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» For a given non-empty compact subset U of R¥, define the set of admissible
controls as:

U= {u - (0, T) — R, measurable, u(t) € U a.e }

» Consider the following control system:

) {y(s) = f(y(s),u(s)), ae seltT]
y(t) = x,

where f: RY x U — R? is continuous, and Lipschitz continuous w.r.t x.

» The set of trajectories:
Sin(x) = {yx € W"'(t, T;RY), y¥, satisfies (1) for some u € U},

The multi-application: X ~ S, 7j(x) is Lipschitz continuous.
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State constrained optimal control problems
inf  (y;x(T))
st. uel,
yix(s) € K Vse[t, T

» K is a closed sub-set of RY.

» The final cost ¢ : RY — R is a Lipschitz continuous function
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Outline

° Characterization of the value function under some controllability assumptions

@ A general case where the controllability assumption is not satisfied

° A numerical example

@ End-point constrained control problem

[m] = - =
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° Characterization of the value function under some controllability assumptions
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Set of constrained trajectories

» Assume that f(x, U) := {f(x, u), u € U} is a convex set.
Then, by Filippov’s theorem, the set of trajectories Sy, r(x) is a compact set of
W' '([t, T]) endowed with the C°-topology.
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Set of constrained trajectories

» Assume that f(x, U) := {f(x, u), u € U} is a convex set.
Then, by Filippov’s theorem, the set of trajectories Sy, r(x) is a compact set of
W' '([t, T]) endowed with the C°-topology.

» The set of feasible trajectories:
Stin(x) == {y € Sen(x) | y(s) € K Vs e[t T]}

is a compact subset of W"'([t, T]) ... when it is non-empty!
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Set of constrained trajectories

» Assume that f(x, U) := {f(x, u), u € U} is a convex set.
Then, by Filippov’s theorem, the set of trajectories Sy, r(x) is a compact set of
W' '([t, T]) endowed with the C°-topology.

» The set of feasible trajectories:
Stn(x) =y € Spn(x) | y(s) €K Vs € [t, T]}

is a compact subset of W"'([t, T]) ... when it is non-empty!

» Inward pointing (IP) condition: Assume IOC =K and

38 >0, Vxe ok, melg f(x,u)-nx < —B.
u

Then, for x € K, Sfrr(x) # 0, and x — S}y 7(x) is Lipschitz.

Ref: Arutyunov’84, Soner'86, Rampazzo-Vinter'99, Vinter-Frankowska’00,
Clarke-Rifford-Stern’02 ...
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A State constrained control problem

I(t, ) = min{ (y(T)) \yeS[,T](X)}

» In general, ¥ is only |.s.c. on K.

» Under suitable controllability assumptions, ¥ is the unique constrained viscosity
solution of:
Od(t, x) + H(x, Dxd(t,x)) =0 on (0,T) x K,
90, x) = d(x) onk.

@ Under IP condition, the value function ¥ is Lipschitz continuous on K.
Soner’'86, Motta’95, Ishii-Koike’96, Frankowska-et-al.00-, ...

@ If Kis convex, f(x,u) = Ax + Bu and 3(Xx, V), Ax + Bu = 0 Hermosilla-Vinter-HZ'17

@ If K has a stratified structure + a local controllability assumption:
Hermosilla-HZ'15, Hermosilla-Wolenski-HZ'17

H. Zidani (ENSTA ParisTech) State constrained control problems Padova, Sep25-29, 2017 7/29



controllability assumptions?

How can we characterize (and compute) the value function for problems lacking

J
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9 A general case where the controllability assumption is not satisfied
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An other alternative ...

» Assume K is a closed nonempty set (no additional requirement)

» Consider a function g : RY - R, Lipschitz continuous, such that

vx eR?Y g(x)<0& xeKk.
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An other alternative ...

» Assume K is a closed nonempty set (no additional requirement)

» Consider a function g : RY - R, Lipschitz continuous, such that
vx eR?Y g(x)<0& xeKk.

» In particular,
ly(s) e K, Vse[t, T]] <= max g(y(s)) < 0.
selt,
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An other alternative ...

» Assume K is a closed nonempty set (no additional requirement)

» Consider a function g : RY - R, Lipschitz continuous, such that
vx eR?Y g(x)<0& xeKk.

