Evolution PDEs under density constraints

Filippo Santambrogio

Laboratoire de Mathématiques d'Orsay, Université Paris-Sud http://www.math.u-psud.fr/~filippo/

Control of State-Constrained Dynamical Systems Padova, September 25th, 2017

- Micro and macro models for crowd motions with constraints
 - Disks with no overlapping
 - Density $\rho \leq 1$
 - Continuity equation, nonlinear diffusion, Hele-Shaw
- Existence and approximation : the role of optimal transport
 - A splitting method
 - Few words about optimal transport and Wasserstein distance
 - Diffusive and sweeping variants
 - The projection operator
 - Gradient flows and the JKO scheme
- Numerical methods
 - Augmented Lagrangian for the JKO scheme
 - Optimization among convex functions
 - Stochastic approximation of the projection

Modeling

Micro and macro models with constraints

Non-overlapping disks

A particle population moves, and each particle - if alone - would follow its own velocity u (depending on time, position... a typical case is : $u = -\nabla V$, where $V(x) = \operatorname{dist}(x, \Gamma)$, Γ being an exit).

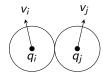
Yet, particles are (modeled by) rigid disks that cannot overlap, hence, the actual velocity v will not be u if u is too concentrating.

If q is the particle configuration, we define adm(q) the set of velocities that do not induce overlapping: if every particle is a disk with radius R, located at q_i , we have

$$\begin{split} q \in \mathcal{K} := \{q = (q_i)_i \in \Omega^N \ : \ |q_i - q_j| \geq 2R\} \\ \textit{adm}(q) = \left\{v = (v_i)_i \ : \ (v_i - v_j) \cdot (q_i - q_j) \geq 0 \ \forall (i,j) \ : \ |q_i - q_j| = 2R\right\} \end{split}$$

 $\begin{array}{c|c}
v_i & v_j \\
\hline
q_i & q_i
\end{array}$

NOT ADMISSIBLE



ADMISSIBLE

A general model

How to handle $v \approx u$ and $q \in K$ at the same time?

We will assume $v = P_{adm(q)}[u]$ and solve $q'(t) = P_{adm(q(t))}[u_t]$ (with q(0) given). This can be discretized (catching-up algorithm) as follows

 $\tilde{q}_{n+1}^{\tau}=q_n^{\tau}+\tau u_{n\tau},\quad q_{n+1}^{\tau}=P_K\big[\tilde{q}_{n+1}^{\tau}\big]$ (for a small time step $\tau>0$) and is the same as the differential inclusion

$$q'(t) \in u_t - N_K(q(t))$$

where N_K is the normal cone to the set K

$$N_K(q_0) = \{v : q_1 \in K \Rightarrow v \cdot (q_1 - q_0) \leq o(|q_1 - q_0|)\}.$$

We exactly have a perturbed sweeping process with exterior forcing u.

It is important here that K, even if not convex in Ω^N , is as at least *prox-regular* (the projection on K is well defined on a neighborhood of K).

B. MAURY, J. VENEL, Handling of contacts in crowd motion simulations, *Traffic and Granular Flow '07*, 2009; A discrete contact model for crowd motion *ESAIM*: *M2AN*, 2011.

Commuters from the RER to the escalator

(numerical simulation by J. Venel)

Continuous formulation

- The particles population will be described by a density $\rho \in \mathcal{P}(\Omega)$,
- the constraint by $K = \{ \rho \in \mathcal{P}(\Omega) : \rho \leq 1 \}$,
- $u: \Omega \to \mathbb{R}^d$ will be a vector field, possibly depending on time or ρ ,
- $adm(\rho) = \{v : \Omega \to \mathbb{R}^d : \nabla \cdot v \ge 0 \text{ on } \{\rho = 1\}\},$
- P is the projection in $L^2(dx)$ or (which is the same) in $L^2(\rho)$,
- we'll solve $\partial_t \rho_t + \nabla \cdot \left(\rho_t \left(P_{\mathsf{adm}(\rho_t)} u_t \right) \right) = 0.$

The equation $\partial_t \rho_t + \nabla \cdot (\rho_t v_t) = 0$ (continuity equation) is exactly the equation satisfied by the evolution of a density ρ when each particle follows the velocity field v (with $v \cdot n = 0$ on $\partial \Omega$, so that the density does not exit Ω).

