J. Venel

Crowd motion model

Spontaneous velocity Actual velocity

Theoretical study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second orde differential inclusions Example General setting

Differential inclusions and applications

Juliette Venel¹ joint work with B. Maury² and F. Bernicot³

¹ Université de Valenciennes et du Hainaut-Cambrésis
 ² Université Paris-Sud XI
 ³ CNRS - Université de Nantes

Conference « Control of state constrained dynamical systems »

September 25-29 2017, Padova

Outline

Differential inclusions

J. Venel

Crowd motior model

Spontaneous velocit Actual velocity

Theoretica study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second order differential inclusions Example General setting

Crowd motion model

Spontaneous velocity Actual velocity

2 Theoretical study

New formulation Well-posedness Numerical study Numerical simulations

3 Sweeping Process

Second order differential inclusions Example : Granular flows General setting

Outline

1 Crowd motion model

Spontaneous velocity Actual velocity

Theoretical study

New formulation Well-posedness Numerical study Numerical simulations

3 Sweeping Process

Second order differential inclusions Example : Granular flows General setting

Differential inclusions

J. Venel

Crowd motion model

Spontaneous veloci Actual velocity

Theoretical study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second orde differential inclusions Example General setting

J. Venel

Crowd motion model

Spontaneous velocit Actual velocity

Theoretica study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second order differential inclusions Example General setting

A crowd motion model with several goals

• to deal with emergency evacuation

• to take into account direct contacts between individuals

• to determine the areas where people are crushed

J. Venel

Crowd motion model

Spontaneous velocity Actual velocity

Theoretical study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second orde differential inclusions Example

General setting

Two principles

Spontaneous velocity

Actual velocity

J. Venel

Crowd motion model

Spontaneous velocity Actual velocity

Theoretica study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second orde differential inclusions Example General setting

Set of feasible configurations

$$oldsymbol{Q}_0 = \left\{ oldsymbol{q} \in \mathbb{R}^{2N}, \ orall \, i < j, \quad oldsymbol{D}_{ij}(oldsymbol{q}) = |\mathrm{q}_i - \mathrm{q}_j| - r_i - r_j \geq 0
ight\}$$

$$\mathbf{G}_{ij}(\mathbf{q}) = \nabla D_{ij}(\mathbf{q}) = (0 \dots 0, -\mathbf{e}_{ij}(\mathbf{q}), 0 \dots 0, \mathbf{e}_{ij}(\mathbf{q}), 0 \dots 0)$$

Notations

J. Venel

Crowd motion model

Spontaneous velocity

Example :

Actual velocity

Theoretica study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second order differential inclusions Example

$\label{eq:spontaneous velocity} \begin{array}{l} \text{Spontaneous velocity} \\ \text{Notation}: \textbf{U}(\textbf{q}) = (\mathrm{U}_1(\textbf{q}), \ \mathrm{U}_2(\textbf{q}), ..., \ \mathrm{U}_N(\textbf{q})) \end{array}$

$U_i(\mathbf{q}) = -\mathbf{s}_i \nabla \mathcal{D}(\mathbf{q}_i),$

where $\mathcal{D}(\boldsymbol{x})$ represents the geodesic distance between \boldsymbol{x} and the exit.

Contour levels of $\ensuremath{\mathcal{D}}$

J. Venel

Crowd motion model

Spontaneous velocity

Actual velocity

Theoretica study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second orde differential inclusions Example General setting

Example of spontaneous velocity

Direction opposite to the gradient of the geodesic distance $\ensuremath{\mathcal{D}}.$

J. Venel

Crowd motion model

Spontaneous velocity Actual velocity

Theoretical study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second order differential inclusions Example General setting

Actual velocity

To handle the contacts, we define the

cone of admissible velocities

$$\mathcal{C}_{\mathbf{q}} = \left\{ \mathbf{v} \in \mathbb{R}^{2N}, \ \forall \ i < j \quad D_{ij}(\mathbf{q}) = 0 \quad \Rightarrow \quad \mathbf{G}_{ij}(\mathbf{q}) \cdot \mathbf{v} \ge 0
ight\},$$

where
$$\mathbf{G}_{ij}(\mathbf{q}) = \nabla D_{ij}(\mathbf{q}).$$

If **u** is the actual velocity of the *N* pedestrians, the model can be expressed as follows :

$$\label{eq:q_0} \begin{split} \boldsymbol{q} &= \boldsymbol{q}_0 + \int \boldsymbol{u}, \\ \boldsymbol{u} &= \boldsymbol{\mathsf{P}}_{\mathcal{C}_{\boldsymbol{q}}} \boldsymbol{U}. \end{split}$$

