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Magnetostrictive and piezoelectric materials

Magnetostrictive and piezoelectric materials exhibit mechanical
deformation under the influence of electric or magnetic field and, vice
versa, produce electric or magnetic field under mechanical loading.

���

Applications: Actuators, sensors, harvesters, active or passive damping

A 2 input (e.g., strain ε and electric field E ) – 2 output (dielectric
displacement D and stress σ ) model is necessary for describing these
phenomena.
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Magnetic and magnetoelastic curves of Galfenol at various preloads
Measured by Daniele Davino, Università del Sannio, Benevento
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Terfenol D, commercial presentation by Etrema Products Inc.

Strain
(ppm)

Applied field (Oe ≈ 80 A/m)
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Problems in constitutive modeling

A constitutive relation (D, σ) = F [E , ε] is compatible with the First and the
Second Principle of Thermodynamics only if there exists a free energy operator
W = W[E , ε] such that for all isothermal processes we have

ḊE + ε̇σ − Ẇ = ∆ ≥ 0 ,

where ∆ is the dissipation rate.

Scalar counterparts of this energy balance are known, e.g., for the Preisach model
for ferromagnetism: If m = P[h] is the constitutive relation between the
magnetic field h and the magnetization m with a Preisach operator P and with
the associated Preisach free energy operator W = W[h] , then the inequality

ṁh − Ẇ = ∆ ≥ 0

holds for all processes.

!!! Dissipated energy is manifested by heat production which can damage the
device or reduce its accuracy;

!!! Hysteresis losses can influence the harvester efficiency.
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ḊE + ε̇σ − Ẇ = ∆ ≥ 0 ,
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Preisach operator

Let pr be the mapping which with a parameter r > 0 and with a function
h ∈ W 1,1(0,T ) associates the solution ξr ∈ W 1,1(0,T ) of the constrained rate
independent equation

|h(t)− ξr (t)| ≤ r ,

ξ̇r (t)(h(t)− ξr (t)) = r |ξ̇r (t)| ,
ξr (0) = min{h(0) + r ,max{0, h(0)− r}}.�r

−r

ξr

0 h

For each fixed value of the memory depth r , the function t 7→ ξr (t) describes
the mechanical play with threshold r .
At each fixed time t > 0 , the function r 7→ ξr (t) describes the memory state at
time t .

The play ξr = pr [h] satisfies the energy balance equation ξ̇rh − Ẇ = ∆ with
W = 1

2ξ
2
r , ∆ = r |ξ̇r | .
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W = 1

2ξ
2
r , ∆ = r |ξ̇r | .

Pavel Krejčí (Matematický ústav AV ČR) Piezoelectric energy harvesting September 26, 2017 10 / 24



Preisach operator

Let pr be the mapping which with a parameter r > 0 and with a function
h ∈ W 1,1(0,T ) associates the solution ξr ∈ W 1,1(0,T ) of the constrained rate
independent equation

|h(t)− ξr (t)| ≤ r ,

ξ̇r (t)(h(t)− ξr (t)) = r |ξ̇r (t)| ,
ξr (0) = min{h(0) + r ,max{0, h(0)− r}}.�r

−r

ξr

0 h

For each fixed value of the memory depth r , the function t 7→ ξr (t) describes
the mechanical play with threshold r .
At each fixed time t > 0 , the function r 7→ ξr (t) describes the memory state at
time t .

The play ξr = pr [h] satisfies the energy balance equation ξ̇rh − Ẇ = ∆ with
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Preisach operator II

Given a nonnegative function ψ ∈ L1((0,∞)× R) (the Preisach density), the
Preisach operator is defined by the integral formula

m(t) = P[h](t) =

∫ ∞

0

∫ pr [h](t)

0
ψ(r , v) dv dr .

The free energy W associated with P has the form

W (t) = W[h](t) =

∫ ∞

0

∫ pr [h](t)

0
vψ(r , v) dv dr ,

and the energy balance equation (we denote ξr = pr [h] )

ṁh − Ẇ =

∫ ∞

0
ξ̇r (h − ξr )ψ(r , ξr ) dr =

∫ ∞

0
r |ξ̇r |ψ(r , ξr ) dr = |Ḋ| ≥ 0

holds with the dissipation operator

D(t) = D[h](t) =

∫ ∞

0

∫ pr [h](t)

0
rψ(r , v)dv dr .
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holds with the dissipation operator

D(t) = D[h](t) =

∫ ∞

0

∫ pr [h](t)

0
rψ(r , v)dv dr .

Pavel Krejčí (Matematický ústav AV ČR) Piezoelectric energy harvesting September 26, 2017 11 / 24



Preisach operator and Preisach free energy
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Fig. 1: The Preisach constitutive
relation m = P[h] .
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Fig. 2: The Preisach free energy
W = W[h] .

