Smallness condition: mA > max{m2J , c2J , c2ϕ}.

Regularity of the data: f ∈ V∗, w0 ∈ V .

Theorem

Under hypotheses (1)–(5), the abstract history-dependent
variational-hemivariational inequality has a unique solution.
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Two main ingredients of the proof

Theorem (Existence and uniqueness for evolutionary inclusion)

Find w ∈ W such that{
w ′(t) + A(t,w(t)) + ∂ψ(t,w(t)) 3 f (t) a.e. t ∈ (0,T ),

w(0) = w0.

Lemma (A fixed point result)

Let E be a Banach space and 0 < T <∞. Let
Λ: L2(0,T ;E )→ L2(0,T ;E ) be an operator such that

‖(Λη1)(t)− (Λη2)(t)‖2
E ≤ c

∫ t

0
‖η1(s)− η2(s)‖2

E ds

for all η1, η2 ∈ L2(0,T ;E ), a.e. t ∈ (0,T ) with a constant c > 0.
Then Λ has a unique fixed point in L2(0,T ;E ).

(Jagiellonian University in Krakow) Variational–Hemivariational Inequalities 39 / 50



Remarks

From the abstract result, similar existence and uniqueness results can be
obtained for dynamic contact problems with

(1) other constitutive laws

(2) other boundary conditions, for example,

|σν(t)| ≤ F
(∫ t

0
u+
ν (s) ds

)
,

σν(t) =


0 if uν < 0

F
(∫ t

0
u+
ν (s) ds

)
if uν > 0,


on ΓC ,

−στ (t) ∈ µ(uν(t))∂jτ (u ′τ (t)) on ΓC .
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Remarks

(3) other boundary conditions, for example,

−σν(t) = pν(uν(t)) on ΓC ,

‖στ (t)‖ ≤ µ|σν |, −στ = µ|σν |
u ′τ (t)

‖u ′τ (t)‖
if u ′τ (t) 6= 0 on ΓC .
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Conclusions

We have provided results on

the existence and uniqueness of solution to the abstract
variational-hemivariational inequality,

the existence and uniqueness of weak solutions to the dynamic
frictional contact problem in nonlinear viscoelasticity,

applications of the abstract result to other contact problems.
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Example: nonconvex friction law

j(ξ) = max{f1(ξ), f2(ξ)}

Clarke subgradient ∂j
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Example: nonconvex friction law

j(ξ) = max{a‖ξ‖, f1(ξ), f2(ξ)}

Clarke subgradient ∂j
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Example: zig-zag friction law

j(ξ) = max{f1(ξ), f2(ξ), f3(ξ), f ′1(ξ), f ′2(ξ), f ′3(ξ)}

Clarke subgradient ∂j
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Example: zig-zag friction law

j(ξ) = min{f1(ξ), f2(ξ), f3(ξ)}

Clarke subgradient ∂j
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Example: infinite number of jumps

Let l be an open subset of the real line R and let M be a measurable
subset of l such that for every open and nonempty subset I of l ,
meas(I ∩M) > 0 and meas(I ∩ (l \M)) > 0.
Let

g(s) =

{
b1 if s ∈ M

−b2 if s /∈ M

and j(r) =

∫ r

0
g(θ) dθ. Then the nonconvex potential j is locally Lipschitz

and
∂j(r) = [−b2, b1] for every r ∈ l .
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