The method of characteristics in Fully Convex Control problems with state constraints

Peter R. Wolenski

Louisiana State University

Control of state-constrained dynamical systems Padova, September 25-29, 2017

Outline

(1) I. Linear-Quadratic Control
(2) II. Fully Convex Control (FCC) problems
(3) III. State constraints and impulses.
(4) IV. FCC problems of Bounded Variation
(5) V. Value function duality
(6) VI. The method of characteristics
(7) VII. Goebel's self-dual envelope
(8) V. Our approach to impulse Hamilton-Jacobi (HJ) theory

I. Linear-Quadratic (LQ) Control

Recall the data of (LQ) consists of matrices P, Q, R, A, B of appropriate dimensions. The problem is
$\mathcal{P}(\tau, \xi): \quad \inf _{u(\cdot)}\left\{\langle P x(0), x(0)\rangle+\int_{0}^{\tau}[\langle Q x(t), x(t)\rangle+\langle R u(t), u(t)\rangle] d t\right\}$
subject to

$$
\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \quad \text { a.e. } t \in[0, \tau], \\
x(\tau)=\xi
\end{array}\right.
$$

where the infimum is taken over measurable functions $u(\cdot)$.
(LQ) remains the workhorse of engineering control - but with

No constraints on control or state.

Goebel and Subbotin (2007) extended (LQ) to have Control Constraints:

$$
u(t) \in U \quad \text { a.e. } t \in[\tau, T] .
$$

The proofs are based on duality relationships, but:
(1) Their results require positive definiteness of the integrand data.
(2) No state constraints.

A major theme here is that (1) and (2) are dual concepts.
Recently, Hermosilla and PW developed (LQ) with a State Constraint:

$$
x(t) \in X \quad \text { a.e. } t \in[\tau, T]
$$

For duality purposes, the theory necessarily must be broadened to arcs of Bounded Variation (BV).

We proved value function duality and a Method of Characteristics, but these are now superseded by new results in Fully Convex Control (FCC).

II. Fully Convex Control (FCC) problems

Consider the "calculus of variations" problem

$$
\mathcal{P}(\tau, \xi): \quad \inf _{x(\cdot)}\left\{\ell(x(0))+\int_{0}^{\tau} L(x(t), \dot{x}(t)) d t\right\} \text { with } x(\tau)=\xi \text {. }
$$

where the infimum is taken over absolutely continuous $\operatorname{arcs} x(\cdot)$. Classically, the data is assumed to be smooth. A Fully Convex Control (FCC) problem has data $\ell(\cdot)$ and $L(\cdot, \cdot)$ convex, closed, and proper $(\equiv \mathcal{F})$

MAJOR GOAL:

Develop (FCC) with state constraints/impulses.

Review of existing FCC theory

(A) Existence theory: Our hypotheses imply the existence of an optimal solution $\bar{x}(\cdot)$.
(B) Optimality conditions: Given optimal $\bar{x}(\cdot)$, the Euler-Lagrange inclusion has the (nonsmooth) convex statement:

$$
\exists \bar{y}(\cdot) \text { s.t. }(\dot{\bar{y}}(t), \bar{y}(t)) \in \partial_{x, v} L(\bar{x}(t), \dot{\bar{x}}(t)),
$$

which is equivalent to the canonical or Hamiltonian Inclusion:

$$
\begin{equation*}
(-\dot{\bar{y}}(t), \dot{\bar{x}}(t)) \in \partial H(\bar{x}(t), \bar{y}(t)) \tag{HI}
\end{equation*}
$$

The Transversality Condition is

$$
\begin{equation*}
\bar{y}(0)) \in \partial \ell(\bar{x}(0)) . \tag{TC}
\end{equation*}
$$

The Hamiltonian is

$$
H(x, y):=\sup _{v \in \mathbb{R}^{n}}\{\langle y, v\rangle-L(x, v)\} .
$$

(C) Duality: The dual data consists of:

$$
\begin{aligned}
M(y, w) & :=L^{*}(w, y)=\sup _{(x, v) \in \mathbb{R}^{2 n}}\{\langle w, x\rangle+\langle y, v\rangle-L(x, v)\} \\
m\left(\eta^{\prime}\right) & :=\ell^{*}\left(\eta^{\prime}\right)=\sup _{\xi^{\prime} \in \mathbb{R}^{n}}\left\{\left\langle\xi^{\prime}, \eta^{\prime}\right\rangle-\ell\left(\xi^{\prime}\right)\right\}
\end{aligned}
$$

and an associated dual problem is

$$
\mathcal{Q}(\tau, \eta): \quad \inf _{y(\cdot)}\left\{m(y(0))+\int_{0}^{\tau} M(y(t), \dot{y}(t)) d t\right\} \text { with } y(\tau)=\eta
$$

