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Preliminaries

The first differential inclusions problems have been studied in
the early 70s by H. Brezis

−ẋ(t) ∈ ∂ϕ(x(t)) t ∈ [0,T ]

thanks to the theory of maximal monotone operators.

"J.J. Moreau ", Evolution problems associated with a moving
convex set in a Hilbert space

−ẋ(t) ∈ ∂IC(t)(x(t)), x(0) ∈ C(0)

where ∂IC(t) is the subdifferential of the indicator function of a
closed convex C (normal cone) :

−ẋ(t) ∈ NC(t)(x(t)), x(0) ∈ C(0)
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−ẋ(t) ∈ NC(t)(x(t)), x(0) ∈ C(0)



A Mayer
Problem for A
Controlled
Sweeping
Process

Chems Eddine
Arroud and
Giovanni
Colombo

Preliminaries

The dynamics
Monotonicity of The
Distance

Example

Preliminaries

The first differential inclusions problems have been studied in
the early 70s by H. Brezis

−ẋ(t) ∈ ∂ϕ(x(t)) t ∈ [0,T ]

thanks to the theory of maximal monotone operators.
"J.J. Moreau ", Evolution problems associated with a moving
convex set in a Hilbert space
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Formally, the sweeping process is the differential inclusion with
initial condition

−ẋ(t) ∈ NC(t)(x(t)), x(0) = x0 ∈ C(0)

Here NC (x) denotes the normal cone to C at x in C . In
particular,

NC (x) = {0} if x ∈ C
NC (x) = ∅ if x /∈ C
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The perturbed sweeping process :

−ẋ(t) ∈ NC(t)(x(t)) + f (x(t)), x(0) = x0 ∈ C(0)

Given a dynamics, it is impossible resisting to the temptation of
putting some control

−ẋ(t) ∈ NC(t)(x(t)) + f (x(t), u), u ∈ U
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Prox-regular set

We say that C is ρ-prox-regular provided the inequality

〈ζ, y − x〉 ≤ ‖y−x‖
2

2ρ

holds for all x , y ∈ C , for every ζ the unit external normal to C

at x ∈ ∂C .
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The dynamics

Let the problem P

Minimize h(x(T ))

Subject to{
ẋ(t) ∈ −NC(t)(x(t)) + f (x(t), u(t))),
x(0) = x0 ∈ C(0) , (1)

with respect to u : [0,T ] U, u is measurable.
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Assumptions
H1 : C : [0,∞) Rn is a set-valued map with the following

properties :

H1.1 : for all t ∈ [0,T ], C(t) is nonempty and compact and there
exists r > 0 such that C(t) is uniformly r -prox regular.

H1.2 : C is γ− Lipschitz and has C3 boundary.
H1.3 : C(t) = {x : g(t, x) ≤ 0} with g(., x) lipschitz and of class

C2,1.
H2 : U ∈ Rn is compact and convex.
H3 : f : Rn × U  Rn such that there exist β ≥ 0 with

H3.1 : |f (x , u)| ≤ β for all (x , u) ;
H3.2 : f (x , u) is of class C1 for all x and u and f (., .) is Lipschitz

with lipschitz constant k ;
H3.3 : f (x ,U) is convex for all x ∈ Rn ;

H4 : h : R  R is of class C1
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Main result

Theorem
Let (x∗, u∗) be a global minimizer satisfying the outward (or
inward) pointing condition. Then there exist a BV adjoint
vector p : [0,T ]→ Rn,a finite signed Radon measure µ on
[0,T ], and measurable vectors ξ, η : [0,T ]→ Rn, with ξ(t) ≥ 0
for µ-a.e. t and 0 ≤ η(t) ≤ β + γ for a.e. t, satisfying :