Theorem. Both operators P and W admit a locally Lipschitz continuous
extension to a mapping C [0,T ] → C [0,T ] .

Conjecture: The Preisach free energy operator describes the
electro-mechanical or magneto-mechanical interaction.
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Piezoelectricity

In order to model the self-similar behavior in the input- (strain ε and the electric
field E ) output (dielectric displacement D and stress σ ) hysteresis diagram, the
simplest choice is

D = ωε+ κE + P,
σ = Kε− ωE + S ,

W =
K
2
ε2 +

κ

2
E 2 + V ,

P = P[u],

S = f ′(ε)W[u],

V = f (ε)W[u],

u =
E

f (ε)

with a Preisach operator P and Preisach free energy W , a positive self-similarity
function f (ε) , and physical constants K , ω, κ .

We then have the correct energy balance

ḊE + ε̇σ − Ẇ = ṖE + ε̇S − V̇ = f (ε)(u∂tP[u]− ∂tW[u]) ≥ 0.
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Mechanical depolarization

The model presented above is not able to describe the phenomena of
demagnetization and depolarization at zero field and exhibits other bigger or
smaller discrepancies with experiments at low field values.

As a correction of the model, a modification including a mean field feedback
correction term has recently been proposed in the form
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Piezoelectric harvester: Case without inductance

The dynamics of a piezoelectric harvester subject to an impressed time-dependent
mechanical force σimp(t) can be described by the system

d
dt
ρε̈+νε̇+ = σimp,

d
dt

+ αE = 0,

where

We have D = ωε+ κE + P[u] and E = f (ε)u + a(ε)P[u] , hence,

u +
1 + κa(ε)
κf (ε)

P[u] =
D − ωε

κf (ε)
. (1)

Theorem (K+K 2016). The operator R which with D, ε ∈ C [0,T ] associates
the solution u = R[D, ε] ∈ C [0,T ] of equation (??) is Lipschitz continuous.

Our equations thus can be reduced to a simple ODE system with a locally
Lipschitz continuous right-hand side, for which all results about local existence,
uniqueness, and continuous data dependence are available.
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Piezoelectric harvester: Case with inductance

The dynamics of a piezoelectric harvester subject to an impressed time-dependent
mechanical force σimp(t) can be described by the system

d
dt
ρε̈+νε̇+ = σimp,

d2

dt2 + αĖ + βE = 0,

where

We rewrite the system in the form

ρε̈+νε̇+Kε− ωE + f ′(ε)W[u] + 1
2a′(ε)P2[u] = σimp,

d
dt

(ωε+ κE + P[u]) + αE + βΦ = 0,

Φ̇− E = 0.

Passing to the new variable D = ωε+ κE + P[u] and substituting u = R[D, ε] ,
we obtain as before an ODE system for the unknowns D, ε,Φ with a locally
Lipschitz continuous right-hand side.
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Energy balance

In the system

ρε̈+νε̇+Kε− ωE + f ′(ε)W[u] + 1
2a′(ε)P2[u] = σimp,

d
dt

(ωε+ κE + P[u]) + αE + βΦ = 0,

Φ̇− E = 0,

we multiply the first equation by ε̇ , the second equation by E , the third equation
by βΦ , and sum them up to obtain

d
dt

(
ρ

2
ε̇2 +

c
2
ε2 +

κ

2
E 2 +

β

2
Φ2 + f (ε)W[u] +

1
2
b(ε)P2[u]

)
+νε̇2 + αE 2 + f (ε)

(
u

d
dt
P[u]− d

dt
W[u]

)
= ε̇ σimp.

The solution thus remains bounded in the whole existence range. This implies in
turn that the solution exists globally and depends continuously on the data and
on the physical parameters.
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Special case: The play operator

Consider the special case
P = λpr ,

with some λ > 0 . The energy inequality holds for the choice W[u] = λ
2 p2

r [u] .
We first rewrite the operator equation

u +
1 + κa(ε)
κf (ε)

P[u] =
D − ωε

κf (ε)

The inversion formula is explicit in terms of the play operator with moving
threshold:

ξ = pr [u] = pR(ε)

[
A(D, ε)

1 + λB(ε)

]
, R(ε) =

r
1 + λB(ε)

.

