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Sweeping Process

The problem

x(t) € =Nc(e)(x(1)), x(0) € €(0)

is known as Sweeping Process. Here N¢(;)(x) is a Normal Cone such that

- {0} x € intC(t)
NC(t)(X) = { 0 x ¢ C(t)

The (unique) solution x(.) ceases to exist when x(t) ¢ C(t)!!

Same remark holds true when the Perturbed Sweeping Process is
considered

x(t) € =Ny (x(1)) + &(x(t)),  x(0) € C(0)
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Controlled Sweeping Process

We consider a control problem

(x)  x(t) € =Ne(ey(x(t)) + G(x(t)),  x(0) € €(0),

where,

Remarks:

@ (%) as control problem is well-posed!
@ C(t) can be regarded as a state constraint for problem (x);

@ The dynamics is not Lipschitz continuous w.r.t. x and is not
autonomous!
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Application 1: Electric Networks with Diodes.

An ideal diode is an electronic component which has infinite resistance in
one direction and zero resistance in another direction.
Electric networks can be modeled by a ‘Linear Complementarity System':

x(t) = Ax(t) + Bu(t) + \(t), u(t)e U
(LCS) w(t) = Cx(t) >0
w(t) LA(t) tel0,T]
Here, A(t) is the diode effect, which can be considered as a selection of
A(t) € =Nk(x(t)),  t€[0,T]

where K = {Cx: Cx >0, x € R"}.
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Application 2: Hysteresis

The Play Operator with absolutely continuous inputs can be modeled as
follows: given the input u(.) and zy € Z we look for the output z(t) such
that
z(t) = w(t) + v(t), z(t)e Z
(H) <w(t),E—z(t)>>0 WV eZ
v(t) = f(z(t),u(t))  u(t)eU

This formulation is equivalent to

2(t) € F(2(t), u(t)) — Nz(2(t)),  2(0) =z € Z.
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Other Applications

Parameter Estimations (B. Acary, O. Bonnefon, B. Brogliato,
2011);

Crowd Motion (B. Maury, A. Roudne-Chupin, F. Santambrogio,
J. Venel, 2011);

Soft-robotic applications to Crawling Motion (A. De Simone, P.
Gidoni, in progress)

@ Control Problems with active constraints.
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Minimum Time Problem with Controlled Sweeping Process

Minimize T

over x € WHi([to, TI;R™), T >0

satisfying

x(t) € G(x(t))—Nc(p(x(t)) =: F(t,x(t)) a.e.
x(t) € C(t) Vt € [to, T],

[ x(to) =x0 € C(tn), x(T)eS

Data: C: R ~~ R”, G : R" ~» R" multifunctions.

(SP)

S C R" is the target (closed set).
Compatibility Condition: 3 £ > 0 such that C(£) N S # 0.

Minimum Time Function:

T(t,x)=inf{T > 0|3 F -traj. x(.) s.t. x(t) = x, x(t + T) € S}
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Hypothesis on C(.) (Hc¢)

@ there exists L¢ > 0 such that
C(t) C C(s) + LcB|t — s
for all s, t € [tp, T]. (Lipschitz continuous).
o ((.) takes values compact sets.

e C(.) is uniformly prox-regular, that is:
3 r > 0 such that

€ (y—x) < o llell ly — xIP

for all x,y € C(t), for all £ € N¢(y)(x), for every t € [to, T].
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Hypothesis on G(.) (Hc)

Standing Hypothesis (SH)

e GrG :={(x,v)|v e G(x)} is closed.

e for each x € R", G(x) is nonempty, convex, compact.
Lipschitz Continuity (LC)

@ there exists Lg > 0 such that

G(x) C G(y) + LeB|x — y|

for all x,y € R".
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Invariance Principles

K is a closed set, F : R" ~~ R" a multifunction.

Definition: (F, K) is weakly invariant if, for every xp € K, there exist
T >0and x: [0, T] — R" such that

x(0) = xo, x(t)e K Vtelo,T].

Definition: (F, K) is strongly invariant if, for every xo € K, T > 0 and
x : [0, T] — R" such that x(0) = xo, we have

x(t)e K Vtelo, T].
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Dynamic Programming for the Controlled SP

Assume T(.,.) continuous. Then both
epi T = {(t,x,a)|(t,x) € Gr C, T(t,x) < a}

and
hypo T = {(£,x,)| (£,x) € Gr C, T(t,x) = a}

are closed.