Outline

Differential inclusions

J. Venel

Crowd motion model

Spontaneous velocity Actual velocity

Theoretical study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second order differential inclusions Example General setting

Crowd motion mode

Spontaneous velocity Actual velocity

2 Theoretical study

New formulation Well-posedness Numerical study Numerical simulations

3 Sweeping Process

Second order differential inclusions Example : Granular flows General setting

J. Venel

Crowd motion model

Spontaneous velocity Actual velocity

Theoretica study

New formulation Well-posedness

Numerical study Numerical simulations

Sweeping Process

Second orde differential inclusions Example

$\begin{array}{c} \text{Cone } \mathcal{N}_{q} \\ \text{Let us define } \mathcal{N}_{q} \text{ the polar cone of } \mathcal{C}_{q}: \end{array}$

Definition

$$\mathcal{N}_{\mathbf{q}} = \mathcal{C}^{\circ}_{\mathbf{q}} = \{\mathbf{w}\,,\; (\mathbf{w}, \mathbf{v}) \leq 0 \quad \forall \, \mathbf{v} \in \mathcal{C}_{\mathbf{q}} \}$$

Cone \mathcal{N}_{q}

Proposition

Theoretica study

Differential inclusions

J Venel

Spontaneous velocity

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second order differential inclusions Example General setting

$\mathcal{N}_{\mathbf{q}} = \left\{ -\sum \lambda_{ij} \mathbf{G}_{ij}(\mathbf{q}) \,, \, \lambda_{ij} \geq 0 \,, \, D_{ij}(\mathbf{q}) > \mathbf{0} \Longrightarrow \lambda_{ij} = \mathbf{0} ight\}.$

Since C_q and N_q are mutually polar cones, the following property holds (J.-J. Moreau 62)

Property

$$\mathsf{P}_{\mathcal{C}_{\mathbf{q}}} + \mathsf{P}_{\mathcal{N}_{\mathbf{q}}} = \mathrm{Id}.$$

J. Venel

Crowd motior model

Spontaneous velocit Actual velocity

Theoretical study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second order differential inclusions Example General setting

Differential inclusion

According to the previous property,

$$\dot{\boldsymbol{q}} = \boldsymbol{u} = \mathsf{P}_{\mathcal{C}_{\boldsymbol{q}}}(\boldsymbol{U}(\boldsymbol{q})) = \boldsymbol{U}(\boldsymbol{q}) - \mathsf{P}_{\mathcal{N}_{\boldsymbol{q}}}(\boldsymbol{U}(\boldsymbol{q})),$$

which is equivalent to

$$\dot{\mathbf{q}} + \mathsf{P}_{\mathcal{N}_{\mathbf{q}}}(\mathbf{U}(\mathbf{q})) = \mathbf{U}(\mathbf{q}).$$

and so the problem can be formulated as a first order differential inclusion .

Model

$$egin{array}{l} \displaystyle rac{d \mathbf{q}}{dt} + \mathcal{N}_{\mathbf{q}}
i \mathbf{U}(\mathbf{q}), \ \mathbf{q}(0) = \mathbf{q}_{0}. \end{array}$$

J. Venel

Crowd motion model

Spontaneous velocity Actual velocity

Theoretica study

New formulation Well-posedness Numerical study Numerical simulations

 q_1

q

Sweeping Process

Second orde differential inclusions Example

Non-convexity of the feasible set *Q*₀

ĝ

So Q_0 is not a convex set!

J. Venel

Crowd motior model

Spontaneous velocity Actual velocity

Theoretical study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second orde differential inclusions Example General setting

Uniform prox-regularity

Uniformly prox-regular set

Let *C* be a closed subset of a Hilbert space *H*, C is η -prox-regular if the projection on *C* is single-valued and continuous at any point *x* satisfying $d_C(x) < \eta$.

H. Federer 59, *positively reached sets*A. Canino 88, *p-convex sets*F. Clarke, R. Stern, P. Wolenski 95, *proximally smooth sets*R. Poliquin, R. Rockafellar, L. Thibault 00, *prox-regular sets*

J. Venel

Crowd motion model

Spontaneous velocit Actual velocity

Theoretical study

New formulation

Numerical stud Numerical simulations

Sweeping Process

Second orde differential inclusions Example General setting

Proposition

 Q_0 is η -prox-regular with $\eta = \eta(N, r_i)$.

