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I. Linear-Quadratic (LQ) Control
Recall the data of (LQ) consists of matrices P, Q, R, A, B of appropriate
dimensions. The problem is

P(τ , ξ): inf
u(·)

{〈
Px(0), x(0)

〉
+

∫ τ

0

[〈
Qx(t), x(t)

〉
+
〈
Ru(t), u(t)

〉]
dt

}

subject to {
ẋ(t) = Ax(t) + Bu(t) a.e. t ∈ [0, τ ],

x(τ ) = ξ

where the infimum is taken over measurable functions u(·).

(LQ) remains the workhorse of engineering control - but with

No constraints on control or state.
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Goebel and Subbotin (2007) extended (LQ) to have Control Constraints:

u(t) ∈ U a.e. t ∈ [τ,T ].

The proofs are based on duality relationships, but:

(1) Their results require positive definiteness of the integrand data.

(2) No state constraints.

A major theme here is that (1) and (2) are dual concepts.

Recently, Hermosilla and PW developed (LQ) with a State Constraint:

x(t) ∈ X a.e. t ∈ [τ,T ].

For duality purposes, the theory necessarily must be broadened to arcs of
Bounded Variation (BV).

We proved value function duality and a Method of Characteristics, but
these are now superseded by new results in Fully Convex Control (FCC).
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II. Fully Convex Control (FCC) problems

Consider the “calculus of variations” problem

P(τ , ξ): inf
x(·)

{
`
(
x(0)

)
+

∫ τ

0
L
(
x(t), ẋ(t)

)
dt

}
with x(τ ) = ξ.

where the infimum is taken over absolutely continuous arcs x(·).
Classically, the data is assumed to be smooth. A Fully Convex Control
(FCC) problem has data `(·) and L(·, ·) convex, closed, and proper (≡ F)
.

MAJOR GOAL:

Develop (FCC) with state constraints/impulses.
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Review of existing FCC theory
(A) Existence theory: Our hypotheses imply the existence of an optimal
solution x̄(·).

(B) Optimality conditions: Given optimal x̄(·) ,the Euler-Lagrange
inclusion has the (nonsmooth) convex statement:

∃ ȳ(·) s.t.
(

˙̄y(t), ȳ(t)
)
∈ ∂x ,vL

(
x̄(t), ˙̄x(t)

)
, (E-L)

which is equivalent to the canonical or Hamiltonian Inclusion:(
− ˙̄y(t), ˙̄x(t)

)
∈ ∂H

(
x̄(t), ȳ(t)

)
. (HI)

The Transversality Condition is

ȳ(0)
)
∈ ∂`

(
x̄(0)

)
. (TC)

The Hamiltonian is

H(x , y) := sup
v∈Rn

{
〈y , v〉 − L(x , v)

}
.
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(C) Duality: The dual data consists of:

M(y ,w) := L∗(w , y) = sup
(x ,v)∈R2n

{
〈w , x〉+ 〈y , v〉 − L(x , v)

}
m(η′) := `∗(η′) = sup

ξ′∈Rn

{
〈ξ′, η′〉 − `(ξ′)

}
and an associated dual problem is

Q(τ, η): inf
y(·)

{
m
(
y(0)

)
+

∫ τ

0
M
(
y(t), ẏ(t)

)
dt

}
with y(τ) = η.

The dual Hamiltonian H̃(·, ·) does not introduce new data:

H̃(y , x) := sup
w∈Rn

{
〈x ,w〉 −M(y ,w)

}
= −H(x , y).
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Theorem (Rockafellar 1970’s)

Suppose x̄(·) and ȳ(·) are primal/dual feasible and satisfy the (equivalent) (TC):

ȳ(0) ∈ ∂`
(
x̄(0)

)
and x̄(0) ∈ ∂m

(
ȳ(0)

)
.

The following are equivalent:

(a) x̄(·) is optimal in P(τ, ξ) and ȳ(·) satisfies the primal (E-L) inclusion(
˙̄y(t), ȳ(t)

)
∈ ∂x,vL

(
x̄(t), ˙̄x(t)

)
.