Difficulty: $v = P_{adm(\rho_t)}u_t$ is not regular, neither depends regularly on ρ .

Pressures and duality

The set $adm(\rho)$ may be better described by duality :

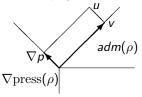
$$\mathsf{adm}(\rho) = \left\{ v \in L^2(\rho) \ : \ \int v \cdot
abla p \leq 0 \quad \forall p \, : \, p \geq 0, \, p(1-\rho) = 0
ight\}.$$

We can characterize $v = P_{adm(\rho)}(u)$ through

$$u = v + \nabla p, \quad v \in adm(\rho), \quad \int v \cdot \nabla p = 0,$$

$$p \in \text{press}(\rho) := \{ p \in H^1(\Omega), \ p \ge 0, \ p(1-\rho) = 0 \}$$

This function p plays the role of a pressure affecting the movement.



$$\partial_t
ho_t +
abla \cdot (
ho_t (u_t -
abla p_t)) = 0$$
 $ho_t \in K, \ p_t \in \operatorname{press}(
ho_t)$

Pressures and duality

The set $adm(\rho)$ may be better described by duality :

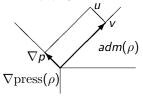
$$\mathit{adm}(
ho) = \left\{ v \in \mathit{L}^2(
ho) \ : \ \int v \cdot
abla p \leq 0 \quad \forall p \, : \, p \geq 0, \, p(1-
ho) = 0
ight\}.$$

We can characterize $v = P_{adm(\rho)}(u)$ through

$$u = v + \nabla p, \quad v \in adm(\rho), \quad \int v \cdot \nabla p = 0,$$

$$p \in \text{press}(\rho) := \{ p \in H^1(\Omega), \ p \ge 0, \ p(1 - \rho) = 0 \}$$

This function p plays the role of a pressure affecting the movement.



$$\frac{\partial_t \rho_t + \nabla \cdot (\rho_t u_t) - \Delta p_t = 0}{\rho_t \in K, \ p_t \in \operatorname{press}(\rho_t)}$$

... very similar to the Hele-Shaw flow

The Hele-Shaw flow in few words:

$$\partial_t \rho_t - \Delta p_t = G_t \ (= \text{ reaction terms})$$

where $p_t \in H(\rho_t)$ and H is a monotone graph. When $H(s) = s^m$ we have a **porous-medium equation** (non-linear diffusion), when $H = \partial I_{[0,1]}$ (hence $H(s) = [0, +\infty[$ for s = 1, $H(s) = \{0\}$ for 0 < s < 1), the pressure $p \ge 0$ is arbitrary, but satisfies $p(1 - \rho) = 0$. (density dynamics)

When $G \geq 0$ and $\rho_0 = \mathbb{1}_{\Omega_0}$ is a patch, the evolution is $\rho_t = \mathbb{1}_{\Omega_t}$ with Ω_t evolving with normal velocity (free boundary geometric evolution)

$$v_t = -\partial p_t/\partial n$$
, $-\Delta p_t = G$ in Ω_t , $p_t = 0$ on $\partial \Omega_t$.

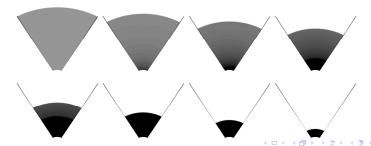
Our PDE has the same form, with an advection term instead of reaction.