» In particular,
ly(s) e K, Vse[t, T]] <= max g(y(s)) < 0.
selt,

» Assume that, for every x € R, f(x, U) := {f(x, u), u € U} is a convex set.
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An auxiliary control problem (Altarovici-Bokanowski-HZ'13)

» Consider the following auxiliary control problem (z € R):

w(t,x,z) = inf {(tb(y,X(T \/max gy x( ))}.

yesi () €t m
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An auxiliary control problem (Altarovici-Bokanowski-HZ'13)

» Consider the following auxiliary control problem (z € R):

w(t.xz) = it {(d»(yu(r 2)\/ mex g(yt.(s ))}.

YES[ (%)

Improvement function witin77, Solodov-Sagastizabal'04, Apkarian-et-al.08, ...)
F(X
(G DR
» The auxiliary optimization problem:
®  mn{(FO -2\ ax}
» Under Slater condition:

X solution of (P) for z = F(X),

X is optimal for (P) < { m)gn {(F(X) _ 2)\/G(X)} —0.
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An auxiliary control problem (Altarovici-Bokanowski-HZ'13)

» Consider the following auxiliary control problem (z € R):

witxz) = it L) - 2)V max avt(e))}.

yeS[, n®)

Theorem
For every x € K, we have:

() Epiv(t,-) = {(X,Z) w(t,x,z) < }

(ify  9(t,x) = min {z eR, w(t,x,z) < O}
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An auxiliary control problem (Altarovici-Bokanowski-HZ'13)

» Consider the following auxiliary control problem (z € R):

witxz) = it L) - 2)V max avt(e))}.

veSkn(x)

Theorem
For every x € K, we have:

(ny Epiv(t,-)= {(X, z):w(tx,z) < O},
(i) 9(t,x) = min {z eR, w(t,x,z) < O},

(fif)  Under IP condition: for every x eX we have:
Ht,x) =2z, s.t w(tx,z)=0.
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» Define the Hamiltonian as:

H(x, p) = max (—f(x,u)-p) vx,p € RY.
ue

Theorem

The value function w is the unique Lipschitz continuous viscosity solution of the
following Hamilton-Jacobi-Bellman (HJB) equation:

min ( — aw(t, x,z) + H(x, Dyw), w(t,x,z) — g(x)> =0 [0, TR xR,

w(T,x,z) = (®(x) —2)\/g(x), RIxR.
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A particular choice of function g
» Let n > 0 and define the following extended set C,,:

Ky =K +B(0,n).

» g(y) := dk(y) the signed distance to K.
» Consider the following auxiliary control problem :

w(t,x,z) = inf [( \/Sg[c;v;]g(y s))/\}

YES;,71(x)

where a A b = min(a, b).
Theorem
Let(t, x,z) € [0, T] x K x R. The following assertions hold:
(1)  I(t,x)—z< 0 w(tx,z) <0,

(i 9(t,x) =min {z eR, w(t,x,z) < 0}.
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A particular choice of function g

Theorem

The function w is the unique Lipschitz continuous viscosity solution of the following
HJB equation:

min ( — ow(t, x,z) + H(x,Vxw), w(t, x,z)— g(x)) =0 [0, T[xK, xR,
w(T,x,z) =WV,(x,2), Ky xR,
W(taX,Z):ﬂy yglc”]?

where W (x, z) = [(¢<x> ~2)Va)| An.
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Link with exit time function

» Define the exit time function:

T(y,2)

= inf{te[0,T]|d(ty)<z}
= inf{te[0,T]|w(ty z)<0}
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Link with exit time function

» Define the exit time function:
T(y,z) = inf{te[0,T]|d(t,y)<z}
= inf{te[0,T]|w(ty z)<0}
» Link between ¥ and 7T:
(i) T is the exit time function for £pi(®) (] (K x R?),
@iy T,z2)=t= w(ty,z)=0,
(i) I(t,y) =inf{z | T(y,z) < t}.
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Reconstruction of optimal trajectories

Proposition
Let x € K such that9(t, x) < co. Define z* := J(t, x).

@ Let(y*,z") be the optimal trajectory for the auxiliary control problem associated
with the initial point (x, z*) € KL x R. Then, the trajectory y* is optimal for the
original control problem. The converse is also true.
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Reconstruction of optimal trajectories - Algorithm A.

» Forn> 1, consider (&, =0, 4, ..., t,—1, t» = T) a uniform partition of [0, T] with

S|

At = .
» Let {y"(:),2"(-)} be a trajectory defined recursively on the intervals (t_1, ], with
2"(:) :=z=19(0,y)and y"(0) = y.