The dual Hamiltonian $\widetilde{H}(\cdot, \cdot)$ does not introduce new data:

$$
\widetilde{H}(y, x):=\sup _{w \in \mathbb{R}^{n}}\{\langle x, w\rangle-M(y, w)\}=-H(x, y) .
$$

Theorem (Rockafellar 1970's)

Suppose $\bar{x}(\cdot)$ and $\bar{y}(\cdot)$ are primal/dual feasible and satisfy the (equivalent) (TC):

$$
\bar{y}(0) \in \partial \ell(\bar{x}(0)) \quad \text { and } \quad \bar{x}(0) \in \partial m(\bar{y}(0))
$$

The following are equivalent:
(a) $\bar{x}(\cdot)$ is optimal in $\mathcal{P}(\tau, \boldsymbol{\xi})$ and $\bar{y}(\cdot)$ satisfies the primal $(\mathrm{E}-\mathrm{L})$ inclusion

$$
(\dot{\bar{y}}(t), \bar{y}(t)) \in \partial_{x, v} L(\bar{x}(t), \dot{\bar{x}}(t)) .
$$

(b) $\bar{y}(\cdot)$ is optimal in $\mathcal{Q}(\boldsymbol{\tau}, \boldsymbol{\eta})$ and $\bar{x}(\cdot)$ satisfies the dual $(\mathbf{E}-\mathbf{L})$ inclusion

$$
(\dot{\bar{x}}(t), \bar{x}(t)) \in \partial_{y, w} M(\bar{y}(t), \dot{\bar{y}}(t))
$$

(c) $(\bar{x}(\cdot), \bar{y}(\cdot))$ satisfy the primal canonical $\mathbf{(H I)}$ inclusion

$$
(-\dot{\bar{y}}(t), \dot{\bar{x}}(t)) \in \partial H(\bar{x}(t), \bar{y}(t)) .
$$

(d) $(\bar{x}(\cdot), \bar{y}(\cdot))$ satisfy the dual canonical (HI) inclusion

$$
(-\dot{\bar{x}}(t), \dot{\bar{y}}(t)) \in \partial \widetilde{H}(\bar{y}(t), \bar{x}(t)) .
$$

(D) Hamilton-Jacobi (HJ) theory (RTR \& PW, 2001)] Recall the primal problem

$$
\mathcal{P}(\tau, \xi): \quad \min \left\{\ell(x(0))+\int_{0}^{\tau} L(x(t), \dot{x}(t)) d t\right\} \text { with } x(\tau)=\xi .
$$

Let $V(\tau, \xi)$ be the value of the problem $\mathcal{P}(\tau, \xi)$, and if this function is differentiable, then it satisfies the Hamilton-Jacobi equation:

$$
\begin{aligned}
\frac{\partial}{\partial \tau} V(\tau, \xi) & =H\left(\xi, \nabla_{\xi} V(\tau, \xi)\right) \\
V(0, \xi) & =\ell(\xi) .
\end{aligned}
$$

Under general (FCC) assumptions, the function

$$
\xi \mapsto V(\tau, \xi)=: V_{\tau}(\xi)
$$

is convex, and so one may expect much more information can be obtained.

Value function duality

Everything thus far applies equally to the dual data, where $(\ell(\cdot), L(\cdot, \cdot))$ are replaced by $(m(\cdot), M(\cdot, \cdot))$. We have a value function $W(\tau, \eta)$ that satisfies the same properties as $V(\tau, \xi)$. As before, the convex function $\eta \mapsto W(\tau, \eta)$ is written as $W_{\tau}(\cdot)$, and is conjugate to $V_{\tau}(\cdot)$:

Theorem

For $\tau \geq 0$, the value functions $V_{\tau}(\cdot)$ and $W_{\tau}(\cdot)$ are dual to each other:

$$
W_{\tau}(\eta)=\sup _{\xi \in \mathbb{R}^{n}}\left\{\langle\xi, \eta\rangle-V_{\tau}(\xi)\right\} \quad \text { and } \quad V_{\tau}(\xi)=\sup _{\eta \in \mathbb{R}^{n}}\left\{\langle\xi, \eta\rangle-W_{\tau}(\eta)\right\}
$$

This implies the subgradients of these maps are related by

$$
\eta \in \partial V_{\tau}(\xi) \quad \Longleftrightarrow \quad \xi \in \partial W_{\tau}(\eta) \quad \Longleftrightarrow \quad V_{\tau}(\xi)+W_{\tau}(\eta)=\langle\xi, \eta\rangle
$$