(b) ȳ(·) is optimal in Q(τ, η) and x̄(·) satisfies the dual (E-L) inclusion(
˙̄x(t), x̄(t)

)
∈ ∂y ,wM

(
ȳ(t), ˙̄y(t)

)
(c)

(
x̄(·), ȳ(·)

)
satisfy the primal canonical (HI) inclusion(

− ˙̄y(t), ˙̄x(t)
)
∈ ∂H

(
x̄(t), ȳ(t)

)
.

(d)
(
x̄(·), ȳ(·)

)
satisfy the dual canonical (HI) inclusion(

− ˙̄x(t), ˙̄y(t)
)
∈ ∂H̃

(
ȳ(t), x̄(t)

)
.
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(D) Hamilton-Jacobi (HJ) theory (RTR & PW, 2001) ] Recall the
primal problem

P(τ, ξ): min

{
`
(
x(0)

)
+

∫ τ

0
L
(
x(t), ẋ(t)

)
dt

}
with x(τ) = ξ.

Let V (τ, ξ) be the value of the problem P(τ, ξ), and if this function is
differentiable, then it satisfies the Hamilton-Jacobi equation:

∂

∂τ
V (τ, ξ) = H

(
ξ,∇ξV (τ, ξ)

)
V (0, ξ) = `

(
ξ
)
.

Under general (FCC) assumptions, the function

ξ 7→ V (τ, ξ) =: Vτ (ξ)

is convex, and so one may expect much more information can be obtained.
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Value function duality

Everything thus far applies equally to the dual data, where
(
`(·), L(·, ·)

)
are replaced by

(
m(·),M(·, ·)

)
. We have a value function W (τ, η) that

satisfies the same properties as V (τ, ξ). As before, the convex function
η 7→W (τ, η) is written as Wτ (·), and is conjugate to Vτ (·):

Theorem

For τ ≥ 0, the value functions Vτ (·) and Wτ (·) are dual to each other:

Wτ (η) = sup
ξ∈Rn

{
〈ξ, η〉 − Vτ (ξ)

}
and Vτ (ξ) = sup

η∈Rn

{
〈ξ, η〉 −Wτ (η)

}
This implies the subgradients of these maps are related by

η ∈ ∂Vτ (ξ) ⇐⇒ ξ ∈ ∂Wτ (η) ⇐⇒ Vτ (ξ) + Wτ (η) = 〈ξ, η〉.
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Method of characteristics (co-state inclusion is an equality)
Recall that primal/dual pair of feasible arcs

(
x(·), y(·)

)
satisfy the

Hamilton Inclusion (HI) and Transversality Condition (TC)

−ẏ(t) ∈ ∂xH
(
x(t), y(t)

)
(1)

ẋ(t) ∈ ∂yH
(
x(t), y(t)

)
(2)

y(0) ∈ ∂`
(
x(0)

)
if and only if x(·) solves P(τ, ξ) and y(·) solves Q(τ, η).
Moreover, t 7→ H

(
x(t), y(t)

)
is constant.

The Hamiltonian flow (or Reachable set-valued map) consists of a
1-parameter family of mappings Rτ (·, ·) : R2n ⇒ R2n, τ > 0, so that

Rτ (ξ0, η0) :=

{
(ξ, η) : ∃

(
x(·), y(·)

)
satisfying (1), (2) with

(
x(0), y(0)

)
= (ξ0, η0) and

(
x(τ), y(τ)

)
= (ξ, η)

}
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Let the graph of ∂Vτ be defined by

gr
(
∂Vτ

)
=
{

(ξ, η)
∣∣ η ∈ ∂Vτ (ξ)

}
⊂ Rn × Rn.

The case τ = 0 is when

gr
(
∂V0

)
= gr

(
∂`
)

=
{

(ξ, η)
∣∣ η ∈ ∂`(ξ)

}
.

Theorem

The flow mapping transforms gr
(
∂`
)

onto gr
(
∂Vτ

)
. That is,

gr
(
∂Vτ

)
= Rτ

(
gr
(
∂`
))

for all τ ≥ 0.