• (adjoint equation)
for all continuous functions ϕ : [0,T ]→ Rn

−
∫

[0,T ]
〈ϕ(t), dp〉 = −

∫
[0,T ]
〈ϕ(t),∇xd(x∗(t),C(t))〉ξ(t) dµ

−
∫

[0,T ]
〈ϕ(t), η(t)∇2

xd(x∗(t),C(t))p(t)〉 dt

+
∫

[0,T ]
〈ϕ(t),∇x f (x∗(t), u∗(t))p(t)〉 dt,

(2)
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Theorem

• (transversality condition) −p(T ) = ∇h(x∗(T )),

• (maximality condition)

〈p(t),∇uf (x∗(t), u∗(t))u∗(t)〉 = max
u∈U
〈p(t),∇uf (x∗(t), u∗(t))u〉

for a.e. t ∈ [0,T ].
(3)

.



A Mayer
Problem for A
Controlled
Sweeping
Process

Chems Eddine
Arroud and
Giovanni
Colombo

Preliminaries

The dynamics
Monotonicity of The
Distance

Example

Theorem

• (transversality condition) −p(T ) = ∇h(x∗(T )),
• (maximality condition)

〈p(t),∇uf (x∗(t), u∗(t))u∗(t)〉 = max
u∈U
〈p(t),∇uf (x∗(t), u∗(t))u〉

for a.e. t ∈ [0,T ].
(3)

.



A Mayer
Problem for A
Controlled
Sweeping
Process

Chems Eddine
Arroud and
Giovanni
Colombo

Preliminaries

The dynamics
Monotonicity of The
Distance

Example

The Cauchy problem (P) has one and only one solution by
- M.Sene, L.Thibault, Regularization of dynamical systems associated with prox-regular moving sets,

JNCA,Vol 15, Number 4 or 5

and also that for every fixed control u∗ ∈ U ( given a minimizer
u∗ ) the sequence x∗ε of solutions to{

ẋ(t) = −1
ε (x(t)− projC(t)(x(t))) + f (x(t), u∗(t)),

x(0) = x0 ∈ C(0) , (4)

converge weakly in W 1,2([0,T ],Rn) to the solution of{
ẋ(t) ∈ −NC(t)(x(t)) + f (x(t), u∗(t))),
x(0) = x0 ∈ C(0) , (5)
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Regularised Minimization Problem

Let the problem Pε

Minimize J(x , u; u∗) := h(x(T )) + 1
2
∫ T
0 ‖u(t)− u∗(t)‖2dt

Subject to

ẋ(t) = −1
ε

(x(t)− projC(t)(x(t))) + f (x(t), u(t)), (6)

x(0) = x0
over u : [0,T ] U, u is measurable.
• The corresponding solutions xε of (6) are uniformly Lipschitz,
with Lipschitz constant γ + 2β.
• Let (xε, uε) be solution of the problem (Pε). Then there
exists a sequence εn ↓ 0 such that

xεn → x∗ weakly in W 1,2([0,T ]; Rn)
uεn → u∗ strongly in L2([0,T ]; Rm).

.
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Adjoint equation

The adjoint equation for Pε{
−ṗε(t) = pε(t)

(−1
2ε∇

2
xd2(xε(t),C(t)) +∇x f (xε(t), uε(t))

)
−pε(T ) = ∇h(xε(T )),

(7)

−1
2ε ∇

2
xd2(xε(t),C(t)) = −1

ε

(
d(xε(t),C(t))∇2

xd(xε(t),C(t))

+∇xd(xε(t),C(t))⊗∇xd(xε(t),C(t))
)

(8)
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−ṗε(t) = pε(t)

(−1
2ε∇

2
xd2(xε(t),C(t)) +∇x f (xε(t), uε(t))

)
−pε(T ) = ∇h(xε(T )),

(7)

−1
2ε ∇

2
xd2(xε(t),C(t)) = −1

ε

(
d(xε(t),C(t))∇2

xd(xε(t),C(t))

+∇xd(xε(t),C(t))⊗∇xd(xε(t),C(t))
)

