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The Classical Optimal Control



Minimize g(x(1))
over functions u(.) : [0,1]→ Rm ,
and trajectories x(.) s.t.
ẋ(t) = f (t , x(t),u(t)) for a.e. t ∈ [0,1]
u(t) ∈ U ⊂ Rm for a.e. t ∈ [0,1]
and x(0) = x0, x(1) ∈ C

Data: g : Rn → R, f : R× Rn × Rm → Rn, U ⊂ Rm, x0 ∈ Rn,
C ⊂ Rn

Application Areas

1. Aerospace: flight trajectories for planetary exploration
2. Resource economics: optimal harvesting
3. Chemical engineering: optimize yield, purity etc.
4. Feedback Design: solution of optimal control problems for

MPC schemes
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Methodologies for Optimal Control

1. Dynamic Programming (Sufficient conditions for
optimality): ‘Analyse minimizers via solutions (the value
function) to the Hamilton Jacobi equation’ (R. Bellman).

2. Maximum Principle (Necessary conditions for optimality):
‘Analyse minimizers via solutions to a system which
involves state and adjoint variables’ (L.S. Pontryagin)

3. Higher Order Sufficient Conditions (Sufficient conditions
for local optimality): ‘Confirm local optimality of extremals ’
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Hamilton Jacobi Methods (Dynamic Programming)

‘Analyse minimizers via solutions to the Hamilton Jacobi
equation’ (R. Bellman)

(Assume C = Rn)

P(0, x0)

{
Minimize g(x(1))
over trajectories x(.) s.t. x(0) = x0.

Embed in family of problems, parameterized by initial data

P(τ, ξ)

{
Minimize g(x(1))
over trajectories x(.) s.t. x(τ) = ξ .

Define V (τ, ξ) = Inf(P(τ, ξ)) Value Function
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Hamilton Jacobi Methods (Dynamic Programming)

P(τ, ξ)

{
Minimize g(x(1))
over trajectories x(.) s.t. x(τ) = ξ

PDE of Dynamic Programming: V (., .) is a solution to{
Vt (t , x) + min u∈U Vx (t , x) · f (t , x ,u) = 0 ∀(t , x) ∈ (0,1)× Rn

V (1, x) = g(x) ∀x ∈ Rn .

(HJE)

Modern methods of nonlinear analysis yield characterization:

‘The value function is the unique generalized solution
(appropriately defined) to (HJE) ’

(non-smooth analysis, viability theory, viscosity solns. theory)
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First Order Necessary Conditions

(L.S. Pontryagin,...)
Take an optimal pair (x̄(.), ū(.)). Define

H(t , x ,p,u) = p · f (t , x ,u) (The Hamiltonian) .

Maximum Principle: There exist an arc p(.) (adjoint variable)
and λ ≥ 0, s.t.

(p(.), λ) 6= 0
−ṗ(t) = p(t) · fx (t , x̄(t), ū(t))

H(t , x̄(t),p(t), ū(t)) = max
u∈U

H(t , x̄(t),p(t),u)

−p(1) = λgx (x̄(1)) + ξ, for some ξ ∈ NC(x̄(1))

Widely used to solve optimal control problems, either directly or
via numerical methods it inspires (Shooting Methods).
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Enter State Constraints

Consider state constrained control system

Minimize g(x(1))
over functions u(.) : [0,1]→ Rm ,
and trajectories x(.) s.t.
ẋ(t) = f (t , x(t),u(t)) for a.e. t ∈ [0,1]
u(t) ∈ U ⊂ Rm for a.e. t ∈ [0,1]
x(t) ∈ A for all t ∈ [0,1] (state constraint)
and x(0) = x0.

Data: g : Rn → R, f : R× Rn × Rm → Rn, U ⊂ Rm, x0 ∈ Rn.

Special case: A has a functional inequality representation

A = {x ∈ Rn |hj (x) ≤ 0, j = 1, . . . , r}

for some C1 functions hj (.) : Rn → R, j = 1, . . . , r .
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Standing Hypotheses

Assume that for some c > 0 and kf (.) ∈ L1

f (., x , .) is L × Bm (Lebesgue-Borel) meas. for each x ; U(.)
has Borel-meas. graph; f (t , x ,U) is closed, for each t , x

|f (t , x ,u)| ≤ c(1 + |x |) for all (t , x) ∈ [0,1]×Rn, u ∈ U(t)

|f (t , x ,u)− f (t , x ′,u)| ≤ kf (t)|x − x ′|
for all t ∈ [0,1], x , x ′ ∈ Rn and u ∈ U.