Remark

In more general non-FCC problems, only the existence of a co-state
inclusion occurs, or that

gr
(
∂Vτ

) ⋂
Rτ
(
gr
(
∂`
))
6= ∅ for all τ ≥ 0.
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Phase portrait of (HI) trajectories (−ẏ , ẋ) ∈ ∂H(x , y)
The Hamiltonian (x , y) 7→ H(x , y) is concave/convex, and (x̄ , ȳ) is a
saddle point when (0, 0) ∈ ∂H(x̄ , ȳ).

saddle
points

x

y
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The Hamilton-Jacobi equation
The function (τ, ξ) 7→ V (τ, ξ) is not jointly convex, and so a more general
subgradient is required. Suppose f : Rm → R̄ and z ∈ Rm. A vector
ζ ∈ Rm belongs to the subgradient set ∂f (z) provided

f (z ′) ≥ f (z) + 〈ζ, z ′ − z〉+ o(|z ′ − z |).

This does not conflict with our notation for subgradients of convex
functions, for in that case they are the same.

Theorem (HJ equation)

The subgradients of V (·, ·) have the property

(σ, η) ∈ ∂V (τ, ξ) ⇐⇒ σ = −H(ξ, η),

and in particular, V (·, ·) satisfies the Hamilton-Jacobi equation

σ + H(ξ, η) = 0 for all (σ, η) ∈ ∂V (τ, ξ) when τ ≥ 0.

Peter R. Wolenski (LSU) Method of characteristics 14 / 31



Assumptions

(primal) Lagrangian formulation:
(A1) The running function L(·, ·) belongs to F(Rn × Rn).

(A2) The set F (x) := dom L(x , ·) is not empty and ∃ ρ > 0 satisfying

dist
(
0,F (x)

)
≤ ρ

(
1 + |x |

)
∀x .

(A3) ∃α, β > 0 and a coercive function θ : [0,∞)→ R so that

L(x , v) ≥ θ
(
max{0, |v | − α|x |}

)
− β|x |.

(primal) Hamiltonian formulation:
(A1) (x , y) 7→ H(x , y) is concave/convex.

(A2) ∃ δ > 0, γ > 0 and a finite concave function ψ(·) with

H(x , y) ≥ ψ(x)−
(
γ|x |+ δ

)
|y | ∀ x , y ∈ Rn)

(A3) ∃ δ′ > 0, γ′ > 0 and a finite convex function φ(·) with

H(x , y) ≤ φ(y) +
(
γ′|y |+ δ′

)
|x | ∀ x , y ∈ Rn)
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III. State constraints and impulses.

Suppose X ⊆ Rn is closed convex, and the state constraint is added to
problem P:

x(t) ∈ X

General nonlinear theory suggests the adjoint arc may have a “jump” when
the optimal arc activates the constraint.

Philosophy of Convex Analysis:

Primal/dual problems should be symmetric and treated equally

Thus the primal problem should admit impulses as well.
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Duality and Recession functions

For f (·) ∈ F(Rk), recall the recession function f∞(·) ∈ F(Rk) is given by

f∞(d) = sup
x∈dom(f )

{
f (x + d)− f (x)

}
= sup

e ∈ cl dom(f ∗)

〈
e, d
〉

and is the support function of dom(f ∗).

Coercivity and no state constraints are dual concepts:

f (·) is coercive
(superlinear growth)

⇔ dom(f∞) = {0} ⇔
dom(f ∗) = Rk

(no dual
state constraints)

dom(f ) = Rk

(no primal
state constraints)

⇔ dom(f ∗∞) = {0} ⇔ f ∗(·) is coercive
(superlinear growth)
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IV. FCC problems of Bounded Variation
Rockafellar (1974) proposed the extended Bolza problem:

P: inf

{
`
(
x(0), x(T )

)
+

∫ T

0
L
(
x(t), ẋ(t)

)
dt

+

∫
[0,T ]

L∞
(
πx(t)

)
dµ(dt)

}
.

The optimization is over x(·) ∈ BV (= arcs of bounded variation), where

dx = ẋ(t) dt + πx(t) dµ(t)

and the recession function (independent of (x , v) ∈ dom L(·, ·)) is given by

L∞(d) := sup
λ>0

{
L(x , v + λd)− L(x , v)

λ

}
.

