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Stabilizing stem growth

what kind of stabilizing feedback is used here?
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Growth in the presence of obstacles

Are the growth equations still well posed, when an obstacle is present?

What additional feedback produces curling around other branches?
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A model of stem growth (F. Ancona, A.B., O. Glass)

New cells are born at the tip of the stem

Their length grows in time, at an exponentially decreasing rate

(t,s)

γ (t,t)

k

γ (t,s)

γ(t, s) = position at time t of the cell born at time s

Unit tangent vector to the stem: k(t, s) = ∂sγ(t, s)
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Stabilizing growth in the vertical direction

stem not vertical =⇒ local change in curvature

e−β(t−s) = stiffness factor, ω = k(t, σ)× e3 = angular velocity

∂tγ(t, s) =

∫ s

0

e−β(t−σ)
(
k(t, σ)× e3

)
×
(
γ(t, s)− γ(t, σ)

)
dσ
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γ(t0, s) = γ(s) s ∈ [0, t0]

γss(t, s)

∣∣∣∣
s=t

= 0
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We say that the growth equation is stable in the vertical direction if for any
initial time t0 > 0 and every ε > 0 there exists δ > 0 such that

|e1 · ∂sγ(t0, s)| ≤ δ for all s ∈ [0, t0] implies∣∣e1 · γ(t, s)
∣∣ ≤ ε

∣∣e1 · ∂sγ(t, s)
∣∣ ≤ ε , for all t > t0, s ∈ [0, t]
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Numerical simulations (Wen Shen, 2016)

β = 0.1 β = 1.0 β = 2.5

stability is always achieved

increasing the stiffness reduces oscillations
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Analytical results (F. Ancona, A.B., O. Glass, 2017)

β = stiffening constant

If β4 − β3 ≥ 4, then the growth is stable in the vertical direction
(non-oscillatory regime: β ≥ β0 ≈ 1.7485)

If β > β∗ = (48 +
√

9504)/160, then growth is still stable in the
vertical direction (oscillatory regime, β∗ ≈ 0.9093)

Stability apparently holds for all β > 0 (??)
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A linearized problem

Key step: prove stability for the linearized system

ut + ux = −
∫ ∞
x

e−βyu(y) dy for x ∈ [0, +∞[

with Neumann boundary condition at x = 0

ux(t, 0) = 0

0

t
0

t x0

u(t  )
u(t)

u(t, x) ≈ e1 · γs(t, t − x)
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Growth with obstacles

Obstacle: Ω ⊂ R3 open set, with smooth boundary

At time t the stem γ(t, ·) is a curve of length t remaining outside the
obstacle

γ(t,s)

Ω

γ (t,t)

γ(t,T)

Basic space: γ(t, ·) ∈ H2([0,T ] ; R3)

For s ∈ ]t,T ] define γ(t, s) = γ(t, t) + γs(t, t)(s − t)

Time-dependent constraint: γ(t, s) /∈ Ω for s ∈ [0, t]
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A push-out operator

γ(σ)

(s)
(s)γ

Ω Ω

~
γ

ω(σ) = additional bending of the stem caused the obstacle, at the point γ(σ)

γ̃(s)− γ(s) =

∫ s

0

ω(σ)× (γ(s)− γ(σ))dσ s ∈ [0, t]

Among all infinitesimal deformations that push the stem outside the obstacle,

minimize the elastic energy: E =
1

2

∫ t

0

eβ(t−σ)|ω(σ)|2 dσ
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The evolution equation with constraints

Ψ(σ) = Ψ
(
t, σ, γ(t, σ), γs(t, σ)

)
= upward bending, as response to gravity

without obstacle: γt(t, s) =

∫ s

0

Ψ(σ)×
(
γ(t, s)− γ(t, σ)

)
dσ

with obstacle: γt(t, s) =

∫ s

0

(
Ψ(σ) + ω̄(t, σ)

)
×
(
γ(t, s)− γ(t, σ)

)
dσ

ω̄(·) = argmin
ω(·)

∫ t

0

eβ(t−σ)|ω(σ)|2 dσ
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The instantaneous minimization problem

(t,s)

n

(t,t)

Ω

n

γ

γ

ω̄(·) = argmin
ω(·)