Padova, Sep25-29, 2017 17/29
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Reconstruction of optimal trajectories - Algorithm A.

» Forn> 1, consider (&, =0, 4, ..., t,—1, t» = T) a uniform partition of [0, T] with

S|

At = .
» Let {y"(:),2"(-)} be a trajectory defined recursively on the intervals (t_1, ], with

2"(:):=z=19(0,y) and y"(0) = y.
» [Step 1] Knowing yi = y"(i), choose the optimal control at f s.t.:

up € arg me|B <w(tk,y,f + Atfar(yi, u),z)).
u
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Reconstruction of optimal trajectories - Algorithm A.

» Forn> 1, consider (f =0, 4, ..., t,—1, t» = T) a uniform partition of [0, T] with
At =

» Let {y"(:),2"(-)} be a trajectory defined recursively on the intervals (t_1, ], with
2"(:) :=z=19(0,y)and y"(0) = y.

S|

» [Step 1] Knowing yi = y"(i), choose the optimal control at f s.t.:

up € arg me|B <w(tk,y,f + Atfar(yi, u),z)).
u

» [Step 2] Define u"(t) := uy, Vt € (&, tk+1] and y"(t) on (i, t1] as the solution of

y(1) = f(y(),u"(t)) ae t € (bl

with initial condition y”(#) at & and 2"(-) := z.
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Theorem

Let{y"(-),2"(-),u"(-)} be a sequence generated by algorithm A for n > 1. Then, the
sequence of trajectories {y"(-)}n has cluster points with respect to the uniform
convergence topology. For any cluster point y(-) there exists a control law u(-) such
that (y(-),2(-),u(-)) is optimal for the auxiliary control problem.
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Theorem

Let{y"(-),2"(-),u"(-)} be a sequence generated by algorithm A for n > 1. Then, the
sequence of trajectories {y"(-)}n has cluster points with respect to the uniform
convergence topology. For any cluster point y(-) there exists a control law u(-) such
that (y(-),2(-),u(-)) is optimal for the auxiliary control problem.

> Let w” be a numerical approximate solution such that,
|WA(t7 Y, Z) - W(t7 Y, Z)| < E; (At7 Ay)v
where E;(At, Ay) — 0as At,Ay — 0.
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Theorem

Let{y"(-),2"(-),u"(-)} be a sequence generated by algorithm A for n > 1. Then, the
sequence of trajectories {y"(-)}n has cluster points with respect to the uniform
convergence topology. For any cluster point y(-) there exists a control law u(-) such
that (y(-),z(-), u(-)) is optimal for the auxiliary control problem.

> Let w” be a numerical approximate solution such that,
|WA(t7 Y, Z) - W(tvya Z)| < E; (At7 Ay)v
where E;(At, Ay) — 0as At,Ay — 0.

» Let {Y"(.),u"(.)} be the sequence generated by the algorithm A with w?.
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Theorem

Let{y"(-),2"(-),u"(-)} be a sequence generated by algorithm A for n > 1. Then, the
sequence of trajectories {y"(-)}n has cluster points with respect to the uniform
convergence topology. For any cluster point y(-) there exists a control law u(-) such
that (y(-),z(-), u(-)) is optimal for the auxiliary control problem.

> Let w” be a numerical approximate solution such that,
|WA(t7 Y, Z) - W(tvya Z)| < E; (At7 Ay)v
where E;(At, Ay) — 0as At,Ay — 0.

» Let {Y"(.),u"(.)} be the sequence generated by the algorithm A with w?.

» Then, (Y"), converges to an optimal trajectory for the auxiliary control problem.
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9 A numerical example
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Abort landing problem in presence of windshear
(Miele, Wang and Melvin(1987,1988); Bulirsch, Montrone and Pesch (1991..); Botkin-Turova(2012 ...))