Method of characteristics (co-state inclusion is an equality) Recall that primal/dual pair of feasible arcs $(x(\cdot), y(\cdot))$ satisfy the Hamilton Inclusion (HI) and Transversality Condition (TC)

$$
\begin{align*}
-\dot{y}(t) & \in \partial_{x} H(x(t), y(t)) \tag{1}\\
\dot{x}(t) & \in \partial_{y} H(x(t), y(t)) \tag{2}\\
y(0) & \in \partial \ell(x(0))
\end{align*}
$$

if and only if $x(\cdot)$ solves $\mathcal{P}(\tau, \xi)$ and $y(\cdot)$ solves $\mathcal{Q}(\tau, \eta)$.
Moreover, $t \mapsto H(x(t), y(t))$ is constant.
The Hamiltonian flow (or Reachable set-valued map) consists of a 1-parameter family of mappings $\mathcal{R}_{\tau}(\cdot, \cdot): \mathbb{R}^{2 n} \rightrightarrows \mathbb{R}^{2 n}, \tau>0$, so that

$$
\begin{aligned}
& \mathcal{R}_{\tau}\left(\xi_{0}, \eta_{0}\right):=\{(\xi, \eta): \exists(x(\cdot), y(\cdot)) \text { satisfying (1),(2) with } \\
&\left.(x(0), y(0))=\left(\xi_{0}, \eta_{0}\right) \text { and }(x(\tau), y(\tau))=(\xi, \eta)\right\}
\end{aligned}
$$

Let the graph of ∂V_{τ} be defined by

$$
\operatorname{gr}\left(\partial V_{\tau}\right)=\left\{(\xi, \eta) \mid \eta \in \partial V_{\tau}(\xi)\right\} \subset \mathbb{R}^{n} \times \mathbb{R}^{n} .
$$

The case $\tau=0$ is when

$$
\operatorname{gr}\left(\partial V_{0}\right)=\operatorname{gr}(\partial \ell)=\{(\xi, \eta) \mid \eta \in \partial \ell(\xi)\} .
$$

Theorem

The flow mapping transforms $\operatorname{gr}(\partial \ell)$ onto $\operatorname{gr}\left(\partial V_{\tau}\right)$. That is,

$$
\operatorname{gr}\left(\partial V_{\tau}\right)=\mathcal{R}_{\tau}(\operatorname{gr}(\partial \ell)) \quad \text { for all } \tau \geq 0
$$

Remark

In more general non-FCC problems, only the existence of a co-state inclusion occurs, or that

$$
\operatorname{gr}\left(\partial V_{\tau}\right) \bigcap \mathcal{R}_{\tau}(\operatorname{gr}(\partial \ell)) \neq \emptyset \quad \text { for all } \tau \geq 0
$$

Phase portrait of $\mathbf{(H I)}$ trajectories $(-\dot{y}, \dot{x}) \in \partial H(x, y)$ The Hamiltonian $(x, y) \mapsto H(x, y)$ is concave/convex, and (\bar{x}, \bar{y}) is a saddle point when $(0,0) \in \partial H(\bar{x}, \bar{y})$.

The Hamilton-Jacobi equation

The function $(\tau, \xi) \mapsto V(\tau, \xi)$ is not jointly convex, and so a more general subgradient is required. Suppose $f: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}$ and $z \in \mathbb{R}^{m}$. A vector $\zeta \in \mathbb{R}^{m}$ belongs to the subgradient set $\partial f(z)$ provided

$$
f\left(z^{\prime}\right) \geq f(z)+\left\langle\zeta, z^{\prime}-z\right\rangle+\mathrm{o}\left(\left|z^{\prime}-z\right|\right)
$$

This does not conflict with our notation for subgradients of convex functions, for in that case they are the same.

Theorem (HJ equation)

The subgradients of $V(\cdot, \cdot)$ have the property

$$
(\sigma, \eta) \in \partial V(\tau, \xi) \quad \Longleftrightarrow \quad \sigma=-H(\xi, \eta)
$$

and in particular, $V(\cdot, \cdot)$ satisfies the Hamilton-Jacobi equation

$$
\sigma+H(\xi, \eta)=0 \quad \text { for all } \quad(\sigma, \eta) \in \partial V(\tau, \xi) \quad \text { when } \tau \geq 0
$$

Assumptions

(primal) Lagrangian formulation:

(A1) The running function $L(\cdot, \cdot)$ belongs to $\mathcal{F}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$.
(A2) The set $F(x):=\operatorname{dom} L(x, \cdot)$ is not empty and $\exists \rho>0$ satisfying dist $(0, F(x)) \leq \rho(1+|x|) \forall x$.
(A3) $\exists \alpha, \beta>0$ and a coercive function $\theta:[0, \infty) \rightarrow \mathbb{R}$ so that

$$
L(x, v) \geq \theta(\max \{0,|v|-\alpha|x|\})-\beta|x| .
$$

(primal) Hamiltonian formulation:

(A1) $(x, y) \mapsto H(x, y)$ is concave/convex.
(A2) $\exists \delta>0, \gamma>0$ and a finite concave function $\psi(\cdot)$ with

$$
\left.H(x, y) \geq \psi(x)-(\gamma|x|+\delta)|y| \quad \forall x, y \in \mathbb{R}^{n}\right)
$$

(A3) $\exists \delta^{\prime}>0, \gamma^{\prime}>0$ and a finite convex function $\phi(\cdot)$ with

$$
\left.H(x, y) \leq \phi(y)+\left(\gamma^{\prime}|y|+\delta^{\prime}\right)|x| \quad \forall x, y \in \mathbb{R}^{n}\right)
$$

III. State constraints and impulses.

Suppose $X \subseteq \mathbb{R}^{n}$ is closed convex, and the state constraint is added to problem \mathcal{P} :

$$
x(t) \in X
$$

General nonlinear theory suggests the adjoint arc may have a "jump" when the optimal arc activates the constraint.

III. State constraints and impulses.

Suppose $X \subseteq \mathbb{R}^{n}$ is closed convex, and the state constraint is added to problem \mathcal{P} :

$$
x(t) \in X
$$

General nonlinear theory suggests the adjoint arc may have a "jump" when the optimal arc activates the constraint.

Philosophy of Convex Analysis:

Primal/dual problems should be symmetric and treated equally

Thus the primal problem should admit impulses as well.

Duality and Recession functions

For $f(\cdot) \in \mathcal{F}\left(\mathbb{R}^{k}\right)$, recall the recession function $f_{\infty}(\cdot) \in \mathcal{F}\left(\mathbb{R}^{k}\right)$ is given by

$$
f_{\infty}(d)=\sup _{x \in \operatorname{dom}(f)}\{f(x+d)-f(x)\}=\sup _{e \in \operatorname{cl} \operatorname{dom}\left(f^{*}\right)}\langle e, d\rangle
$$

and is the support function of $\operatorname{dom}\left(f^{*}\right)$.
Coercivity and no state constraints are dual concepts:
$f(\cdot)$ is coercive

$$
\operatorname{dom}\left(f^{*}\right)=\mathbb{R}^{k}
$$ (superlinear growth)

$$
\Leftrightarrow \operatorname{dom}\left(f_{\infty}\right)=\{0\} \Leftrightarrow
$$

(no dual
state constraints)

$$
\operatorname{dom}(f)=\mathbb{R}^{k}
$$

(no primal
state constraints)

$$
\Leftrightarrow \operatorname{dom}\left(f_{\infty}^{*}\right)=\{0\} \Leftrightarrow
$$

$f^{*}(\cdot)$ is coercive (superlinear growth)

IV. FCC problems of Bounded Variation

Rockafellar (1974) proposed the extended Bolza problem:

$$
\begin{aligned}
& \mathcal{P}: \quad \inf \left\{\ell(x(0), x(T))+\int_{0}^{T} L(x(t), \dot{x}(t)) d t\right. \\
&\left.+\int_{[0, T]} L_{\infty}\left(\pi_{x}(t)\right) \boldsymbol{d} \mu(\boldsymbol{d} t)\right\}
\end{aligned}
$$

The optimization is over $x(\cdot) \in \mathbf{B V}$ (= arcs of bounded variation), where

$$
d x=\dot{x}(t) d t+\pi_{x}(t) d \mu(t)
$$

and the recession function (independent of $(x, v) \in \operatorname{dom} L(\cdot, \cdot))$ is given by

$$
L_{\infty}(d):=\sup _{\lambda>0}\left\{\frac{L(x, v+\lambda d)-L(x, v)}{\lambda}\right\} .
$$

IV. FCC problems of Bounded Variation

Rockafellar (1974) proposed the extended Bolza problem:

$$
\begin{aligned}
& \mathcal{P}: \quad \inf \left\{\ell(x(0), x(T))+\int_{0}^{T} L(x(t), \dot{x}(t)) d t\right. \\
&\left.+\int_{[0, T]} L_{\infty}\left(\pi_{x}(t)\right) \boldsymbol{d} \mu(\boldsymbol{d} t)\right\}
\end{aligned}
$$

The optimization is over $x(\cdot) \in \mathbf{B V}$ (= arcs of bounded variation), where

$$
d x=\dot{x}(t) d t+\pi_{x}(t) d \mu(t)
$$

and the recession function (independent of $(x, v) \in \operatorname{dom} L(\cdot, \cdot))$ is given by

$$
L_{\infty}(d):=\sup _{\lambda>0}\left\{\frac{L(x, v+\lambda d)-L(x, v)}{\lambda}\right\} .
$$

Implicit state constraint: $x(t) \in X:=c l\{x: \operatorname{dom} L(x, \cdot) \neq \emptyset\}$. The "jump" directions: $\pi_{x} \in \operatorname{dom} L_{\infty}(\cdot)$.