Sketch of the proof :

One constraint's case : $Q_{ij} = \{\mathbf{q} \in \mathbb{R}^{2N}, D_{ij}(\mathbf{q}) = |q_j - q_i| - (r_j + r_i) \ge 0\}$ is η_{ij} -prox-regular with $\eta_{ij} = \frac{r_i + r_j}{\sqrt{2}}$.

Extension to several constraints : $Q_0 = \bigcap_{i < j} Q_{ij}$.

Prox-regularity of Q_0

J. Venel

Crowd motion model

Spontaneous velocity Actual velocity

Theoretical study

New formulation

Well-posedness Numerical study Numerical simulations

Sweeping Process

Second order differential inclusions Example General setting

Key point of the proof

A reverse triangle inequality

For every $\mathbf{q} \in Q_0$, for every $\lambda_{ij} \ge 0$, there exists $\gamma > 1$ such that

$$\sum_{i,j)\in I(\mathsf{q})}\lambda_{ij}|\mathsf{G}_{ij}(\mathsf{q})|\leq \gamma \left|\sum_{(i,j)\in I(\mathsf{q})}\lambda_{ij}\mathsf{G}_{ij}(\mathsf{q})
ight|,$$

where

 $I(\mathbf{q}) = \{(i, j), i < j, D_{ij}(\mathbf{q}) = 0\}.$

J. Venel

Crowd motion model

Spontaneous velocity Actual velocity

Theoretica study

New formulatio

Well-posedness

Numerical stur Numerical simulations

Sweeping Process

Second orde differential inclusions Example General setting

A second important geometrical assumption

The set *S* is not suitable.

S

The set *C* is suitable. No "thin peaks".

J. Venel

Crowd motion model Spontaneous velocity

Theoretical

New formulation

Well-posedness Numerical study Numerical simulations

Sweeping Process

Second orde differential inclusions Example General setting

Well-posedness

Theorem

Assume that **U** is bounded and Lipschitz continuous. Then for any \mathbf{q}_0 in Q_0 , there is a unique absolutely continuous map \mathbf{q} satisfying

$$\begin{cases} \frac{d\mathbf{q}}{dt} + \mathrm{N}(Q_0, \mathbf{q}) \ni \mathbf{U}(\mathbf{q}) \quad \text{a.e. in } [0, T], \\ \mathbf{q}(0) = \mathbf{q}_0. \end{cases}$$

J. Venel

Numerical scheme

 $\begin{array}{ll} \mbox{Initialization}: & \mathbf{q}^0 = \mathbf{q}_0 \\ \mbox{Time-loop}: & \mathbf{q}^n \mbox{ is known} \\ & \mathbf{u}^n = \mathrm{P}_{\mathcal{C}_h(\mathbf{q}^n)}(\mathbf{U}(\mathbf{q}^n)) \\ & \mathbf{q}^{n+1} = \mathbf{q}^n + \mathrm{h} \ \mathbf{u}^n \\ \mbox{where} \mathcal{C}_h(\mathbf{q}^n) = \left\{ \mathbf{v} \in \mathbb{R}^{2N}, \forall \ i < j, \ D_{ij}(\mathbf{q}^n) + \mathrm{h} \ \mathbf{G}_{ij}(\mathbf{q}^n) \cdot \mathbf{v} \ge 0 \right\}. \end{array}$

In terms of position, this algorithm can be formulated as follows :

$$\mathbf{q}^{\mathrm{n+1}} = \mathrm{P}_{\mathcal{K}(\mathbf{q}^{\mathrm{n}})}(\mathbf{q}^{\mathrm{n}} + \mathrm{h}\; \mathbf{U}(\mathbf{q}^{\mathrm{n}}))$$

with
$$\mathcal{K}(\mathbf{q}^n) = \left\{ \mathbf{q} \in \mathbb{R}^{2N}, \forall i < j, \ D_{ij}(\mathbf{q}^n) + \mathbf{G}_{ij}(\mathbf{q}^n) \cdot (\mathbf{q} - \mathbf{q}^n) \ge 0 \right\}$$

Spontaneous velocity Actual velocity

Numerical study Numerical simulations

Sweeping Process

Second orde differential inclusions Example General setting

J. Venel

Actual velocity

New formulation

Numerical study

J. Venel

Crowd motion model Spontaneous velocity

Actual velocity

Theoretical study

New formulation

Numerical study Numerical simulations

Sweeping Process

Second orde differential inclusions Example General setting

Continuous and discrete problems

Discrete differential inclusion :