- M.G. CRANDALL, An introduction to evolution governed by accretive operators, 1976 Ph. BÉNILAN, L. BOCCARDO, M. HERRERO, On the limit of solution of $u_t = \Delta u^m$ as $m \to \infty$, 1989
- B. Perthame, F. Quirós, J.-L. Vázquez, The Hele-Shaw Asymptotics for Mechanical Models of Tumor Growth, *ARMA*, 2014.

An example

Closed door (no-flux boundary conditions on $\partial\Omega$)

Open door (free flux on the bottom, i.e. mixed Dirichlet-Neumann for p)



Existence and approximation

The role of optimal transport

A splitting (catching-up) scheme for the PDE

Fix a time step $\tau > 0$. We look for a sequence $(\rho_n^{\tau})_n$ where ρ_n^{τ} stands for ρ at time $n\tau$. We first define

$$\tilde{\rho}_{n+1}^{\tau} = (id + \tau u_{n\tau})_{\#} \rho_n^{\tau}; \quad \rho_{n+1}^{\tau} = P_K(\tilde{\rho}_{n+1}^{\tau})$$

where the projection P_K is in the sense of the Wasserstein distance, induced by optimal transport.

The key point is actually using the W_2 projection (instead of L^2 or other projections). It corresponds to the L^2 projection of velocity fields and of (Lagrangian) positions.

- B. MAURY, A. ROUDNEFF-CHUPIN AND F. SANTAMBROGIO, A macroscopic crowd motion model of gradient flow type, *Math. Mod. Meth. Appl. Sci.*, 2010
- B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion modeling *Net. Het. Media*, 2011

Optimal transport and Wasserstein distances

If two probabilities $\mu, \nu \in \mathcal{P}(\Omega)$ are given on a compact domain, the Monge-Kantorovitch problem reads

$$\begin{split} \frac{1}{2}W_2^2(\mu,\nu) &= \inf \big\{ \int \frac{1}{2}|x-T(x)|^2 d\mu \ : \ T:\Omega \to \Omega, \ T_\# \mu = \nu \big\} \\ &= \inf \big\{ \int \frac{1}{2}|x-y|^2 d\gamma \ : \ \gamma \in \mathcal{P}(\Omega^2), \ (\pi_x)_\# \gamma = \mu, (\pi_y)_\# \gamma = \nu \big\} \\ &= \sup \big\{ \int \phi \, d\mu + \int \psi \, d\nu \ : \ \phi(x) + \psi(y) \le \frac{1}{2}|x-y|^2 \big\}. \end{split}$$

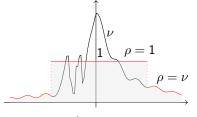
Under suitable assumptions, there exist an optimal transport T and an optimal ϕ , called **Kantorovich potential**, which is Lipschitz continuous. They are linked by $T(x) = x - \nabla \phi(x)$ (also, $T = \nabla u$ with $u(x) = |x|^2/2 - \phi(x)$ convex). Moreover, $W_2(\mu, \nu)$ is a distance on $\mathcal{P}(\Omega)$ which metrizes the weak-* convergence of probabilities (on compact domains).

- G. Monge, Mémoire sur la théorie des déblais et des remblais, 1781
- L. KANTOROVICH, On the transfer of masses, Dokl. Acad. Nauk. USSR, 1942.
- Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, *CRAS*, 1987.

Projections and pressures

Fix a measure $\nu \in \mathcal{P}(\Omega)$ and solve

$$\min\left\{\frac{1}{2}W_2^2(\rho,\nu)\ :\ \rho\in K\right\} \quad = \quad \min_{\rho\leq 1}\ \sup_{\phi,\psi}\,\int\phi\,d\rho + \int\psi\,d\nu.$$



By duality and inf-sup exchange, the optimal ρ must also solve

$$\min \int \phi \, d
ho \, : \,
ho \leq 1,$$

where ϕ is the Kantorovich potential in the transport from ρ to ν . This implies

$$\exists \ell \ : \
ho = egin{cases} 1 & ext{on } \phi < \ell, \ 0 & ext{on } \phi > \ell, \ \Rightarrow p := (\ell - \phi)_+ \geq 0, \ p(1 -
ho) = 0. \ \in [0, 1] & ext{on } \phi = \ell \end{cases}$$

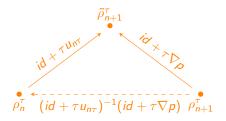
Hence, $p \in \operatorname{press}(\rho)$ and, passing to gradients, we have

$$\rho$$
 – a.e. $\nabla p = -\nabla \phi = T(x) - x$.

