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A crowd motion model with

several goals

• to deal with emergency evacuation

• to take into account direct contacts between individuals

• to determine the areas where people are crushed
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Notations

qi

qj

eij(q)

Dij(q)

ri

rj

q = (q1, q2, .., qN) ∈ R
2N

eij(q) =
qj − qi

|qj − qi |

Set of feasible configurations

Q0 =
{

q ∈ R
2N , ∀ i < j , Dij(q) = |qi − qj | − ri − rj ≥ 0

}

Gij(q) = ∇Dij(q) = (0 ...0, −eij(q) ,0 ...0, eij(q) ,0 ...0)
i j
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Spontaneous velocity
Notation : U(q) = (U1(q), U2(q), ..., UN(q))

Example :

Ui(q) = −si∇D(qi),

where D(x) represents the geodesic distance between x

and the exit.

Contour levels of D
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Example of spontaneous

velocity

Direction opposite to the gradient of the geodesic distance

D.



Differential
inclusions

J. Venel

Crowd motion
model

Spontaneous velocity

Actual velocity

Theoretical
study

New formulation

Well-posedness

Numerical study

Numerical

simulations

Sweeping
Process

Second order
differential
inclusions

Example

General setting

Actual velocity

To handle the contacts, we define the

cone of admissible velocities

Cq =
{

v ∈ R
2N , ∀ i < j Dij(q) = 0 ⇒ Gij(q) · v ≥ 0

}

,

where Gij(q) = ∇Dij(q).

If u is the actual velocity of the N pedestrians, the model

can be expressed as follows :










q = q0 +

∫

u,

u = PCqU.
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Cone Nq

Let us define Nq the polar cone of Cq :

Definition

Nq = C◦
q = {w , (w,v) ≤ 0 ∀ v ∈ Cq} .

D12 < 0

D13 < 0

D34 < 0

q̄

q

Nq̄

Cq̄ Nq

Cq
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Cone Nq

Proposition

Nq =
{

−
∑

λijGij(q) , λij ≥ 0 , Dij(q) > 0 =⇒ λij = 0
}

.

Since Cq and Nq are mutually polar cones, the following

property holds (J.-J. Moreau 62)

Property

PCq + PNq = Id.
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Differential inclusion

According to the previous property,

q̇ = u = PCq(U(q)) = U(q)− PNq(U(q)),

which is equivalent to

q̇ + PNq(U(q)) = U(q).

and so the problem can be formulated as a first order

differential inclusion .

Model






dq

dt
+Nq ∋ U(q),

q(0) = q0.
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Non-convexity of the feasible

set Q0

q q̃ q̄

q1 q2 q̃1

q̃2

q̄1

q̄2

where q̄ =
q + q̃

2
.

So Q0 is not a convex set !
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Uniform prox-regularity

δ
x

C

Uniformly prox-regular set

Let C be a closed subset of a

Hilbert space H,

C is η-prox-regular if the projec-

tion on C is single-valued and

continuous at any point x satis-

fying dC(x) < η.

H. Federer 59, positively reached sets

A. Canino 88, p-convex sets

F. Clarke, R. Stern, P. Wolenski 95, proximally smooth sets

R. Poliquin, R. Rockafellar, L. Thibault 00, prox-regular sets
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Prox-regularity of Q0

Proposition

Q0 is η-prox-regular with η = η(N, ri ).

Sketch of the proof :

One constraint’s case :

Qij = {q ∈ R
2N , Dij(q) = |qj − qi | − (rj + ri) ≥ 0} is

ηij -prox-regular with ηij =
ri + rj√

2
.

Extension to several constraints : Q0 =
⋂

i<j

Qij .

n1
n2
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Key point of the proof

A reverse triangle inequality

For every q ∈ Q0, for every λij ≥ 0, there exists γ > 1 such

that

∑

(i ,j)∈I(q)

λij |Gij(q)| ≤ γ

∣

∣

∣

∣

∣

∣

∑

(i ,j)∈I(q)

λijGij(q)

∣

∣

∣

∣

∣

∣

,

where

I(q) = {(i , j), i < j ,Dij(q) = 0}.
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A second important geometrical

assumption

S

The set S

is not suitable.

C

The set C

is suitable. No "thin

peaks".
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Well-posedness

Theorem

Assume that U is bounded and Lipschitz continuous.

Then for any q0 in Q0, there is a unique absolutely conti-

nuous map q satisfying






dq

dt
+ N(Q0,q) ∋ U(q) a.e. in [0,T ],

q(0) = q0.
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Numerical scheme

Initialization : q0 = q0

Time-loop : qn is known

un = PCh(qn)(U(qn))

qn+1 = qn + h un

whereCh(q
n) =

{

v ∈ R
2N ,∀ i < j , Dij(q

n) + h Gij(q
n) · v ≥ 0

}

.

In terms of position, this algorithm can be formulated as

follows :

qn+1 = PK (qn)(q
n + h U(qn))

with K (qn) =
{

q ∈ R
2N ,∀ i < j , Dij(q

n) + Gij(q
n) · (q − qn) ≥ 0

}

.
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Comparison between theoretical and

numerical projections

qn

qn + h U(qn)

qn + h U(qn)

qn+1qn+1

q̃n+1
q̃n+1

Q0

K (qn)



Differential
inclusions

J. Venel

Crowd motion
model

Spontaneous velocity

Actual velocity

Theoretical
study

New formulation

Well-posedness

Numerical study

Numerical

simulations

Sweeping
Process

Second order
differential
inclusions

Example

General setting

Continuous and discrete

problems

Discrete differential inclusion :

un + N(K (qn),qn+1) ∋ U(qn).