Dual problem

The real dual problem is given by

$$
\begin{aligned}
& \mathcal{Q}: \quad \inf \left\{m(y(0), y(T))+\int_{0}^{T} M(y(t), \dot{y}(t)) d t\right. \\
&\left.+\int_{[0, T]} M_{\infty}\left(\pi_{y}(t)\right) d \mu(d t)\right\}
\end{aligned}
$$

The optimization is over $y(\cdot) \in \mathbf{B V}$ with $d y=\dot{y}(t) d t+\pi_{y}(t) d \mu(t)$, and where $M(y, w):=L^{*}(w, y), m\left(y_{0}, y_{T}\right):=\ell^{*}\left(y_{0},-y_{T}\right)$, and

$$
M_{\infty}(e):=\sup _{\lambda>0}\left\{\frac{M(y, w+\lambda e)-M(y, w)}{\lambda}\right\}
$$

Dual implicit state constraint:

$$
y(t) \in Y:=\operatorname{cl}\{y: \operatorname{dom} M(y, \cdot) \neq \emptyset\}
$$

The dual "jump" directions: $\pi_{y} \in \operatorname{dom} M_{\infty}(\cdot)$.

The Hamiltonian's "saddle" equivalent class

The Hamiltonian $H(\cdot, \cdot): \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ is given by

$$
H(x, y)=\sup _{v \in \mathbb{R}^{n}}\{\langle y, v\rangle-L(x, v)\}=\inf _{w \in \mathbb{R}^{n}}\{\langle x, w\rangle+M(y, w)\} .
$$

Under assumption (A1), H(\cdot, \cdot) is a concave/convex saddle function. Since it is not necessarily finite-valued, one has to deal with its equivalence class (and all the headaches this brings). Each element in an equivalence class agrees on the effective domain $X \times Y \subseteq \mathbb{R}^{n} \times \mathbb{R}^{n}$, where

$$
\begin{aligned}
X:= & \left\{x: \exists y \in \mathbb{R}^{n} \text { with } H(x, y)>-\infty\right\} \\
& \text { (primal state constraint) } \\
Y:= & \left\{y: \exists x \in \mathbb{R}^{n} \text { with } H(x, y)<\infty\right\} \\
& \text { (dual state constraint) }
\end{aligned}
$$

$$
L_{\infty}\left(\pi_{x}\right)=\sup _{y \in Y}\left\langle\pi_{x}, y\right\rangle \quad \text { and } \quad M_{\infty}\left(\pi_{y}\right)=\sup _{x \in X}\left\langle\pi_{y}, x\right\rangle
$$

Optimality conditions (Extended (HI))

A pair $(x(\cdot), y(\cdot))$ of $\mathbf{B V}$ arcs is feasible for $\mathcal{P} / \mathcal{Q}$ imply

$$
x(t \pm) \in \mathrm{cl}(X) \text { and } \quad y(t \pm) \in \mathrm{cl}(Y) \text { a.e. } t \in[0, T] .
$$

Recall $x(\cdot)$ and $y(\cdot)$ have decompositions:

$$
\begin{aligned}
& d x=\dot{x}(t) d t+\pi_{x}(t) d \mu(t) \\
& d y=\dot{y}(t) d t+\pi_{y}(t) d \mu(t)
\end{aligned}
$$

They satisfy the extended Hamiltonian inclusion (HI) provided

$$
\begin{aligned}
\binom{-\dot{y}(t)}{\dot{x}(t)} & \in\binom{\partial_{x} H(x(t), y(t))}{\partial_{y} H(x(t), y(t))} \quad \text { a.e. } t \in[0, T] \\
\pi_{x}(t) & \in N_{\mathrm{cl}(Y)}(y(t+)) \cap N_{\mathrm{cl}(Y)}(y(t-)) \quad \mu-\text { a.e. } t \in[0, T] \\
\pi_{y}(t) & \in N_{\mathrm{cl}(x)}(x(t+)) \cap N_{\mathrm{cl}(X)}(x(t-)) \quad \mu \text { a.e. } t \in[0, T]
\end{aligned}
$$