Implicit state constraint: x(t) ∈ X := cl
{
x : dom L(x , ·) 6= ∅

}
.

The “jump” directions: πx ∈ dom L∞(·).
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Dual problem
The real dual problem is given by

Q: inf

{
m
(
y(0), y(T )

)
+

∫ T

0
M
(
y(t), ẏ(t)

)
dt

+

∫
[0,T ]

M∞
(
πy (t)

)
dµ(dt)

}
.

The optimization is over y(·) ∈ BV with dy = ẏ(t) dt + πy (t) dµ(t), and
where M(y ,w) := L∗(w , y), m(y0, yT ) := `∗(y0,−yT ), and

M∞(e) := sup
λ>0

{
M(y ,w + λe)−M(y ,w)

λ

}
.

Dual implicit state constraint:

y(t) ∈ Y := cl
{
y : domM(y , ·) 6= ∅

}
.

The dual “jump” directions: πy ∈ domM∞(·).
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The Hamiltonian’s “saddle” equivalent class
The Hamiltonian H(·, ·) : Rn × Rn → R ∪ {±∞} is given by

H(x , y) = sup
v∈Rn

{
〈y , v〉 − L(x , v)

}
= inf

w∈Rn

{
〈x ,w〉+ M(y ,w)

}
.

Under assumption (A1), H(·, ·) is a concave/convex saddle function.
Since it is not necessarily finite-valued, one has to deal with its equivalence
class (and all the headaches this brings). Each element in an equivalence
class agrees on the effective domain X × Y ⊆ Rn × Rn , where

X :=
{
x : ∃y ∈ Rn with H(x , y) > −∞

}
(primal state constraint)

Y :=
{
y : ∃x ∈ Rn with H(x , y) <∞

}
(dual state constraint)

L∞(πx) = sup
y∈Y
〈πx , y〉 and M∞(πy ) = sup

x∈X
〈πy , x〉
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Optimality conditions (Extended (HI))

A pair
(
x(·), y(·)

)
of BV arcs is feasible for P/Q imply

x(t±) ∈ cl(X ) and y(t±) ∈ cl(Y ) a.e. t ∈ [0,T ].

Recall x(·) and y(·) have decompositions:

dx = ẋ(t) dt + πx(t)dµ(t)

dy = ẏ(t) dt + πy (t)dµ(t)

They satisfy the extended Hamiltonian inclusion (HI) provided

(
−ẏ(t)
ẋ(t)

)
∈
(
∂xH

(
x(t), y(t)

)
∂yH

(
x(t), y(t)

)) a.e. t ∈ [0,T ]

πx(t) ∈ Ncl(Y )

(
y(t+)

)
∩ Ncl(Y )

(
y(t−)

)
µ− a.e. t ∈ [0,T ]

πy (t) ∈ Ncl(X )

(
x(t+)

)
∩ Ncl(X )

(
x(t−)

)
µ− a.e. t ∈ [0,T ]
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Extended (HI) trajectories(
−ẏ(t)
ẋ(t)

)
∈

(
∂xH

(
x(t), y(t)

)
∂yH

(
x(t), y(t)

)) a.e. t ∈ [0,T ]

πx (t) ∈ Ncl(Y )

(
y(t+)

)
∩ Ncl(Y )

(
y(t−)

)
µ− a.e. t ∈ [0,T ]

πy (t) ∈ Ncl(X )

(
x(t+)

)
∩ Ncl(X )

(
x(t−)

)
µ− a.e. t ∈ [0,T ]

saddle
points

X

Y
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Theorem (Rockafellar 1976)

A pair
(
x(·), y(·)

)
of BV arcs satisfy the extended Hamiltonian equations

(plus appropriate transversality conditions) if and only if x(·) solves P and
y(·) solves Q.

Rockafellar left the subject of FCC with state constraints/impulses at this
point, but we did develop an HJ theory for FCC under (A1)-(A3).

