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Optimal Control of Nonconvex Sweeping Process

Optimal Control of Nonconvex Sweeping Process

Given a terminal cost function ϕ and a running cost `, consider the
optimal control problem (P): minimize

J[x , u, a] := ϕ
(
x(T )

)
+

∫ T

0
`
(
t, x(t), u(t), a(t), ẋ(t), u̇(t), ȧ(t)

)
, dt (1)

over z(·) := (x(·), u(·), a(·)) ∈W 1,2 satisfying:
−ẋ(t) ∈ N(x(t);C (t)) + f (x(t), a(t)) a.e. t ∈ [0,T ],
x(0) := x0 ∈ C (0) ⊂ Rn,
C (t) := C + u(t) with
C := {x ∈ Rn| gi (x) ≥ 0 ∀ i = 1, . . . ,m}

(2)

with the state constraints:

0 < r1 ≤ ‖u(t)‖ ≤ r2 and gi (x(t)− u(t)) ≥ 0 ∀t ∈ [0,T ], i = 1, . . . ,m.
(3)
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Optimal Control of Nonconvex Sweeping Process

where gi are convex C2-smooth functions, the trajectory x(t) and control
u(t) = (u1(t), . . . , un(t), a(t) = (a1(t), . . . , an(t)) functions are absolutely
continuous on the fixed interval [0,T ]
The normal cone in the nonconvex sweeping process is understood as the
proximal one defined via the projections

NP(x̄ ; Ω) :=
{
v ∈ Rn

∣∣ ∃α > 0 s.t. x̄ ∈ Π(x̄ + αv ; Ω)
}
, x̄ ∈ Ω

with NP(x̄ ; Ω) := ∅ for x̄ /∈ Ω. However, all the major normal cones agree
under the assumptions made ensuring the uniform prox-regularity (or
“positive reach”) of the sweeping sets C (t).
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Generalized Differentiation

Generalized Differentiation

See [Mor06,RW98]

Normal Cone to a closed set Ω ⊂ Rn at x̄ ∈ Ω

N(x̄ ; Ω) :=
{
v
∣∣ ∃xk → x̄ ,wk ∈ Π(xk ; Ω), αk ≥ 0, αk(xk − wk)→ v

}
Subdifferential of an l.s.c. function ϕ : Rn → (−∞,∞] at x̄

∂ϕ(x̄) :=
{
v
∣∣ (v ,−1) ∈ N((x̄ , ϕ(x̄)); epiϕ)

}
, x̄ ∈ domϕ

Coderivative of a set-valued mapping F

D∗F (x̄ , ȳ)(u) :=
{
v
∣∣ (v ,−u) ∈ N((x̄ , ȳ); gphF )

}
, ȳ ∈ F (x̄)

Generalized Hessian of ϕ at x̄

∂2ϕ(x̄) := D∗(∂ϕ)(x̄ , v̄), v̄ ∈ ∂ϕ(x̄)

Enjoy FULL CALCULUS and COMPLETELY CALCULATED in terms
of the given data of (P)
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Necessary Optimality Conditions

Necessary Optimality Conditions

For simplicity consider the case of smooth costs ϕ, `

THEOREM Let z̄(·) be a strong local minimizer for (P). Then there exist
a multiplier λ ≥ 0, an adjoint arc p(t) = (px , pu, pa)(t) ∈W 1,2,
subgradient functions w(t) = (w x ,wu,wa) ∈ L2 and
v(t) = (v x , vu, va) ∈ L2 such that(

w(t), v(t)
)
∈ co ∂`

(
t, z̄(t), ˙̄z(t)

)
a.e.

and Borel measures γ ∈ C ∗, ξ1 ∈ C ∗+, ξ2 ∈ C ∗− satisfying
• Primal-Dual Dynamic Relationships

˙̄x(t) + f
(
x̄(t), ā(t)

)
=

m∑
i=1

ηi (t)∇gi
(
x̄(t)− ū(t)

)
a.e.
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Necessary Optimality Conditions

with the uniquely defined η(t) ∈ L2 and

ṗ(t) = λw(t) +
(
∇x f

(
x̄(t), ā(t)

)∗(
λv x(t)− qx(t)

)
, 0,

∇bf
(
x̄(t), ā(t)

)∗(
λv x(t)− qx(t)