(summarized as ‘f is meas., integr. Lip., with linear growth’)

g(.) Lipschitz, C closed.
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Dynamic Programming for State Constrained
Problems 

Minimize g(x(1))
over trajectories x(.) s.t.
x(t) ∈ A
x(0) = x0.

How does state constraint affect optimality conditions?

Now, value function V (., .) : [0,1]× Rn → R ∪ {+∞} is a lsc
solution to{

Vt (t , x) + min v∈U Vx (t , x) · f (t , x ,u) = 0 ∀(t , x) ∈ (0,1)× int A
V (1, x) = g(x) ∀x ∈ A

(the unique lsc solution if certain distance estimates are
satisfied)
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State Constrained Maximum Principle

Take an optimal pair (x̄(.), ū(.)).

There exist an arc p(.), ‘bounded variation’ multipliers
µj ≥ 0, j = 1, . . . , r and λ ≥ 0, s.t.

(p(.), µ, λ) 6= 0
supp{dµj} ∈ {t |hj(x̄(t)) = 0}

−ḋp(t) = p(t) · fx (x̄(t), ū(t))dt −
∑

j

hxj(x̄(t))dµj

H(x̄(t),p(t), ū(t)) = max
u∈U

H(x̄(t),p(t),u)

−p(1) = λgx (x̄(1)) .

(Formally obtained by inserting into cost the ‘penalty’ term
+ K

∑
j
∫ 1

0 hj(x(t))dµj).)

(Gamkrelidze, Neustadt, Warga, Milyutin . .)
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Abstract Optimization Problem
Consider the optimization problem

Minimize g(x)
over x ∈ X
s.t.

F (x) ⊂ D

Data: Metric Spaces (X ,dX (.)) and (Y,dY(.)), function g : X → R,
multifunction F : X ; Y.

Beyond theory of Necessary Conditions, early interest shown in

Non-degeneracy of optimality conditions

Sensitivity/continuous dependence

Stability of solutions to generalized equations to parameter
variation

Rates of convergence for computational schemes

(Robinson, Rockafellar, Mordukhovich, Aubin, Bonnans etc.
≥ 1970’s)
Key concept: Metric Regularity
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Metric Regularity

Take metric spaces (X ,dX )., .) and (Y ,dY )., .) and H : X ; Y .

Definition. H is metrically regular at (x̄ , ȳ) if there exist κ ≥ 0 and
neighbourhoods V andW of x̄ and ȳ such that

dX (H−1(y)|x) ≤ κ dY (H(x)|y) for all (x , y) ∈ V ×W .

where dX (S|x) = infx′∈S{dX (x , x ′)}, etc.

Metric regularity is an unrestrictive hyp. ensuring these ‘good’
properties.

For example:

Interest in verifiable sufficient conditions of metric regularity, e.g.
if ‘H(x) ⊂ D’ ≡ ‘ψi (x) ≤ 0, ∀i , ‘φj (x) ≤ 0, ∀j ’

‘positive linear independence’ =⇒ ‘metric regularity’.
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Return to Control . .
Control system:{

ẋ(t) = f (t , x(t),u(t)) and u(t) ∈ U
hj (x(t)) ≤ 0 for j = 1, . . . , r .

‘metric regularity’ replaced by ‘linear distance estimates’

verifiable sufficient conditions replace by
Inward pointing condition:

for each t ∈ [0,1] and x ∈ ∂A

lim sup
t′→t

∇xhj (x) · f (t ′, x ,u) < 0 ∀j ∈ I(x)

(I(x) := ‘ active’ indices at x )
More generally:

(lim sup
(t′,x′)→t

f (t ′, x ′,U)) ∩ intTA(x) 6= ∅, ∀ t ∈ [0,1], x ∈ ∂A

TA(x) is (Clarke) tangent cone.
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Distance Estimates

For an arc x(.) define

h+(x(.)) := maxt∈[0,1] dA(x(t))

in which
dA(x) := inf

y∈A
|x − y |

(Euclidean distance of x from A).

h+(x(.)) is the ‘constraint violation index’ of an arc x(.):

h+(x(.)) = 0 iff x(.) is ‘feasible’,
(i.e. x(.) satisfies the state constraint)

h+(x(.)) quantifies the state constraint violation.
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Linear Distance Estimates

A typical (linear) distance estimate asserts:

Given a non-feasible state trajectory x̂(.) with x̂(0) ∈ A, there
exists a feasible state trajectory x(.) s.t. x(0) = x̂(0) and

||x(.)− x̂(.)|| ≤ K × h+(x̂(.)) ,
0x

A

10 t

)(tx

)(ˆ tx

where K is a positive constant that does not depend on x̂(.).