Current specific goals:

For (BV) problems:
• Show value function duality
• Develop method of characteristics
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Fundamental (BV) problems
Let T ∈ R . For τ ≤ T , consider the primal and dual integral functionals
defined on BV:

JLτ
(
x(·)

)
:=

∫ T

τ
L
(
x(t), ẋ(t)

)
dt +

∫
[τ,T ]

L∞
(
πx(t)

)
dµ(dt) (3)

JMτ
(
y(·)

)
:=

∫ T

τ
M
(
y(t), ẏ(t)

)
dt +

∫
[τ,T ]

M∞
(
πy (t)

)
dµ(dt) (4)

∀x(·) ∈ BV , (3) < +∞ =⇒ x(t) ∈ cl(X ) a.e. t ∈ [τ,T ]

∀y(·) ∈ BV , (4) < +∞ =⇒ y(t) ∈ cl(Y ) a.e. t ∈ [τ,T ]

Let `(·) ∈ F and m(·) = `∗(·). For ξ, η ∈ Rn, consider

Pτ (ξ) : inf
x(·)∈BV

{
g
(
x(T+)

)
+ JLτ

(
x(·)

)
: x(τ−) = ξ

}
Qτ (η) : inf

y(·)∈BV

{
m
(
y(T+)

)
+ JMτ

(
y(·)

)
: y(τ−) = −η

}
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V. Value function duality in (BV) problems
For τ ≤ T and ξ, η ∈ Rn, let

Vτ (ξ) =

{
inf value in Pτ (ξ) if x(τ−), x(T+) ∈ cl(X )

+∞ if otherwise

Vτ (ξ) = inf value in Pτ (ξ)

Wτ (η) =

{
inf value in Qτ (η) if y(τ−), y(T+) ∈ cl(Y )

+∞ if otherwise

Wτ (η) = inf value in Qτ (η)

Each value function is closed proper convex on Rn.

Theorem

We have

(a) Wτ (η) = sup
ξ

{
〈η, ξ〉 − Vτ (ξ)

}
and Vτ (ξ) = sup

η

{
〈ξ, η〉 −Wτ (η)

}
(b) Vτ (ξ) = sup

η

{
〈ξ, η〉 −Wτ (η)

}
and Wτ (η) = sup

ξ

{
〈η, ξ〉 − Vτ (ξ)

}
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VI. The method of characteristics

Theorem

Under natural hypotheses ..., for (ξ, η) ∈ Rn × Rn, we have

η ∈ ∂Vτ (ξ) ⇐⇒


∃ Hamiltonian traj.

(
x(·), y(·)

)
∈ BV on [τ,T ](

x(τ−), y(τ−)
)
= (ξ,−η) and y(T+) ∈ ∂g

(
x(T+)

)
ξ ∈ cl(X ) and x(T+) ∈ cl(X )
πy (τ) ∈ Ncl(X )

(
x(τ−)

)
and πy (T ) ∈ Ncl(X )

(
x(T+)

)
πx(τ) ∈ Ncl(Y )

(
y(τ−)

)
and πx(T ) ∈ Ncl(Y )

(
y(T+)

)
There is a dual statement regarding ∂V, but I had no time to put that in
(due to an extra glass of wine at the restaurant last night....)
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Elimination of state constraints
The Moreau-Yosida envelope (for λ > 0):[

eλL
]
(x , v) := inf

(x ′,v ′)∈Rn×n

{
L(x ′, v ′) +

1

λ

∥∥(x ′, v ′)− (x , v)
∥∥2
}
,

The idea is to replace L(·, ·) by
[
eλL
]
(·, ·) and let λ ↓ 0.

Positives:

Eliminates state constraints.

Convexity is preserved with C 1+ data satisfying (A1)-(A2).

Good approximation:
[
eλL
]
(·, ·)→ L(·, ·) epigraphically as λ ↓ 0.

Big Negatives:

Recession is the same,
[
eλL
]
∞(·) = L∞(·): (A3) may not hold, and

dual constraints persist.

Duality is lost,
[
eλL
]∗

(·, ·) 6=
[
eλL
∗](·, ·): Dual problem is very

complicated and existing FCC theory is not readily applicable.
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Good approximation:
[
eλL
]
(·, ·)→ L(·, ·) epigraphically as λ ↓ 0.