))
qu(t) = λ∇u̇`

(
t, ˙̄u(t)

)
, qa(t) ∈ λ∂ȧ`

(
t, ˙̄a(t)

)
a.e.

where q(t) = (qx , qu, qa) is of bounded variation given by

q(t) := p(t)−
∫

[t,T ]

(
−dγ(s), 2ū(s)d(ξ1(s) + ξ2(s)) + dγ(s), 0

)
Moreover, we have the implications{

gi
(
x̄(t)− ū(t)

)
> 0⇒ ηi (t) = 0,

ηi (t) > 0⇒ 〈∇gi
(
x̄(t)− ū(t), λv x(t)− qx(t)

)
〉 = 0
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Necessary Optimality Conditions

• Transversality Conditions

−px(T ) +
∑

i∈I (x̄(T )−ū(T ))

ηi (T )∇gi
(
x̄(T )− ū(T )

)
∈ λ∂ϕ(x̄(T )

)
pu(T )−

∑
i∈I (x̄(T )−ū(T ))

ηi (T )∇gi
(
x̄(T )− ū(T )

)
∈

−2ū(T )
(
N[0,r2]

(
‖ū(T )‖

)
+ N[r1,∞)

(
‖ū(T )‖

))
pa(T ) = 0

where I (y) ⊂ {1, . . . ,m} is the set of active constraint indices
• Nontriviality Conditions

λ+ ‖qu(0)‖+ ‖p(T )‖+ ‖ξ1‖+ ‖ξ2‖ > 0

Furthermore we have the implications[
gi (x0 − ū(0)) > 0, i = 1, . . . ,m

]
⇒
[
λ+ ‖p(T )‖+ ‖ξ1‖+ ‖ξ2‖ > 0

]
[
gi (x̄(T )− ū(T )) > 0, r1 < ‖ū(T )‖ < r2, i = 1, . . . ,m

]
⇒[

λ+ ‖qu(0)‖+ ‖ξ1‖+ ‖ξ2‖ > 0
]
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Applications to the Crowd Motion Model

Applications to the Crowd Motion Model

We can apply our necessary optimality condition derived in theory to solve
the controlled crowd motion model in the planar.
The dynamic description of this model as a sweeping process was
developed by Maury and Venel [MauryVenel11].
The crowd motion model is designed to deal with local interactions
between participants to describe the dynamics of pedestrian traffic.
This microscopic model for crowd motion rests on two principles.
• A spontaneous velocity is the velocity that each participant would like to
have in the absence of others.
• The actual velocity is the projection of the spontaneous velocity onto the
set of admissible velocities.
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Applications to the Crowd Motion Model

Consider n participants (n ≥ 2) identified with rigid disks of the same
radius R in a planar.

Exit

xi xj

x1

xn

. . .

xn−1
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Applications to the Crowd Motion Model

Applications to the Crowd Motion Model

Non-overlapping condition:

Q0 := {x ∈ R2n| Dij(x) ≥ 0 ∀i 6= j},

where Dij(x) := ‖xi − xj‖ − 2R.

The spontaneous velocity of participants is

U(x) =
(
U0(x1), . . . ,U0(xn)

)
for x ∈ Q0,

The set of feasible velocities is

Cx := {v = (v1, . . . , vn) ∈ R2n| ∀i < j Dij(x) = 0 =⇒ 〈Gij(x), v〉 ≥ 0},

with

Gij(x) = ∇Dij(x) = (0, . . . , 0,−eij(x), 0, . . . , 0, eij(x), 0, . . . , 0) ∈ R2n

and eij(x) =
xj − xi
‖xj − xi‖

.
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Applications to the Crowd Motion Model

Specify our data to fit this model:

The set C is

C := {x = (x1, . . . , xn) ∈ R2n| gij(x) ≥ 0, ∀i 6= j , i , j = 1, . . . , n}

with gij(x) := Dij(x) = ‖xi − xj‖ − 2R.

As all the participants exhibit the same behavior and want to reach
the exit by the shortest path, their spontaneous velocities are

U(x) = (U0(x1), . . . ,U0(xn)) with U0(xi ) = −si∇D(xi )

where D(xi ) stands for the distance between the position xi and the
exit positioned at the origin, and where the scalar si ≥ 0 denotes the
speed.