1

2

∫ t

0

eβ(t−σ)|ω(σ)|2 dσ

subject to the unilateral constraints at points of contact:

〈γt(t, s) , n(t, s)〉 ≥ 0 whenever γ(t, s) ∈ ∂Ω,

If the tip of the stem touches the obstacle, one also needs

〈γs(t, t) + γt(t, t) , n(t, t)〉 ≥ 0
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Necessary conditions for optimality

The solution to the constrained minimization problem

ω̄(·) = argmin
ω∈A

∫ t

0
eβ(t−σ)|ω(σ)|2 dσ

admits the representation:

ω̄(s) = −
∫ t

s

(∫
[σ,t]

e−β(t−s) n(γ(t, s ′))dµ(s ′)

)
× γs(t, σ)dσ

where µ is a positive measure, supported on the contact set

χ(t)
.

=
{
s ′ ∈ [0, t] ; γ(t, s ′) ∈ ∂Ω

}
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Discontinuous evolution problems

Growth with obstacles yields an evolution equation with discontinuous
right hand side

Ω Ω Ω

γ(t  )
1

γ(t  )
3γ(t  )2

Can be reformulated as a differential inclusion with u.s.c. right hand side
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A cone of admissible reactions

γ
v(s)

(t,s)

Ω
χ(t)

.
= {s ′ ∈ [0, t] ; γ(t, s ′) ∈ ∂Ω}

= contact set

Cone of admissible velocities produced by the obstacle reaction:

Λ(γ(t))
.

=

{
v : [0, t] 7→ R3 ; v(s) =

∫
K(s, s ′) dµ(s ′)

for some positive measure µ supported on χ(t)

}

differential inclusion: γt(t, s) ∈
∫ s

0

Ψ(σ)×
(
γ(t, s)− γ(t, σ)

)
dσ+ Λ(γ(t))
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Well-posedness of the stem growth model with obstacle

Theorem (A.B. - M.Palladino, 2016-17)

Solutions exist and are unique except if a (highly non-generic) breakdown
configuration occurs.

badgood good

Ω

bad

Ω

Ω
Ω

(B) The tip of the stem touches the obstacle perpendicularly, namely

γ(t0) ∈ ∂Ω , γs(t0) = − n(γ(t0)). (1)

Moreover,

γss(s) = 0 for all s ∈ ]0, t[ such that γ(s) /∈ ∂Ω . (2)

Alberto Bressan (Penn State) growth models 17 / 24



Geometric interpretation

d

dt
γ(t) ∈ F (γ(t)) + Λ(γ(t)) γ /∈ S

γ

3

γ

γ

S

Λ
Λ
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γ γ γ
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3

1

F
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Well posedness of evolution equations with constraints

d

dt
z(t) ∈ f (z(t)) + Γ(z(t)) z /∈ S

f

2

v
1

2

1 1 v
1

2

v2

v

z

Γ

Γ(z)

S S
S

z

z

z
z

Γ

If f is Lipschitz and Γ(z) = NS(z) = outer normal cone to S at a boundary point z, then

d

dt

∥∥z1(t)− z2(t)
∥∥ ≤ C

∥∥z1(t)− z2(t)
∥∥ (1)

Main idea: introduce an equivalent “Riemann metric” so that the cones Γ(z)
become perpendicular to the boundary of S
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Numerical simulations (Wen Shen, 2016)
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Vines clinging to tree branches (A.B., M.Palladino, W.Shen)

The stem bends toward the obstacle, at points which are sufficiently close
(i.e., at a distance < δ0 from the obstacle)

tγ( ,σ)

α

0
s

η(s)

δ

δ
0

Ω

γ(t,s)

ψ(x)
.

= η
(
d(x ,Ω)

)
In the case of a vine that clings to a branch of another tree, the evolution
equation contains an additional term (=⇒ bending toward the obstacle)

γt(t, s) =

∫ s

0

e−β(t−σ)
(
∇ψ(γ(t, σ))× γs(t, σ)

)
×
(
γ(t, s)− γ(t, σ)

)
dσ + · · ·
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Numerical simulations (Wen Shen)
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MATLAB source codes: http://math.psu.edu/shen w/STEM-VINE-SIM/
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