Consider the flight motion of an aircraft in a vertical plane:

X = Vcosy + wy

h= Vsiny + w,

V = cos(a +8) — 2 — gsiny — (W cos~ + Wy siny)
4= L(Ersin(a +6) + £t — gcosy + (W siny — whcos )

where
. B é)VVX é)M(x
Wy = o (Vcosvy + wx) + 8h(Vsm7+Wh)
W, = %(VCOSW—F wx)+%(Vsinfy+w,,)
and

@ Fr:= Fr(V)is the thrust force

@ Fp:=Fp(V,a)and F. := F.(V, a) are the drag and lift forces
@ Wy := Wx(x) and wy := wx(x, h) are the wind components

@ m, g, and § are constants.
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Controlled system

@ Consider the state y(.) = (x(.), h(.), V(.),7v(.), a(.)).
@ The control variable u is the angular speed of the angle of attack «.
@ Let T be a fixed time horizon and let U be the set of admissible controls

U= {u :(0, T) — R, measurable, u(t) € U a.e }

where U is a compact set.
@ The controlled dynamics in this case is:

x = Vcosy + wy,

h= Vsiny + wp,

V = cos(a +8) — 2 — gsiny — (Wycos~y + whsin~),
4= L(Ersin(a +8) + fL — gcosy + (W siny — Wy cos 7)),
& =u.
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Formulation of the optimal control problem

@ Aim: Maximize the minimal altitude over a time interval

in h
/i, ")
while the aircraft stays in a given domain K.
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Formulation of the optimal control problem

@ Aim: Maximize the minimal altitude over a time interval:

in h(o
S0 O
while the aircraft stays in a given domain K.

@ Consider the following optimal control problem:
(P): 9(t,y)=inf { 0mg>§]¢(y;(0)), luei, andyy(s) € K, Vs € [0, t]}
€lo,

where ®(yy(.)) = H:- — h(.), H; being a reference altitude, and K is a set of state
constraints.
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Figure: Optimal trajectories for different initial conditions

H. Zidani (ENSTA ParisTe:

ined control problems Padova, Sep25-29, 2017 23/29



Outline

@ End-point constrained control problem
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» Consider the end-point constrained control problem

inf  ®(yix(T))
st uel,
a(yix(T)) < 0.

» An associated auxiliary control problem (z € R) can be defined as:

wtx,2) = inf {(@Wi(T) - 2) \/ gyix(T)] -

> Assumethat® : R - Rand g: RY — R are of C'
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Relationship between the PMP and HJB

> Let xo € R? and let z* := min{z : w(0, xo, 2) < 0}.

> It z* < oo, then there exists U™ € U/ and its associated trajectory y* € Sy, 7(Xo)
such that:
a(y" (7)) <0, 9(0,x%) =z" = o(y*(T)).
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Relationship between the PMP and HJB

» Denote H(x, u,p) = (p, f(x, u)). There exists (px, pz) satisfying:
—px(s)
—p:(s)

(%7
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OH(y*(s),u”(s),p;(s))
0

one{(@(y (1) = 2)\/ 9y*(T))}
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Relationship between the PMP and HJB

» Denote H(x, u,p) = (p, f(x, u)). There exists (px, pz) satisfying:

—px(s) = OxH(y"(s),u"(s), px(s))
—pz(s) = 0

( Sggg ) ( AoV O(y*(T)) +AVg(y*(T)) )

where X\o, A € [0,1] and Ao + A = 1.

o}
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Relationship between the PMP and HJB

» Denote H(x, u,p) = (p, f(x, u)). There exists (px, pz) satisfying:

—px(s) = OxH(y (s),u’(s), px(s))
—pz(s) = 0

( SEER ) ( AoV O(y*(T)) +AVg(y*(T)) )

where X\o, A € [0,1] and Ao + A = 1.

o}

» Fora.ese[0,T],

H(Y(s), px(8)) = H(Y"(5), u"(s), Px(8))-
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Relationship between the PMP and HJB

» Denote H(x, u,p) = (p, f(x, u)). There exists (px, pz) satisfying:

—px(s) = OxH(y"(s),u"(s), px(s))
—pz(s) = 0

( SEER ) ( AoV O(y*(T)) +AVg(y*(T)) )

where X\o, A € [0,1] and Ao + A = 1.

o}

» Fora.ese[0,T],

H(Y" (), px(8)) = H(Y"(s), u"(s), px(85))-
» Moreover,

(P5(5), P3(S)) € x.2w(s. Y (S), 2°). J
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» The same framework can be extended to:
@ final state constraints and time-dependent state constraints

@ impulsive control problems (Forcadel-Rao-HZ’'13)
@ supremum running cost problems (Assellaou-Bokanowski-Desilles-HZ’17),

@ stochastic control setting (Bokanowski-Picarelli-HZ’16)

» The relationship between the PMP and the auxiliary value function can be (easily)
derived for control problems with a finite number of state constraints.
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...thanks for your attention.
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