In this case D(xi ) = ‖xi‖ so ∇D(xi ) =
xi
‖xi‖

and thus si = ‖U0(xi )‖.

Tan. H. Cao, Boris. S. Mordukhovich (Wayne State University)Optimal Control for a Controlled Sweeping Process with Applications to the Crowd Motion Model
The International Conference on Control of State-Constrained Dynamical Systems September 25-29, 2017 at Padua, Italy 12

/ 36



Applications to the Crowd Motion Model

The perturbation is

f (x) =

(
− s1

‖x1‖
x1, . . . ,−

sn
‖xn‖

xn

)
∈ R2n for all x = (x1, . . . , xn) ∈ Q0,

So
f (x) = (−s1 cos θ1,−s1 sin θ1, . . . ,−sn cos θn,−sn sin θn)

where θi denotes the direction of xi .
We involve a(·) = (a1(·), . . . , an(·)) into perturbations to control the speed
of participants:

f (x , a) = (s1a1 cos θ1, s1a1 sin θ1, . . . , snan cos θn, snan sin θn) .
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Applications to the Crowd Motion Model

Applications to the Crowd Motion Model

Define the vector function ū = (ū1, . . . , ūn) : [0,T ]→ R2n by

ūi+1(t) = ūi (t) =

(
r√
2n
,

r√
2n

)
where r is a number such that r1 ≤ r ≤ r2.

The controlled crowd motion dynamics is
−ẋ(t) ∈ N

(
x(t);C (t)

)
+ f
(
x(t), a(t)

)
for a.e. t ∈ [0,T ],

C (t) := C + ū(t), ‖ū(t)‖ = r ∈ [r1, r2] on [0,T ],
x(0) = x0 ∈ C (0),

Consider the Bolza problem:

minimize J[x , a] :=
1

2

(
‖x(T )‖2 +

∫ T

0
‖a(t)‖2dt

)
We would like to minimize the distance of all the participants to the

exit together with the energy of the feasible controls a(·).
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Applications to the Crowd Motion Model

Applications to the Crowd Motion Model

Since all the participants would like to reach the exit by the shortest path
and when two participants i and j are in contact they tend to adjust their
velocities (speeds and directions) and maintain their new constant
velocities until reaching someone or the end of the process at time t = T ,
then the trajectory xi admits the following representations:

x̄i (t) = (‖x̄i (t)‖ cos θi (t), ‖x̄i (t)‖ sin θi (t)) for all i = 1, . . . , n,

where θi denotes the piecewise-constant direction of participant i (each
participant only switches his/her direction when he/she is in contact).
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Applications to the Crowd Motion Model

Necessary Optimality Conditions

(1) w(t) = (0, ā(t)), v(t) = (0, 0) for a.e. t ∈ [0,T ];

(2)
˙̄x(t) + (s1ā1(t) cos θ1(t), s1ā1(t) sin θ1(t), . . . ,

snān(t) cos θn(t), snān(t) sin θn(t)) =
∑

i<j ηij(t)∇gij(x̄(t)− ū(t))

=

(
−
∑

j>1 η1j(t)
x̄j(t)− x̄1(t)

‖x̄j(t)− x̄1(t)‖
, . . . ,

∑
i<j ηij(t)

x̄j(t)− x̄i (t)

‖x̄j(t)− x̄i (t)‖

−
∑

i>j ηji (t)
x̄i (t)− x̄j(t)

‖x̄i (t)− x̄j(t)‖
, . . . ,

∑
j<n ηjn(t)

x̄n(t)− x̄j(t)

‖x̄n(t)− x̄j(t)‖

)
(3) ‖x̄i (t)− x̄j(t)‖ > 2R =⇒ ηij(t) = 0 for all i < j and a.e. t ∈ [0,T ];

(4) ηij(t) > 0 =⇒
〈
qxj (t)− qxi (t), x̄j(t)− x̄i (t)

〉
= 0 for all i < j and a.e.

t ∈ [0,T ];

Tan. H. Cao, Boris. S. Mordukhovich (Wayne State University)Optimal Control for a Controlled Sweeping Process with Applications to the Crowd Motion Model
The International Conference on Control of State-Constrained Dynamical Systems September 25-29, 2017 at Padua, Italy 16

/ 36



Applications to the Crowd Motion Model

(5)

{
ṗ(t) =

(
0, λā1(t)− s1(cos θ1(t)qx11(t) + sin θ1(t)qx12(t))