Continuous differential inclusion :

dq

dt
+ N(Q0,q) ∋ U(q).

Proposition

N(Q0,q) = N(K (q),q).
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Convergence

Let qh be the continous piecewise linear function associated

to the numerical scheme

Theorem

Assume that U is bounded and Lipschitz continous.

Then qh uniformly converges in [0,T ] to the map q satis-

fying :







dq

dt
+ N(Q0,q) ∋ U(q) a.e. in [0,T ],

q(0) = q0.
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Numerical simulations

• Arches

Movie Pressure

• With individual strategies

Movie

• Evacuation of a building

Movie Geodesics Movie Zoom
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Set defined by inequalities

If the moving set is defined by some inequalities :

C(t) :=
{

x ∈ R
d , gi(t , x) ≥ 0

}

,

what are the assumptions which imply

• the well-posedness of the associated sweeping process

and

• the convergence of the numerical scheme based on a

linear approximation of the constraints ?
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Sufficient assumptions

So we consider C(t) :=

p
⋂

i=1

Ci(t) :=
{

x ∈ R
d , gi(t , x) ≥ 0

}

.

We define also Ωi := {(t , x), t ∈ I, x ∈ Ci(t)}.

Assume that there exist α, β,M, κ > 0 such that

gi ∈ C2 (Ω + κB(0,1)) and satisfies in Ωi + κB(0,1) :

α ≤ |∇xgi(t , x)| ≤ β, |∂tgi(t , x)| ≤ β (1)

|D2
x gi(t , x)|, |∂2

t gi(t , x)|, |∂t∇xgi(t , x)| ≤ M. (2)
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For all t ∈ I, we define for ρ > 0

Iρ(t , x) := {i , gi(t , x) ≤ ρ} .

We suppose that there exist constants ρ, γ > 0 such that for

all x ∈ C(t) and all nonnegative reals λi

∑

i∈Iρ(t,x)

λi |∇gi(t , x)| ≤ γ

∣

∣

∣

∣

∣

∣

∑

i∈Iρ(t,x)

λi∇gi(t , x)

∣

∣

∣

∣

∣

∣

, (Rρ)

Proposition

Under the assumptions (1), (2) and (Rρ), there exists η > 0

such that the set C(t) is η-prox-regular for all t ∈ I. Moreover

the set-valued map C is Lipschitz continuous with respect to

the Hausdorff distance.



Differential
inclusions

J. Venel

Crowd motion
model

Spontaneous velocity

Actual velocity

Theoretical
study

New formulation

Well-posedness

Numerical study

Numerical

simulations

Sweeping
Process

Second order
differential
inclusions

Example

General setting

Numerical scheme

xn+1 = PC̃(tn+1,xn)(x
n + h f n)

with C̃(t , x) =
{

y ∈ R
d , ∀i ,gi(t , x) +∇xgi(t , x) · (y − x) ≥ 0

}

.

Previous assumptions ⇒ xh converges to x solution of (SP).
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Granular media
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Granular flows with inelastic

shocks



























q̈ + N(Q0,q) ∋ f (t ,q)

q̇+ = PCq(q̇
−) (inelastic shock)

q(0) = q0

q̇(0) = u0.

existence of a solution q ∈ W 1,∞(I,Rd ) with q̇ ∈ BV (I,Rd).
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Improvements
Required assumptions :

Independence of Gij(q)

Gij(q) · Gkl(q) ≤ 0.

Non-independent case :

L. PAOLI Time-stepping approximation of rigid-body

dynamics with perfect unilateral constraints. I-The inelastic

impact case Arch. Rational Mech. Anal. 198, no. 2, 457-503,

2010
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Set defined by inequalities

With the previous notations (C =
⋂

Ci , gi , ...) and the

previous assumptions (1), (2) and (Rρ), we obtain also the

existence of a solution of


























ẍ + N(C(t), x) ∋ f (t , x)

ẋ+ = PV (t,x)(ẋ
−)

x(0) = x0

ẋ(0) = u0.

where

V (t , x) =
{

z ∈ R
d , ∀i , ∂tgi(t , x) +∇xgi(t , x) · z ≥ 0

}

.



Differential
inclusions

J. Venel

Crowd motion
model

Spontaneous velocity

Actual velocity

Theoretical
study

New formulation

Well-posedness

Numerical study

Numerical

simulations

Sweeping
Process

Second order
differential
inclusions

Example

General setting

General set

If C is a Lipschitz set-valued map with η-prox-regular values

and without "thin peaks”, we obtain the existence of a

solution of


























ẍ(t) + N(C(t), x(t)) ∋ f (t , x(t))

ẋ(t+) = PW (t,x(t))(ẋ(t
−))

x(0) = x0

ẋ(0) = u0

with

W (t , x) =

{

v = lim
ǫց0

vǫ, with vǫ ∈
C(t + ǫ)− x

ǫ

}

.
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Thanks for your attention !


	Crowd motion model
	Spontaneous velocity
	Actual velocity

	Theoretical study
	New formulation
	Well-posedness
	Numerical study
	Numerical simulations

	Sweeping Process
	Second order differential inclusions
	Example: Granular flows
	General setting