 $\boldsymbol{u}^n + \mathrm{N}(\boldsymbol{K}(\boldsymbol{q}^n), \boldsymbol{q}^{n+1}) \ni \boldsymbol{U}(\boldsymbol{q}^n).$

Continuous differential inclusion :

 $\frac{d\mathbf{q}}{dt} + \mathbf{N}(\boldsymbol{Q}_0, \mathbf{q}) \ni \mathbf{U}(\mathbf{q}).$

Proposition

$$N(Q_0, \mathbf{q}) = N(K(\mathbf{q}), \mathbf{q}).$$

J. Venel

Crowd motion model

Spontaneous velocity Actual velocity

Theoretical study

New formulation

Numerical study Numerical

Sweeping

Second orde differential inclusions Example General setting

Convergence

Let \boldsymbol{q}_h be the continous piecewise linear function associated to the numerical scheme

Theorem

Assume that \bm{U} is bounded and Lipschitz continous. Then \bm{q}_h uniformly converges in $[0, \mathcal{T}]$ to the map \bm{q} satisfying :

$$\begin{cases} \frac{d\mathbf{q}}{dt} + \mathrm{N}(Q_0, \mathbf{q}) \ni \mathbf{U}(\mathbf{q}) & \text{a.e. in } [0, T], \\ \mathbf{q}(0) = \mathbf{q}_0. \end{cases}$$

J. Venel

Crowd motion model Spontaneous velocity

Actual velocity

Theoretical study

New formulation Well-posedness Numerical study

Numerical simulations

Sweeping Process

Second orde differential inclusions Example

Numerical simulations

Arches

Movie Pressure

• With individual strategies

Movie

Evacuation of a building

Movie Geodesics Movie Zoom

Outline

Differential inclusions

J. Venel

Crowd motion model

Spontaneous velocity Actual velocity

Theoretica study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second order differential inclusions Example General setting

Crowd motion mode

Spontaneous velocity Actual velocity

Theoretical study

New formulation Well-posedness Numerical study Numerical simulations

3 Sweeping Process

Second order differential inclusions Example : Granular flows General setting

J. Venel

Crowd motion model

Spontaneous velocity Actual velocity

Theoretica study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second order differential inclusions Example General setting

Set defined by inequalities

If the moving set is defined by some inequalities :

$$\mathcal{C}(t):=\left\{x\in\mathbb{R}^d,\;g_i(t,x)\geq 0
ight\},$$

what are the assumptions which imply

(

- the well-posedness of the associated sweeping process and
- the convergence of the numerical scheme based on a linear approximation of the constraints ?

J. Venel

Crowd motion model

Spontaneous velocity Actual velocity

Theoretical study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second orde differential inclusions Example General setting

Sufficient assumptions

So we consider
$$C(t):=igcap_{i=1}^p C_i(t):=\left\{x\in\mathbb{R}^d,\;g_i(t,x)\ge0
ight\}.$$

We define also
$$\Omega_i := \{(t, x), t \in I, x \in C_i(t)\}.$$

Assume that there exist $\alpha, \beta, M, \kappa > 0$ such that

 $g_i \in C^2(\Omega + \kappa B(0, 1))$ and satisfies in $\Omega_i + \kappa B(0, 1)$:

$$\alpha \leq |\nabla_{\mathbf{x}} g_i(t, \mathbf{x})| \leq \beta, \qquad |\partial_t g_i(t, \mathbf{x})| \leq \beta \tag{1}$$

 $|D_x^2 g_i(t,x)|, \qquad |\partial_t^2 g_i(t,x)|, \qquad |\partial_t \nabla_x g_i(t,x)| \le M.$ (2)

J. Venel

Crowd motion model

Spontaneous velocity Actual velocity

Theoretical study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second order differential inclusions Example General setting

For all $t \in I$, we define for $\rho > 0$

$$I_{\rho}(t,x) := \{i, g_i(t,x) \leq \rho\}.$$

We suppose that there exist constants ρ , $\gamma > 0$ such that for all $x \in C(t)$ and all nonnegative reals λ_i

$$\sum_{i \in I_{
ho}(t,x)} \lambda_i |
abla g_i(t,x)| \leq \gamma \left| \sum_{i \in I_{
ho}(t,x)} \lambda_i
abla g_i(t,x)
ight|, \qquad (R_{
ho})$$

Proposition

Under the assumptions (1), (2) and (R_{ρ}) , there exists $\eta > 0$ such that the set C(t) is η -prox-regular for all $t \in I$. Moreover the set-valued map C is Lipschitz continuous with respect to the Hausdorff distance.