Big Negatives:

Recession is the same,
[
eλL
]
∞(·) = L∞(·): (A3) may not hold, and

dual constraints persist.

Duality is lost,
[
eλL
]∗

(·, ·) 6=
[
eλL
∗](·, ·): Dual problem is very

complicated and existing FCC theory is not readily applicable.
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VII. Goebel’s self-dual envelope

Raf Goebel modified the Moreau-Yosida convolution by considering[
sλL
]
(x , v) := (1− λ2)

[
eλL
]
(x , v) +

λ

2

∥∥(x , v)
∥∥2

Major Advantages:

All the positive qualities of
[
eλL
]
(·, ·) are maintained[

sλL
]
(·, ·) satisfies (A1)-(A3) (so existing FCC theory applies)

In particular, applying sλ eliminates both the state constraint and
recession at the same time!

Conjugation and applying sλ commute:[
sλL
]∗

(·, ·) =
[
sλL
∗](·, ·)

This implies duality relationships are maintained in the approximation.
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V. Our approach to impulse (HJ) theory:

Replace L(·, ·) by Lλ(·, ·) :=
[
sλL
]
(·, ·) and let λ ↓ 0; i.e. Let Pλ be the

primal problem with data Lλ(·, ·). The dual problem is denoted by Qλ, and
is the same as problem Q with data Mλ(·, ·) :=

[
sλL
]∗

= sλ
(
L∗
)
.

The Moreau-Yosida envelope in the concave/convex sense is

[
eλH

]
(x , y) = inf

y ′
sup
x ′

{
H(x ′, y ′) +

1

2λ

[
‖y ′ − y‖2 − ‖x ′ − x‖2

]}
= sup

x ′
inf
y ′

{
H(x ′, y ′) +

1

2λ

[
‖y ′ − y‖2 − ‖x ′ − x‖2

]}
.

The Hamiltonian Hλ(·, ·) associated with Lλ(·, ·) turns out to be

Hλ(x , y) = (1− λ2)
[
eλH

]
(x , y) +

λ

2

[
‖y‖2 − ‖x‖2

]
,

the Goebel envelope applied to H(·, ·) in the concave/convex sense.
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A research plan:

Develop HJ theory for state constrained/impulse FCC problems
by approximating P/Q by Pλ/Qλ , apply the known results to
the approximate problems, and finally pass to the limit as λ ↓ 0
to capture the behavior in the original problem.

We (i.e. Cristopher Hermosilla and I) are currently working on this in its
full generality. We published detailed results of the specific example below
as a 2016 IEEE conference paper. Another paper on Linear-Quadratic
models will appear in a 2017 IFAC proceeding. More substantial journal
articles are in preparation.

Peter R. Wolenski (LSU) Method of characteristics 30 / 31



A research plan:

Develop HJ theory for state constrained/impulse FCC problems
by approximating P/Q by Pλ/Qλ , apply the known results to
the approximate problems, and finally pass to the limit as λ ↓ 0
to capture the behavior in the original problem.

We (i.e. Cristopher Hermosilla and I) are currently working on this in its
full generality. We published detailed results of the specific example below
as a 2016 IEEE conference paper. Another paper on Linear-Quadratic
models will appear in a 2017 IFAC proceeding. More substantial journal
articles are in preparation.

Peter R. Wolenski (LSU) Method of characteristics 30 / 31



Convergence theorem

Theorem

Suppose both primal and dual state constraints have nonempty interior.
Then the primal/dual solutions

(
xλ(·), yλ(·)

)
of Pλ/Qλ converge (in the

appropriate sense) to a primal/dual solution
(
x(·), y(·)

)
of P/Q as λ↘ 0.

Also the optimal values Vλ(τ, ξ) converge to the optimal value V (τ, ξ).

Some natural open questions:

? Do optimal/co-optimal arcs jump only at the endpoints?

? Can continuous singularities appear?

? What is needed to modify the HJ equation?

? Does the method of characteristics carry over? YES!
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