(8)
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Monotonicity of The Distance

∇xd(xε(t),C(t))⊗∇xd(xε(t),C(t))

I∂ := {t ∈ [0,T ] : x∗(t) ∈ ∂C(t)}
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So in this work we requiring a strongoutward pointing
condition on f in order to treat the discontinuity of second
derivatives of the squared distance function at the boundary of
C(t).
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Problem without the strong condition

We consider the problem of minimizing the cost h(x(T )) at the
endpoint of a trajectory x subject to the finite dimensional
dynamics

ẋ ∈ −NC (x) + f (x , u), x(0) = x0,

The regularized problem

ẋ(t) = −1
ε
∇Ψ(x(t)) + f (x(t), u(t)), x(0) = x0, (9)

Ψ(x) = 1
3ψ

3(x) 1(0,+∞)(ψ(x)).
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The adjoint equation

−ṗε(t) =
(−1
ε
∇2Ψ(xε(t)) +∇x f (xε(t), uε(t))

)
pε(t)

−
∫

[0,T ]
〈ϕ(t), dp(t)〉 = −

∫
[0,T ]
〈ϕ(t), n∗(t)〉ξ(t) dν(t)

−
∫

[0,T ]
〈ϕ(t),∇2

xd(x∗(t))p(t)〉η(t) dt

+
∫

[0,T ]
〈ϕ(t),∇x f (x∗(t), u∗(t))p(t)〉 dt,
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Transversality condition

−pε(T ) = ∇h(xε(T ))

−p(T ) = ∇h(x∗(T ))

Maximality condition

〈pε(t),∇uf (xε(t), uε(t))uε(t)〉 − 〈uε(t)− u∗(t), uε(t)〉 =
max
u∈U
{〈pε(t),∇uf (xε(t), uε(t))u〉 − 〈uε(t)− u∗(t), u〉}

〈p(t),∇uf (x∗(t), u∗(t))u∗(t)〉 =
max
u∈U
〈p(t),∇uf (x∗(t), u∗(t))u〉 for a.e. t ∈ [0,T ].
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Difference between the two results

ẋ ∈ −NC(t)(x) + f (x , u), x(0) = x0,

C(t) is moving , we require the outward pointing
condition.

ẋ ∈ −NC (x) + f (x , u), x(0) = x0,

C(t) is constant, but we do not require the outward
pointing condition.
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The state space is R2 3 (x , y), the constraint C(t) is constant
and equals C := {(x , y) : y ≥ 0}, the upper half plane.
We wish to minimize x(1) + y(1) subject to{

(ẋ(t), ẏ(t)) ∈ −NC (x(t), y(t)) + (u1(t), u2(t))
(x(0), y(0)) = (0, y0), y0 ≥ 0,

(10)

where the controls (u1, u2) belong to [−1, 1]× [−1, −12 ] =: U.
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ṗx = 0, ṗy = 0 a.e. on [0,T ], px (1) = py (1) = −1

px is continous at t = 1 and py (1−) + 1 = 1, namely
py (1−) = 0.
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The adjoint vector (px , py ) is :

px (t) = −1 for all t ∈ [0, 1]
py (t) = 0 for all t ∈ [0, 1[
py (1) = −1.

The maximum condition

〈(−1,−1), (ux
∗ , uy
∗)〉 = max

|u1|≤1,1≤u2≤−1
2

〈(−1,−1), (u1, u2)〉 t = 1

〈(−1, 0), (ux
∗ , uy
∗)〉 = max

|u1|≤1,1≤u2≤−1
2

〈(−1, 0), (u1, u2)〉 0 ≤ t < 1

which gives ux
∗ = −1 and uy

∗ (1) = −1, while no information is
available for uy

∗ (t) if 0 ≤ t < 1 (the optimal solution belongs
to intC). If we assume that uy

∗ is constant, then the expected
optimal control uy

∗ = −1 is found.
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