Extended (HI) trajectories

$$
\begin{array}{rll}
\binom{-\dot{y}(t)}{\dot{x}(t)} & \in\binom{\partial_{x} H(x(t), y(t))}{\partial_{y} H(x(t), y(t))} \quad \text { a.e. } t \in[0, T] \\
\pi_{x}(t) & \in N_{\mathrm{cl}(Y)}(y(t+)) \cap N_{\mathrm{cl}(Y)}(y(t-)) & \mu-\text { a.e. } t \in[0, T] \\
\pi_{y}(t) & \in N_{\mathrm{cl}(X)}(x(t+)) \cap N_{\mathrm{cl}(X)}(x(t-)) \quad \mu-\text { a.e. } t \in[0, T]
\end{array}
$$

Theorem (Rockafellar 1976)
A pair $(x(\cdot), y(\cdot))$ of $\mathbf{B V}$ arcs satisfy the extended Hamiltonian equations (plus appropriate transversality conditions) if and only if $x(\cdot)$ solves \mathcal{P} and $y(\cdot)$ solves \mathcal{Q}.

Theorem (Rockafellar 1976)
A pair $(x(\cdot), y(\cdot))$ of $\mathbf{B V}$ arcs satisfy the extended Hamiltonian equations (plus appropriate transversality conditions) if and only if $x(\cdot)$ solves \mathcal{P} and $y(\cdot)$ solves \mathcal{Q}.

Rockafellar left the subject of FCC with state constraints/impulses at this point, but we did develop an HJ theory for FCC under (A1)-(A3).

Current specific goals:

> For (BV) problems:

- Show value function duality
- Develop method of characteristics

Fundamental (BV) problems

Let $T \in \mathbb{R}$. For $\tau \leq T$, consider the primal and dual integral functionals defined on BV :

$$
\begin{align*}
J_{\tau}^{L}(x(\cdot)) & :=\int_{\tau}^{T} L(x(t), \dot{x}(t)) d t+\int_{[\tau, T]} L_{\infty}\left(\pi_{x}(t)\right) d \mu(d t) \tag{3}\\
J_{\tau}^{M}(y(\cdot)) & :=\int_{\tau}^{T} M(y(t), \dot{y}(t)) d t+\int_{[\tau, T]} M_{\infty}\left(\pi_{y}(t)\right) d \mu(d t) \tag{4}
\end{align*}
$$

$$
\begin{array}{lll}
\forall x(\cdot) \in B V,(3)<+\infty & \Longrightarrow \quad x(t) \in c l(X) \text { a.e. } t \in[\tau, T] \\
\forall y(\cdot) \in B V,(4)<+\infty \quad & \Longrightarrow & y(t) \in c l(Y) \text { a.e. } t \in[\tau, T]
\end{array}
$$

Let $\ell(\cdot) \in \mathcal{F}$ and $m(\cdot)=\ell^{*}(\cdot)$. For $\xi, \eta \in \mathbb{R}^{n}$, consider

$$
\begin{array}{ll}
\mathcal{P}_{\tau}(\xi): & \inf _{x(\cdot) \in B V}\left\{g(x(T+))+J_{\tau}^{L}(x(\cdot)): x(\tau-)=\xi\right\} \\
\mathcal{Q}_{\tau}(\eta): & \inf _{y(\cdot) \in B V}\left\{m(y(T+))+J_{\tau}^{M}(y(\cdot)): y(\tau-)=-\eta\right\}
\end{array}
$$

V. Value function duality in (BV) problems

 For $\tau \leq T$ and $\xi, \eta \in \mathbb{R}^{n}$, let$$
\begin{aligned}
& V_{\tau}(\xi)= \begin{cases}\inf \text { value in } \mathcal{P}_{\tau}(\xi) & \text { if } x(\tau-), x(T+) \in \operatorname{cl}(X) \\
+\infty & \text { if otherwise }\end{cases} \\
& \mathcal{V}_{\tau}(\xi)=\inf \text { value in } \mathcal{P}_{\tau}(\xi) \\
& W_{\tau}(\eta)= \begin{cases}\inf \text { value in } \mathcal{Q}_{\tau}(\eta) & \text { if } y(\tau-), y(T+) \in \operatorname{cl}(Y) \\
+\infty & \text { if otherwise }\end{cases} \\
& \mathcal{W}_{\tau}(\eta)=\inf \text { value in } \mathcal{Q}_{\tau}(\eta)
\end{aligned}
$$

Each value function is closed proper convex on \mathbb{R}^{n}.
Theorem
We have
(a) $\mathcal{W}_{\tau}(\eta)=\sup _{\xi}\left\{\langle\eta, \xi\rangle-V_{\tau}(\xi)\right\}$ and $V_{\tau}(\xi)=\sup _{\eta}\left\{\langle\xi, \eta\rangle-\mathcal{W}_{\tau}(\eta)\right\}$
(b) $\mathcal{V}_{\tau}(\xi)=\sup _{\eta}\left\{\langle\xi, \eta\rangle-W_{\tau}(\eta)\right\}$ and $W_{\tau}(\eta)=\sup _{\xi}\left\{\langle\eta, \xi\rangle-\mathcal{V}_{\tau}(\xi)\right\}$

VI. The method of characteristics

Theorem

Under natural hypotheses ..., for $(\xi, \eta) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$, we have

There is a dual statement regarding $\partial \mathcal{V}$, but I had no time to put that in (due to an extra glass of wine at the restaurant last night....)