, . . . , λān(t)− sn(cos θn(t)qxn1(t) + sin θn(t)qxn2(t))
)

(6) qx(t) = px(t) + γ([t,T ]) for a.e. t ∈ [0,T ];

(7) qa(t) = pa(t) = 0 for a.e. t ∈ [0,T ];

(8)



px(T ) + λx̄(T ) =

(
−
∑

j>1 η1j(T )
x̄j(T )− x̄1(T )

‖x̄j(T )− x̄1(T )‖
, . . . ,∑

i<j ηij(T )
x̄j(T )− x̄i (T )

‖x̄j(T )− x̄i (T )‖
−
∑

i>j ηji (T )
x̄i (T )− x̄j(T )

‖x̄i (T )− x̄j(T )‖
,

. . . ,
∑

j<n ηjn(T )
x̄n(T )− x̄j(T )

‖x̄n(T )− x̄j(T )‖

)
;

(9) pa(T ) = 0;

(10) λ+ ‖px(T )‖ > 0.
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Applications to the Crowd Motion Model

The Crowd Motion Problem with Two Participants.

Let t1 be the first time that two participants are in contact, i.e.,
‖x̄1(t1)− x̄2(t1)‖ = 2R.
The velocities of two participants (before and after t1) are given by{

˙̄x1(t) = (−s1ā1(t) cos θ1(0),−s1ā1(t) sin θ1(0)),

˙̄x2(t) = (−s2ā2(t) cos θ2(0),−s2ā2(t) sin θ2(0))

and
˙̄x1(t) = −s1ā1(t)(cos θ1(t1), sin θ1(t1))− η12(t)

2R
(x̄2(t)− x̄1(t)),

˙̄x2(t) = −s2ā2(t)(cos θ2(t1), sin θ2(t1)) +
η12(t)

2R
(x̄2(t)− x̄1(t))

After two participants are in contact, they switch their directions:

θ1(t1) = θ2(t1) = θ.
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Applications to the Crowd Motion Model

Since the speeds are constant, it is to suppose that the functions āi (·)
are constant āi on [0,T ] for all i = 1, 2. Thus the vector function
η12(·) is piecewise constant on [0,T ]:

η12(t) =

{
η12(0) = 0 a.e. t ∈ [0, t1) including t = 0
η12(t1) a.e. t ∈ [t1, 6] including t = t1.

The trajectories are{
x̄1(t) = (x̄11(0), x̄12(0)) + (−s1ā1 cos θ1(0)t,−s1ā1 sin θ1(0)t)
x̄2(t) = (x̄21(0), x̄22(0)) + (−s2ā2 cos θ2(0)t,−s2ā2 sin θ2(0)t)

(4)
for all t ∈ [0, t1) and
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Applications to the Crowd Motion Model



x̄1(t) = (x̄11(0), x̄12(0)) + (−s1ā1 cos θ1(0)t1

+(−s1ā1 + η12(t1)) cos θ(t − t1),−s1ā1 sin θ1(0)t1

+(−s1ā1 + η12(t1)) sin θ(t − t1))

x̄2(t) = (x̄21(0), x̄22(0)) + (−s2ā2 cos θ2(0)t1

+(−s2ā2 − η12(t1)) cos θ(t − t1),−s2ā2 sin θ2(0)t1

+(−s2ā2 − η12(t1)) sin θ(t − t1))

(5)

for all t ∈ [t1,T ].
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Applications to the Crowd Motion Model

Since two participants have the same velocities as they have the same
speeds and directions after t1, then ˙̄x1(t) = ˙̄x2(t) for all t ∈ [t1,T ],
which implies

η12(t1) =
s1ā1 − s2ā2

2
.

Moreover, using the fact that ‖x̄2(t1)− x̄1(t1)‖ = 2R allows us to
calculate the time t1 as follows:{

[s1ā1 cos θ1(0)− s2ā2 cos θ2(0)]2 + [s1ā1 sin θ1(0)− s2ā2 sin θ2(0)]2
}
t2
1

+ 2
{

[x̄21(0)− x̄11(0)][s1ā1 cos θ1(0)− s2ā2 cos θ2(0)]

+ [x̄22(0)− x̄12(0)][s1ā1 sin θ1(0)− s2ā2 sin θ2(0)]
}
t1

+ [x̄21(0)− x̄11(0)]2 + [x̄22(0)− x̄12(0)]2 − 4R2 = 0
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Applications to the Crowd Motion Model

If η12(t1) = 0 then s1ā1 = s2ā2.