The dynamic programming for (SP) principle is:

Proposition 1: ({1} x {G — N¢} x {—1},epi T) is weakly invariant
(easy Hamiltonian characterization!).

Proposition 2: ({1} x {G — N¢} x {1}, hypo T) is strongly invariant
(not trivial Hamiltonian characterization!).
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Strong Invariance Characterization for Sweeping Process

Theorem: Assume (Hg), (Hc) and take K C Gr C closed.
({1} x {G — N¢},K) is strongly invariant

—
for every (7,x) € K

min v-p+ max v-p<0
ve{0}x{—N¢ () (x)N(Lc+Mg)B} ve{1}x{G(x)}

for every p € NE(7, x).

Remark: Monotonicity of the normal cone plays a crucial role!
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HJ inequalities for SP (Colombo-P., '16)

Theorem: Assume (Hg) and (Hc¢) and T(.,.) continuous. Then T(.,.) is
the unique (bilateral) viscosity solution of

oT ) oT
B () min v 5 (tx) =0

such that:
T(t,x) >0 V(t,x) e Gr C for which x ¢ S,
T(t,x)=0 vV (t,x) € GrC for which x € S,
and satisfying other non-standard boundary conditions.

Remark: A-priori Petrov-like conditions involving S and G(.) can be given
for T(.,.) being continuous.
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Non-standard Boundary Conditions

Define Lower and Upper Hamiltonians:

H_(m,x,\, p) := min v-p+ min v-p,
( ) {0} x{—=Nc(r)(x)N(Lc+Mg)B} x{0} ve{lix{G(x)}x{-1}

Hi(1,x, A\, p) == min v-p+ max v-p,
+ ) {0} x{=Nc(r)(x)N(Lc+Mg)B} x{0} ve{l}x{G(x)}x{-1}

Then, for every (7,x) € GroC :

H-(1,x, T(1,x),p) <0, Vx ¢S,V pe NG (7, x, T(,x)),
Hi(r,x, T(1,x),p) <0 Vpe nypo (7, x, T(7,x)).
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A Toy Example

G(x)=x+[-1,1], C(t)={xeR: -1+t<x<2}, S={x>2}

C(0) C(1.5) C@3)

[ [
L L /H

bdry(S)={x=2}

A computation shows:

— — <x<-— t—1 <t<
T(t,x)::{1+|0g3 t 1+t<x<—-1+et7t 0<t<1,

log3 —log(1+x) —l1+el<x<2 1<t<3.
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Figure: graph (T) .
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Mayer Problem

Consider the Optimal Control Problem

( Minimize h(x(T))
over x € WL ([to, TI;R™), T >0
satisfying
x(t) € G(x(t))—Nc(r(x(t)) =: F(t,x(t)) a.e.
x(t) € C(t) Vt € [to, T],
x(to) = x0 € C(to).

Data: C: R~ R", G : R" ~ R" multifunctions.

(M)

h:R" — R is the objective function (Lipschitz Continuous).
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Non-degenerate Necessary Conditions

We aim at improving the result in (Arroud-Colombo, 2017), providing
non-degenerate necessary conditions.
Main ingredients are the following:

i) a localized (around the minimizer X(.)) version of the Moreau-Yosida
approximation dynamics;
ii) use of a partial modification of the constraint C(t):

o C(t) is inactive when an outward pointing condition holds true.
e C(t) is active otherwise.

i) will permit to the adjoint multipliers to jump at the time in which Xx(t)
hits 9C(t).

(Work in Progress with G. Colombo.)
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Conclusions and Open Questions

@ Minimum Time Function T(.,.) is characterised as the unique
continuous viscosity (bilateral) solution for (SP).

@ Does such a characterization hold true for lower semicontinuous
Minimum Time Functions? Open question!

@ Also, the question whether a Hamilton-Jacobi characterization holds
true for the Fully Controlled Sweeping Process

x(t) € =Ne(u(ry(x(1)) + G(x(1)),  veV,

has never been studied.

@ Furthermore, several other questions remain open for what concerns
Necessary Conditions.
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