Elimination of state constraints

The Moreau-Yosida envelope (for $\lambda>0$):

$$
\left[e_{\lambda} L\right](x, v):=\inf _{\left(x^{\prime}, v^{\prime}\right) \in \mathbb{R}^{n \times n}}\left\{L\left(x^{\prime}, v^{\prime}\right)+\frac{1}{\lambda}\left\|\left(x^{\prime}, v^{\prime}\right)-(x, v)\right\|^{2}\right\},
$$

The idea is to replace $L(\cdot, \cdot)$ by $\left[e_{\lambda} L\right](\cdot, \cdot)$ and let $\lambda \downarrow 0$.

Elimination of state constraints

The Moreau-Yosida envelope (for $\lambda>0$):

$$
\left[e_{\lambda} L\right](x, v):=\inf _{\left(x^{\prime}, v^{\prime}\right) \in \mathbb{R}^{n \times n}}\left\{L\left(x^{\prime}, v^{\prime}\right)+\frac{1}{\lambda}\left\|\left(x^{\prime}, v^{\prime}\right)-(x, v)\right\|^{2}\right\},
$$

The idea is to replace $L(\cdot, \cdot)$ by $\left[e_{\lambda} L\right](\cdot, \cdot)$ and let $\lambda \downarrow 0$.

Positives:

- Eliminates state constraints.
- Convexity is preserved with C^{1+} data satisfying (A1)-(A2).
- Good approximation: $\left[e_{\lambda} L\right](\cdot, \cdot) \rightarrow L(\cdot, \cdot)$ epigraphically as $\lambda \downarrow 0$.

Elimination of state constraints

The Moreau-Yosida envelope (for $\lambda>0$):

$$
\left[e_{\lambda} L\right](x, v):=\inf _{\left(x^{\prime}, v^{\prime}\right) \in \mathbb{R}^{n \times n}}\left\{L\left(x^{\prime}, v^{\prime}\right)+\frac{1}{\lambda}\left\|\left(x^{\prime}, v^{\prime}\right)-(x, v)\right\|^{2}\right\},
$$

The idea is to replace $L(\cdot, \cdot)$ by $\left[e_{\lambda} L\right](\cdot, \cdot)$ and let $\lambda \downarrow 0$.

Positives:

- Eliminates state constraints.
- Convexity is preserved with C^{1+} data satisfying (A1)-(A2).
- Good approximation: $\left[e_{\lambda} L\right](\cdot, \cdot) \rightarrow L(\cdot, \cdot)$ epigraphically as $\lambda \downarrow 0$.

Big Negatives:

- Recession is the same, $\left[e_{\lambda} L\right]_{\infty}(\cdot)=L_{\infty}(\cdot)$: (A3) may not hold, and dual constraints persist.
- Duality is lost, $\left[e_{\lambda} L\right]^{*}(\cdot, \cdot) \neq\left[e_{\lambda} L^{*}\right](\cdot, \cdot)$: Dual problem is very complicated and existing FCC theory is not readily applicable.

VII. Goebel's self-dual envelope

Raf Goebel modified the Moreau-Yosida convolution by considering

$$
\left[s_{\lambda} L\right](x, v):=\left(1-\lambda^{2}\right)\left[e_{\lambda} L\right](x, v)+\frac{\lambda}{2}\|(x, v)\|^{2}
$$

Major Advantages:

- All the positive qualities of $\left[e_{\lambda} L\right](\cdot, \cdot)$ are maintained
- $\left[s_{\lambda} L\right](\cdot, \cdot)$ satisfies (A1)-(A3) (so existing FCC theory applies) In particular, applying s_{λ} eliminates both the state constraint and recession at the same time!
- Conjugation and applying s_{λ} commute:

$$
\left[s_{\lambda} L\right]^{*}(\cdot, \cdot)=\left[s_{\lambda} L^{*}\right](\cdot, \cdot)
$$

This implies duality relationships are maintained in the approximation.

V. Our approach to impulse (HJ) theory:

Replace $L(\cdot, \cdot)$ by $L_{\lambda}(\cdot, \cdot):=\left[s_{\lambda} L\right](\cdot, \cdot)$ and let $\lambda \downarrow 0$; i.e. Let \mathcal{P}_{λ} be the primal problem with data $L_{\lambda}(\cdot, \cdot)$. The dual problem is denoted by \mathcal{Q}_{λ}, and is the same as problem \mathcal{Q} with data $M_{\lambda}(\cdot, \cdot):=\left[s_{\lambda} L\right]^{*}=s_{\lambda}\left(L^{*}\right)$.