Getting back to the PDE

$$T(x) = x + \nabla p(x)$$
 is the optimal transport from ρ_{n+1}^{τ} to $\tilde{\rho}_{n+1}^{\tau}$. Notice $||\nabla p||_{L^2(\rho_{n+1}^{\tau})} = W_2(\rho_{n+1}^{\tau}, \tilde{\rho}_{n+1}^{\tau}) \leq W_2(\rho_n^{\tau}, \tilde{\rho}_{n+1}^{\tau}) \leq \tau ||u_{n\tau}||_{L^2(\rho_n^{\tau})}.$

This suggest to scale the pressure (we call it now τp) and get the following situation



Formally, we have $(id + \tau u_{n\tau})^{-1}(id + \tau \nabla p) = id - \tau(u_{(n+1)\tau} - \nabla p) + o(\tau)$ provided u is regular enough. This allows to get, in the limit $\tau \to 0$, the vector field $v_t = P_{adm(\rho_t)}[u_t]$ and get a solution of the PDE.

Diffusive variants, different splitting methods

Add diffusion to the equation

$$\partial_t \rho_t + \nabla \cdot (\rho_t u_t) - \sigma \Delta \rho_t - \Delta \rho_t = 0$$

where $\sigma \geq 0$ is a volatility. We can't take anymore $\tilde{\rho}_{n+1}^{\tau} = (id + \tau u_{n\tau})_{\#} \rho_n^{\tau}$, but we can take the solution of the Fokker-Planck equation

$$\begin{cases} \partial_{s}\rho_{s} + \nabla \cdot (\rho_{s}u_{s}) - \sigma \Delta \rho_{s} = 0, \\ \rho_{0} = \rho_{n}^{\tau}; \end{cases}$$

then, define $\tilde{\rho}_{n+1}^{\tau} = \rho_{\tau}$.

This gives a theoretically more efficient splitting scheme also for $\sigma=0$. The method works and converges under the same assumptions for the FP equation to be well-posed : $u\in L^\infty$ if $\sigma>0$, u satisfying DiPerna-Lions (or Ambrosio) theory for $\sigma=0$ ($u\in W^{1,1}$ or $u\in BV$ + bounds on $\nabla\cdot u$).

R. J. DIPERNA, P. L. LIONS, Ordinary differential equations, transport theory and Sobolev spaces, *Inv. Math.*, 1989

L. Ambrosio Transport equation and Cauchy problem for BV vector fields, *Inv. Math.* 2003
A. R. Mészáros, F. Santambrogio Advection-diffusion equations with density constraints, *An. PDEs*, 2016.

The projection operator

A key tool is the projection operator $P_K[\nu] := \operatorname{argmin}\{W_2^2(\rho,\nu), \rho \leq 1\}$. Its properties are essential for proving convergence. What we know :

- $W_2^2(\cdot, \nu)$ is strictly convex as soon as $\nu \ll \mathcal{L}^d$. This provides uniqueness and hence continuity in this case.
- Uniqueness actually holds for every ν , in the case $f \ll \mathcal{L}^d$.
- The geodesic convexity of $\{\rho: \rho \leq 1\}$ (w.r.t. Wasserstein geodesics) also gives uniqueness, and Hölder continuity w.r.t. W_2 .
- (1-)Lipschitz continuity of P_K is an open question!
- The projection preserves ordering and decreases the L^1 distance between densities.
- Estimates (order 0) : for every convex $U, \rho \mapsto \int U(\rho(x))dx$ decreases under projection.
- Estimates (order 1): the BV norm decreases under projection.
- A. ROUDNEFF-CHUPIN, Modélisation macroscopique de mouvements de foule, PhD thesis, Orsay, 2011
- G. DE PHILIPPIS, A. R. MÉSZÁROS, F. SANTAMBROGIO, B. VELICHKOV BV estimates in optimal transportation and applications, ARMA, 2016.