If η12(t1) > 0 then s2ā1 = s1ā2 due to (4), (5), and (7).
Hence, in both cases we can express the cost functional in terms of
ā1, ā2, and θ and can solve the optimization problem completely.
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Applications to the Crowd Motion Model

Specify the data as follows:

n = 2, T = 6, s1 = 6, s2 = 3,

x01 =

(
−48− 6√

2
, 48 +

6√
2

)
, x02 = (−48, 48), R = 3.

We have t1 = 0 (two participants are in contact at the initial time),
θ1(·) = θ2(·) = 135◦ (θ1(·) and θ2(·) are constant on the interval
[0,T ] ).

Consider two cases:
Case 1: η12(t1) = η12(0) = 0. Then the cost functional is

J[x , a] = 1311ā2
1 − 36(96

√
2 + 6)ā1 +

(
48 +

6√
2

)2

+ 482.
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Applications to the Crowd Motion Model

So J attains its minimum at ā1 =
(96
√

2 + 6)18

1311
≈ 1.95 and thus

ā2 = 2ā1 ≈ 3.9.
The minimum cost in this case is J ≈ 66.49.
Also, we can compute the trajectory as follows: x̄1(t) =

(
−48− 6√

2
+ 8.27t, 48 +

6√
2
− 8.27t

)
x̄2(t) = (−48 + 8.27t, 48− 8.27t)

The spontaneous velocities are (8.27,−8.27) and (8.27,−8.27).
Case 2: η12(t1) = η12(0) > 0. In this case, we have ā1 = 2ā2 and thus
η12(t1) = 9

2 ā2. Then the cost functional is

J[x , a] = 2040ā2
2 − 45(96

√
2 + 6)ā2 +

(
48 +

6√
2

)2

+ 482
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Applications to the Crowd Motion Model

So J attains its minimum at ā2 =
45(96

√
2 + 6)

4080
≈ 1.56 and hence

ā1 = 2ā2 ≈ 3.12.
The minimum cost in this case is J ≈ 45.9.
Comparing two above cases, we conclude that the optimal solution is

(ā1, ā2) = (3.12, 1.56)

x̄1(t) =

(
−48− 6√

2
+ 8.27t, 48 +

6√
2
− 8.27t

)
x̄2(t) = (−48 + 8.27t, 48− 8.27t)

The spontaneous velocities are (13.24,−13.24) and (3.31,−3.31).
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Exit
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Applications to the Crowd Motion Model

Specify the data as follows:
n = 2,T = 6, s1 = 6, s2 = 3, x01 = (−60, 60), x02 = (−48, 48),R = 3.

In this case we have t1 > 0 and θ1(0) = θ2(0) = 135◦.

The optimal solution is

(ā1, ā2) = (3.36, 1.68),

x̄1(t) =

{
(14.26t − 60,−14.26t + 60) for t ∈ [0, 0.73)
(8.91t − 56.12,−8.91t + 56.12) for t ∈ [0.73, 6]

and

x̄2(t) =

{
(3.56t − 48,−3.56t + 48) for t ∈ [0, 0.73)
(8.91t − 51.88,−8.91t + 51.88) for t ∈ [0.73, 6].
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Applications to the Crowd Motion Model

Specify the data as follows:

n = 2,T = 6, s1 = 6, s2 = 3, x01 = (−60, 60) , x02 = (−48, 54),R = 3.

In this case we have t1 > 0, θ1(0) = 135◦, and θ2(0) = 131.63◦.

The optimal solution is

(ā1, ā2) = (2.62, 1.31),

x̄1(t) =

{
(−60 + 11.12t, 60− 11.12t) for t ∈ [0, 0.702)
(−56.93 + 6.75t, 57.21− 7.14t) for t ∈ [0.702, 6]

and

x̄2(t) =

{
(−48 + 2.61t, 54− 2.94t) for t ∈ [0, 0.702)
(−50.91 + 6.75t, 56.96− 7.14t) for t ∈ [0.702, 6]
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Applications to the Crowd Motion Model

Exit

x1

x2

133.37◦
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