(||.|| is some norm defined on the set of trajectories, for
instance L∞ or W 1,1.)

Here we have a linear estimate w.r.t. the constraint violation
index h+(x̂(.))

||x(.)||L∞ = supt∈[0,1] |x(t)|, ||x(.)||W 1,1 = |x(0)|+
∫
[0,1] |ẋ(t)| dt
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More General Estimates

More generally, we can consider the following estimate

m((x(.),u(.)), (x̂(.)û(.))) ≤ θ(h+(x̂(.))) ,

where
m(., .) is a metric on the set of processes
θ(.) : R+ → R+ is a rate of convergence modulus, i.e. a
function satisfying limh↓0 θ(h) = 0.

The stronger the metric m(., .) and greater the rate at which
θ(h) tends to zero as h→ 0, the more the information that is
conveyed by the estimates. A variety of estimates has been
considered, distinguished by the choice of m(., .) and θ(.).
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Soner’s Linear L∞ Estimate

First significant distance estimate:

Theorem (Soner ’86, improved Frankowska/Rampazzo ’00)
Assume standing hyps. and

F (., .) is Lipschitz continuous
For all x ∈ ∂A,

intTA(x) ∩ f (t , x ,U) 6= ∅ ( ‘inward pointing’ condition)

Then, for any pair (x̂(.), û(.)) s.t. x̂(0) ∈ A, there exists a
feasible pair (x(.),u(.)) such that x(0) = x̂(0) and

||x̂(.)− x(.)||L∞ ≤ K × h(x̂(.))

(K does not depend on x̂(.))

application: value function regularity
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Significance of Distance Estimates

Distance estimates constitute a common set of analytical tools which
can be used to resolve a number of important questions in state
constrained optimal control.
Some applications are

non-degeneracy and normality of the maximum principle (which
provides necessary conditions for optimality);

existence, characterization and regularity of the value function
for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Isaacs
equations;

sensitivity conditions: adjoint variables in the Maximum Principle
can be interpreted as ‘gradients’ of the value function;

Minimizer regularity;

identify possible ill-conditioning of numerical schemes
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Application to Non-Degenerate Necessary
Conditions

Take (x̄(.), ū(.)) a minimizing process.

Necessary conditions yield Lagrange multiplier set (p(.), µ(.), λ)
satisfying

costate eqn. + Weierstrass cond. + transversality cond. + . .

When are the necessary conditions valid with λ > 0)?

Theorem

inward pointing condition is satisfied

C = Rn

Then necessary conditions are valid with λ > 0.

(Extensive Russian literature (Arutyunov, Aseev), Rampazzo, Vinter)
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Proof Based on Distance Estimates
Distance estimate is valid, since inward pointing condition is satisfied.

Step 1 From distance estimate and ‘C = Rn’:
(x̄(.), ȳ(.) ≡ h+(x(.)), ū(.)) also is minimizer for

Minimize g(x(1)) + Ky(1)
ẋ(t) = f (t , x(t),u(t)), ẏ(t) = 0
u(t) ∈ U
h(x(t)) ∨ 0− y(t) ≤ 0
x(0) = x0

Step 2 from transversality condition for y(.) deduce∫ 1

0
dµ(t) ≤ Kλ

Step 3 So, if λ = 0, µ = 0. This implies p(.) = 0, Then

(p(.), µ, λ) = 0 contradiction!
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Linear L∞ Estimates

L∞ linear estimates the most frequently applied.

||x(.)− x̂(.)||L∞ ≤ K × h+(x̂(.)) ,

Write F (t , x) = f (t , x ,U) (velocity set)

Assume

the inward pointing condition is satisfied

A is a closed set

L∞ linear estimates have be proved, when:

1. t ; F (t , x) is Lipschitz continous and A has smooth boundary
(Soner, ‘86)

2. t ; F (t , x) is absolutely continous (Bettiol, Frankowska, RBV,
2012)

3. t ; F (t , x) has bounded variation (Bettiol, RBV, 2016)
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Linear L∞ Estimates, cont.