Evolving domains and measure sweeping processes

What if the domain Ω is a convex set $\Omega(t)$ evolving in time?

$$\begin{cases} \partial_t \rho_t + \nabla \cdot (\rho_t v_t) = 0 & \text{in } \Omega(t), \\ v_t(x) \in -N_{\Omega(t)}(x), \\ \operatorname{spt}(\rho_t) \subset \Omega(t). \end{cases} \begin{cases} \partial_t \rho_t - \Delta \rho_t = 0 & \text{in } \Omega(t), \\ \rho_t \geq 0, \rho_t \leq 1, \rho_t (1 - \rho_t) = 0 & \text{in } \Omega(t), \\ \operatorname{spt}(\rho_t) \subset \Omega(t). \end{cases}$$

Unconstrained

Density constraints

$$\begin{array}{l} \text{It is enough to project in the space} \ \ W_2(\mathbb{R}^d) \ \ \text{onto} \ \ K = \{\rho \in \mathcal{P}(\mathbb{R}^d) : \\ \text{spt}(\rho) \in \Omega(t) \} \ \text{or} \ \ K = \{\rho \in \mathcal{P}(\mathbb{R}^d) : \\ \text{spt}(\rho) \in \Omega(t), \rho \leq 1 \}. \\ \begin{cases} \partial_t \rho_t - \sigma \Delta \rho_t = 0 & \text{in} \ \Omega(t), \\ -\sigma \nabla \rho_t \cdot n = \rho_t V_t & \text{on} \ \partial \Omega(t), \\ \text{spt}(\rho_t) \subset \Omega(t). \end{cases} \begin{cases} \partial_t \rho_t - \sigma \Delta \rho_t - \Delta \rho_t = 0, \\ \rho_t \geq 0, \rho_t \leq 1, \rho_t (1-\rho_t) = 0 & \text{in} \ \Omega(t) \\ \text{spt}(\rho_t) \subset \Omega(t). \end{cases}$$

Diffusion

Diffusion + constraints

S. DI MARINO, B. MAURY, F. SANTAMBROGIO Measure sweeping processes, *J. Conv. An.*, 2016. Constraints / Small Diffusion / Larger Diffusion / Diffusion+constraints

Gradient flows

When u has a suitable gradient structure, it is possible to do the two steps of the splitting algorithm at once, thanks to the theory of gradient flows.

Gradient flows in few words : consider an evolution equation of the kind

$$x'(t) = -\nabla F(x(t))$$

(we follow the steepest descent lines of a function $F : \mathbb{R}^n \to \mathbb{R}$). We can discretize in time such an equation by solving

$$x_{k+1}^{\tau} \in \operatorname{argmin}_{x} F(x) + \frac{1}{2\tau} |x - x_{k}^{\tau}|^{2}, \quad \tau > 0 \text{ fixed.}$$

The optimal x_{k+1}^{τ} satisfies

$$\frac{x_{k+1}^{\tau}-x_k^{\tau}}{\tau}+\nabla F(x_{k+1}^{\tau})=0$$

which corresponds to an implicit Euler scheme for $x' = -\nabla F(x)$, the solution being found as a limit $\tau \to 0$.

This formulation may easily be adapted to a general metric space. . .