The Moreau-Yosida envelope in the concave/convex sense is

$$
\begin{aligned}
{\left[e_{\lambda} H\right](x, y) } & =\inf _{y^{\prime}} \sup _{x^{\prime}}\left\{H\left(x^{\prime}, y^{\prime}\right)+\frac{1}{2 \lambda}\left[\left\|y^{\prime}-y\right\|^{2}-\left\|x^{\prime}-x\right\|^{2}\right]\right\} \\
& =\sup _{x^{\prime}} \inf _{y^{\prime}}\left\{H\left(x^{\prime}, y^{\prime}\right)+\frac{1}{2 \lambda}\left[\left\|y^{\prime}-y\right\|^{2}-\left\|x^{\prime}-x\right\|^{2}\right]\right\} .
\end{aligned}
$$

The Hamiltonian $H_{\lambda}(\cdot, \cdot)$ associated with $L_{\lambda}(\cdot, \cdot)$ turns out to be

$$
H_{\lambda}(x, y)=\left(1-\lambda^{2}\right)\left[e_{\lambda} H\right](x, y)+\frac{\lambda}{2}\left[\|y\|^{2}-\|x\|^{2}\right],
$$

the Goebel envelope applied to $H(\cdot, \cdot)$ in the concave/convex sense.

A research plan:

Develop HJ theory for state constrained/impulse FCC problems by approximating $\mathcal{P} / \mathcal{Q}$ by $\mathcal{P}_{\lambda} / \mathcal{Q}_{\lambda}$, apply the known results to the approximate problems, and finally pass to the limit as $\lambda \downarrow 0$ to capture the behavior in the original problem.

A research plan:

> Develop HJ theory for state constrained/impulse FCC problems by approximating $\mathcal{P} / \mathcal{Q}$ by $\mathcal{P}_{\lambda} / \mathcal{Q}_{\lambda}$, apply the known results to the approximate problems, and finally pass to the limit as $\lambda \downarrow 0$ to capture the behavior in the original problem.

We (i.e. Cristopher Hermosilla and I) are currently working on this in its full generality. We published detailed results of the specific example below as a 2016 IEEE conference paper. Another paper on Linear-Quadratic models will appear in a 2017 IFAC proceeding. More substantial journal articles are in preparation.

Convergence theorem

Theorem

Suppose both primal and dual state constraints have nonempty interior. Then the primal/dual solutions $\left(x_{\lambda}(\cdot), y_{\lambda}(\cdot)\right)$ of $\mathcal{P}_{\lambda} / \mathcal{Q}_{\lambda}$ converge (in the appropriate sense) to a primal/dual solution $(x(\cdot), y(\cdot))$ of $\mathcal{P} / \mathcal{Q}$ as $\lambda \searrow 0$. Also the optimal values $V_{\lambda}(\tau, \xi)$ converge to the optimal value $V(\tau, \xi)$.

Convergence theorem

Theorem

Suppose both primal and dual state constraints have nonempty interior. Then the primal/dual solutions $\left(x_{\lambda}(\cdot), y_{\lambda}(\cdot)\right)$ of $\mathcal{P}_{\lambda} / \mathcal{Q}_{\lambda}$ converge (in the appropriate sense) to a primal/dual solution $(x(\cdot), y(\cdot))$ of $\mathcal{P} / \mathcal{Q}$ as $\lambda \searrow 0$. Also the optimal values $V_{\lambda}(\tau, \xi)$ converge to the optimal value $V(\tau, \xi)$.

* Do optimal/co-optimal arcs jump only at the endpoints?
* Can continuous singularities appear?
* What is needed to modify the HJ equation?
* Does the method of characteristics carry over?

Convergence theorem

Theorem

Suppose both primal and dual state constraints have nonempty interior. Then the primal/dual solutions $\left(x_{\lambda}(\cdot), y_{\lambda}(\cdot)\right)$ of $\mathcal{P}_{\lambda} / \mathcal{Q}_{\lambda}$ converge (in the appropriate sense) to a primal/dual solution $(x(\cdot), y(\cdot))$ of $\mathcal{P} / \mathcal{Q}$ as $\lambda \searrow 0$. Also the optimal values $V_{\lambda}(\tau, \xi)$ converge to the optimal value $V(\tau, \xi)$.

* Do optimal/co-optimal arcs jump only at the endpoints?
* Can continuous singularities appear?
* What is needed to modify the HJ equation?
\star Does the method of characteristics carry over? YES!