Regularity of t ; F (t , x) crucial for L∞ linear distance estimates

A recent counter-example (Bettiol + RBV, based on custruction of
Bressan):

there exists F (., .) and closed set A such that

F (., .) satisfying the inward pointing condition

F (., x) is continuous

BUT: for any continuity modulus θ(.) and K > 0,

there exists a non-feasible trajectory x̂(.) such that

||x(.)− x̂(.)||L∞ > K × θ(h+(x̂(.))) ,

for all feasible trajectories x(.).

Fundamental discontinuity phenomena even for continuous F (., x).
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W 1,1 Linear Estimates

Assume standing hyps. (allows meas. time dependence) and
F (., x) is L measurable
uniform ‘inward pointing’ condition

Then
1. If A has smooth boundary:

||x̂(.)− x(.)||W 1,1 ≤ K × h(x̂(.))

(Bettiol, Bressan, RBV 2010, Rampazzo, RBV 1990)
2. If A has non-smooth boundary:

(W 1,1 linear estimate) is not in general valid

(Counter-example: Bettiol, Bressan, RBV 2012)
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Example - beam design

The objective:

design a (cantilever) beam with a smooth surface and
having a constant cross-section in the direction of the
z-axis.
maximize bending rigidity

Composition of two materials:
A is an expensive material
which adds stiffness to the
structure
B is less expensive material to
reduce the cost

x

y

z

region of constant 

composition
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A mathematical description of the problem

1) the cross-section of the beam orthogonal to the z axis is
a parabola:

y = x1/2
, 0 ≤ x ≤ 1;

2) the free edge is located at (x, y) = (0, 0);

3) w(x) ∈ [0, 1] denotes the variation of the proportion of
material A w.r.to x :

w(x) ∈ [0, 1] for all x ∈ [0, 1] ;

4) there is a bound V of the volume per unit length of
material A in the beam (isoperimetric constraint):

∫ 1

0
2w(x)|x|1/2dx ≤ V ;

5) a restriction is placed on the rate of variation of the
composition along the x axis:

|dw(x)/dx| ≤ k for all x ∈ [0, 1] .

x

y

z

region of constant 

composition

free edge

on this side 
the beam 
is supported

The cost function will be a complicated function obtained by solving the ‘beam equation’.
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Example - beam design - optimal control

Set up as an optimal control problem in which x is a ‘time-like
variable’ and u(x) = dw(x)/dx is the control:

dw
dx (x) = u(x) for a.e. x ∈ [0,1]
u(x) ∈ [−k , k ] for a.e. x ∈ [0,1]
w(x) ∈ [0,1] for all x ∈ [0,1] state constraint

Replace the isoperimetric constraint with a differential equation
for an augmented state variable e(.) satisfying the differential
equation

de
dx

= 2w(x) |x |1/2

Notice: the augmented dynamics above involve data exhibiting
non-Lipschitz behavior w.r.to the time-like variable x .
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Further Research of W 1,1 Linear Estimates
Assume standing hyps. (allows meas. time dependence) and

F (., x) is L measurable

uniform ‘inward pointing’ condition

Special classes of F (., .) and A non-smooth boundary have been
identified such

1. W 1,1 linear distance estimates are valid

or

2. W 1,1 superlinear distance estimates are valid

(e.g. with θ(h) = h log h modulus)

(Bettiol. Bressan, RBV, Facchi)
Also:

W 1,1 linear estimates are valid under a strengthened inward
pointing condition

(Frankowska, Mazzola, 2013 )
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Concluding Remarks

Distance estimates have an important role in the derivation of
optimality conditions for state constrained optimal control (first order
necessary conditions and Hamilton Jacobi conditions).

Linear (L∞, W 1,1) estimates are valid for a smooth state
constraint sets.

It is surprising that similar linear estimates are not valid in
general, for non-smooth state constraint sets.

Under some assumptions, distance estimates can be
established involving either a linear or a superlinear (h| log(h)|)
modulus.

Open questions: what kind of estimates (linear, superlinear,
Hölder?) are in general valid w.r.t. the W 1,1 or L∞ norm, when
there is a ‘non smooth’ state constraint and the time
dependence of the data is non-Lipschitz?
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