E. DE GIORGI, New problems on minimizing movements, *Boundary Value Problems for PDE and Applications*, 1993

Gradient flows in W_2

Let F be a functional over $(\mathcal{P}(\Omega), W_2)$, and let us follow the so-called JKO scheme

$$\rho_{k+1}^{\tau} \in \operatorname{argmin}_{\rho} F(\rho) + \frac{W_2^2(\rho, \rho_k^{\tau})}{2\tau}$$

Discrete optimality conditions:

$$\frac{\delta F}{\delta
ho}(
ho_{k+1}^{ au}) + rac{\phi}{ au} = const$$

which implies

$$v(x) := \frac{x - T(x)}{\tau} = \frac{\nabla \phi(x)}{\tau} = -\nabla \left(\frac{\delta F}{\delta \rho}(\rho)\right)$$

and, since v represents the discrete velocity (displacement / time step), at the limit $\tau \to 0$ the continuity equation $\partial_t \rho + \nabla \cdot (\rho v) = 0$ gives

$$\partial_t \rho - \nabla \cdot \left(\rho \, \nabla \left(\frac{\delta F}{\delta \rho}(\rho) \right) \right) = 0.$$

R. JORDAN, D. KINDERLEHRER, F. OTTO, The variational formulation of the Fokker-Planck equation, *SIAM J. Math. Anal.*, 1998.

Examples

Take
$$F(\rho) = \int U(\rho(x))dx$$
. Then $\frac{\delta F}{\delta \rho}(\rho) = U'(\rho)$. The equation becomes $\partial_t \rho - \nabla \cdot (\rho \nabla U'(\rho)) = 0$.

For instance, for $U(t)=t\log t$ we get $\nabla U'(\rho)=\frac{\nabla \rho}{\rho}$, which gives the heat equation $\partial_t \rho - \Delta \rho = 0$. For $F(\rho)=\int V(x)d\rho$ we get $\frac{\delta F}{\delta \rho}(\rho)=V$, and we obtain the Fokker-Planck equation with $F(\rho)=\int V(x)d\rho+\int \rho\log\rho$...

The equation $\partial_t \rho - \nabla \cdot (\rho \nabla V) - \Delta p = 0$ (with $p(1-\rho) = 0$) is the gradient flow of the functional

$$F(\rho) = \begin{cases} \int V(x)d\rho & \text{if } \rho \in K, \\ +\infty & \text{if not,} \end{cases}$$

which is the limit as $m\to\infty$ of the functional $\int (\frac{1}{m}\rho(x)^m+V(x)\rho(x))dx$. For the diffusive variant, just add $\sigma\int\rho(x)\log\rho(x)dx$; for diffusion on $\Omega(t)$, add this entropy and optimize among measures supported in $\Omega(t)$.

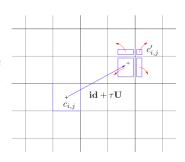
L. Ambrosio, N. Gigli, G. Savaré *Gradient Flows*, Birkäuser, 2005 F. Santambrogio {Euclidean, Metric, and Wasserstein} Gradient Flows: an overview, *Bull. Math. Sci.*, 2017.

Numerics

Optimal transport methods for JKO or splitting schemes

Optimization of transport costs

In a splitting method, we first have to compute $(id + \tau u)_{\#}\rho_n$ (or to solve a PDE without density constraints), then to compute a projection, i.e. minimize a transport cost with a constraint on the final density; in the JKO scheme, we directly minimize with a constraint and a penalization on the final density.



Yet, given ν , how to solve

$$\min\{W_2^2(\rho,\nu),\,\rho\leq 1\}$$

or, more generally

$$\min\{W_2^2(\rho,\nu) + F(\rho)\}$$
 ?

Optimization methods for JKO - Augmented Lagrangian

Use the so-called Benamou-Brenier formula

$$W_2^2(\nu,\mu) = \min \left\{ \int \int \rho |\nu|^2 \, : \, \partial_t \rho + \nabla \cdot (\rho \nu) = 0, \rho_0 = \nu, \rho_1 = \mu \right\}.$$

Write $E=\rho v$, so that $\rho |v|^2=|E|^2/\rho$ which is convex in (ρ,E) . The minimization can be written (by duality) as a saddle point for a Lagrangian

$$L(m,(A,\phi)) := m \cdot (A - \nabla_{t,x}\phi) - K^*(A) + G(\phi),$$

where $m := (\rho, E)$, A is the dual variable to m, and $\nabla_{t,x}\phi := (\partial_t\phi, \nabla\phi)$ involves the test function for the constraint.