J. Venel

Crowd motion model Spontaneous velocity

Actual velocity

Theoretica study

New formulation Well-posedness Numerical study Numerical

Sweeping Process

Second orde differential inclusions Example General setting

Numerical scheme

(n)

$$\mathbf{X}^{n+1} = \mathbf{P}_{\tilde{C}(t^{n+1}, x^n)}(\mathbf{X}^n + \mathbf{h} t^n)$$

with $\tilde{C}(t, x) = \left\{ \mathbf{y} \in \mathbb{R}^d, \quad \forall i, g_i(t, x) + \nabla_x g_i(t, x) \cdot (\mathbf{y} - \mathbf{x}) \ge \mathbf{0}
ight\}.$

Previous assumptions $\Rightarrow x_h$ converges to x solution of (SP).

m | 1

Outline

Differential inclusions

J Venel

Second order differential inclusions

Actual velocity

Well-posedness Numerical simulations

4 Second order differential inclusions

J. Venel

Crowd motion model

Spontaneous velocity Actual velocity

Theoretica study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second orde differential inclusions

Example General setting

Granular media

J. Venel

Crowd motion model Spontaneous velocity

Theoretical study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second orde differential inclusions

Example

General setting

Granular flows with inelastic shocks

$$\begin{cases} \ddot{\mathbf{q}} + \mathbf{N}(\mathbf{Q}_0, \mathbf{q}) \ni f(t, \mathbf{q}) \\ \dot{\mathbf{q}}^+ = \mathbf{P}_{C_{\mathbf{q}}}(\dot{\mathbf{q}}^-) \text{ (inelastic shock)} \\ \mathbf{q}(0) = \mathbf{q}_0 \\ \dot{\mathbf{q}}(0) = \mathbf{u}_0. \end{cases}$$

existence of a solution $\mathbf{q} \in W^{1,\infty}(I, \mathbb{R}^d)$ with $\dot{\mathbf{q}} \in BV(I, \mathbb{R}^d)$.

J. Venel

Crowd motion model

Actual velocity

Theoretical study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second orde differential inclusions

Example General setting

Required assumptions :

Independence of $\mathbf{G}_{ij}(q)$

 $\mathbf{G}_{ij}(q) \cdot \mathbf{G}_{kl}(q) \leq 0.$

Non-independent case :

L. PAOLI *Time-stepping approximation of rigid-body dynamics with perfect unilateral constraints. I-The inelastic impact case* Arch. Rational Mech. Anal. 198, no. 2, 457-503, 2010

Improvements

J. Venel

Crowd motion

Spontaneous velocit Actual velocity

Theoretical study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second orde differential inclusions Example General setting

Set defined by inequalities

With the previous notations ($C = \bigcap C_i, g_i, ...$) and the previous assumptions (1), (2) and (R_ρ), we obtain also the existence of a solution of

$$\ddot{x} + N(C(t), x) \ni f(t, x)$$
$$\dot{x}^+ = P_{V(t,x)}(\dot{x}^-)$$
$$x(0) = x_0$$
$$\dot{x}(0) = u_0.$$

where

$$V(t,x) = \left\{ z \in \mathbb{R}^d, \quad \forall i, \, \partial_t g_i(t,x) + \nabla_x g_i(t,x) \cdot z \ge 0 \right\}.$$

J. Venel

Crowd motion model

Spontaneous velocity Actual velocity

Theoretical study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second orde differential inclusions Example General setting

If C is a Lipschitz set-valued map with $\eta\text{-}\text{prox-regular}$ values and without "thin peaks", we obtain the existence of a solution of

$$\begin{cases} \ddot{x}(t) + N(C(t), x(t)) \ni f(t, x(t)) \\ \dot{x}(t^{+}) = \mathsf{P}_{W(t, x(t))}(\dot{x}(t^{-})) \\ x(0) = x_{0} \\ \dot{x}(0) = u_{0} \end{cases}$$

with

$$W(t,x) = \left\{ v = \lim_{\epsilon \searrow 0} v_{\epsilon}, \text{ with } v_{\epsilon} \in rac{C(t+\epsilon)-x}{\epsilon}
ight\}.$$

General set

J. Venel

Crowd motion model Spontaneous velocity

Actual velocity

Theoretica study

New formulation Well-posedness Numerical study Numerical simulations

Sweeping Process

Second orde differential inclusions Example General setting

Thanks for your attention !