Augmented Lagrangian : use $\tilde{L}(m,(A,\phi)):=L(m,(A,\phi))-\frac{r}{2}||A-\nabla_{t,x}\phi||^2$ (same saddle points as L, but more strictly convex). Saddle points can be approximated by alternate minimization.

When F is convex in μ , this can be adapted to solve min $\{W_2^2(\rho,\nu)+F(\rho)\}$.

- J.-D. BENAMOU, Y. BRENIER A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, *Numer. Math.*, 2000.
- J.-D. Benamou, G. Carlier, M. Laborde An augmented Lagrangian approach to Wasserstein gradient flows and applications, $ESAIM: Proc._{\square}2016_{\square}$

Optimization methods for JKO - discrete convex functions

We can rewrite the problem as

$$\min_{u \text{ convex} : \nabla u \in \Omega} \quad \frac{1}{2} \int_{\Omega} |\nabla u(x) - x|^2 d\nu + F((\nabla u)_{\#} \nu).$$

This problem is convex in u essentially when F is geodesically convex. Suppose that ν is discrete, $\nu = \sum_j a_j \delta_{x_j}$. A convex function defined on $\{x_j\}_j$ is a function $u: S \to \mathbb{R}$ such that for every $x \in S$ we have

$$\partial u(x) := \{ p \in \mathbb{R}^d : u(x) + p \cdot (y - x) \le u(y) \text{ for all } y \in S \} \neq \emptyset.$$

When F has the form $F(\rho)=\int U(\rho(x))dx$ we need to associate with $(\nabla u)_{\#}\nu$ a diffuse measure : let us spread the mass a_j uniformly on $\partial u(x_j)$. Then, it is possible to optimize, using a Newton algorithm, the functional by means of **computational geometry tools** which compute and differentiate the volumes of the subdifferential cells. The new measure ρ can be defined as $\rho=\sum_j a_j \delta_{y_j}$ where y_j is the barycenter of $\partial u(x_j)$. Example1 Example2

J.-D. BENAMOU, G. CARLIER, Q. MÉRIGOT AND É. OUDET Discretization of functionals involving the Monge-Ampère operator, *Num. Math.*, 2016.

A stochastic approach to the projection operator

Remember that $\rho=P_K(\nu)$ means $\nu=(id+\nabla p)_\#\rho$, with $p\in\operatorname{press}(\rho)$, and $\rho=1$ on $\{\rho\neq\nu\}$. Hence, infinitesimally (i.e. when $(\nu-1)_+$ is small), setting $A:=\{\nu>1\}$, we can find ρ just by letting A evolve into A' with normal velocity equal to $-\partial p/\partial n$ (with $-\Delta p=\nu-1$ on A and p=0 on ∂A) and setting $\rho=1$ on A' and $\rho=\nu$ elsewhere.

A useful probabilistic fact : The law of the first exit point through ∂A of $(X+B_t)$, with $X\sim \mu$ on A and (B_t) is a Brownian motion independent of X, is the measure $(-\partial p/\partial n)\cdot \mathcal{H}^{d-1}_{|\partial A}$, where $-\Delta p=\mu$ on A and p=0 on ∂A .

Algorithm: pick a random pixel among sorted according to $(\nu-1)_+$ and start a random walk from there; as soon as it meets a pixel with $\nu<1$, leave there as much mass as you can and go on. Repeat till there is some excess. Use the obtained measure as ρ .

Warning: it works well in practice, but nothing is proven on the convergence of this approximation.

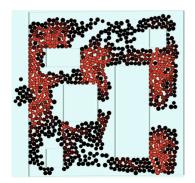
Micro vs Macro

5 obstacles, micro — 5 obstacles, macro

Micro vs Macro

5 obstacles, micro

5 obstacles, macro



The End

Thanks for your attention