All operators in the balance equation thus admit a representation in terms of ξ

R[D, ε] = A(D, ε)− λB(ε)ξ,

(P ◦ R)[D, ε] = λξ,

(W ◦R)[D, ε] =
λ

2
ξ2.
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Special case: The play operator II

The system of balance equations has the form

ẏ(t) = F (t, y(t), ξ(t); θ),

where y = (ε, ε̇,D,Φ) is the unknown vector function, and θ ∈ Θ is the
constant vector of physical parameters. The moving play operator
ξ = pR(ε)

[
A(D,ε)

1+λB(ε)

]
admits a representation in terms of differential inclusion

ξ̇(t) ∈ ∂I[−1,1](a(t)), a =
1
r
(A(D, ε)− (1 + λB(ε))ξ),

where I[−1,1] is the indicator function of the interval [−1, 1] and ∂I[−1,1] is its
subdifferential. This inclusion can be in turn rewritten in the form

ȧ(t) + ∂I[−1,1](a(t)) 3 g(t, y(t), a(t); θ).

The next goal is to maximize the harvested energy∫ T

0
J(t, y(t), a(t); θ)(t) dt −→ min

with respect to the physical parameter vector θ ∈ Θ if y(0), a(0) are given.
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Approximation

Complement the cost functional with the term |θ − θ∗|2 , where θ∗ is a value
where the minimum is achieved, and replace the system

ẏ(t) = F̂ (t, y(t), a(t); θ)
ȧ(t) + ∂I[−1,1](a(t)) 3 g(t, y(t), a(t); θ)

with

ẏγ(t) = F̂ (t, yγ(t), aγ(t); θγ)

ȧγ(t) +
1
γ

Ψ′(aγ(t)) = g(t, yγ(t), aγ(t); θγ),

for γ > 0 , where

Ψ(a) =
1
6
((a2 − 1)+)3;

For γ → 0 , (yγ , aγ) converge strongly to solutions (y∗, a∗) in W 1,2(0,T ) of the
system

ẏ∗(t) = F̂ (t, y∗(t), a∗(t); θ∗)
ȧ∗(t) + ∂I[−1,1](a∗(t)) 3 g(t, y∗(t), a∗(t); θ∗).
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Necessary optimality conditions

Theorem. Let F̂ , g , J be continuously differentiable, and let (y∗, a∗, θ∗) be a
local maximizer of the problem. Then there exist adjoint states
p∗ ∈ W 1,2(0,T ; Rn) , q∗ ∈ BV (0,T ) such that

−ṗ∗(t) = ∂y F̂ (t, y∗(t), a∗(t); θ∗) · p∗(t) + ∂yg(t, y∗(t), a∗(t); θ∗) q∗(t)
− ∂yJ(t, y∗(t), a∗(t); θ∗) for t ∈ (0,T ),

p∗(T ) = 0,

q∗(t) g(t, y∗(t), a∗(t); θ∗) = 0 for a. e. t ∈ {s ∈ (0,T ) : |a∗(s)| = 1},
−q̇∗(t) = ∂ag(t, y∗(t), a∗(t); θ∗) q∗(t) + ∂aF̂ (t, y∗(t), a∗(t); θ∗) · p∗(t)

− ∂aJ(t, y∗(t), a∗(t); θ∗) for a. e. t ∈ {s ∈ (0,T ) : |a∗(s)| < 1} ,
q∗(T ) = 0

0 ∈
∫ T

0

(
∂θJ(t, y∗(t), a∗(t); θ∗)− ∂θF̂ (t, y∗(t), a∗(t); θ∗) · p∗(t)

− ∂θg(t, y∗(t), a∗(t); θ∗) q∗(t)
)

dt + ∂IΘ(θ∗).

Pavel Krejčí (Matematický ústav AV ČR) Piezoelectric energy harvesting September 26, 2017 21 / 24



Necessary optimality conditions

Theorem. Let F̂ , g , J be continuously differentiable, and let (y∗, a∗, θ∗) be a
local maximizer of the problem. Then there exist adjoint states
p∗ ∈ W 1,2(0,T ; Rn) , q∗ ∈ BV (0,T ) such that
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Method of proof

Derive necessary optimality conditions for the regularized problem with
Lagrange multipliers pγ , qγ ;

Prove estimates for pγ in W 1,2(0,T ) and for qγ in W 1,1(0,T ) ;

Select convergent subsequences pγ → p∗ weakly in W 1,2(0,T ) and
qγ → q∗ pointwise in BV (0,T ) (Helly Selection Principle);

Distinguish the cases that a∗(t) is on the boundary or in the interior
of the admissible interval [−1, 1] .
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Applications and conclusions

Inversion and energy balance equations for hysteresis operators have
important applications in

Real time control of piezoelectric or magnetostrictive actuators and
sensors, where algorithms for fast and accurate inversion of hysteresis
operators are of central importance;
Optimization of magnetostrictive energy harvesting processes under
mechanical loading;
Wave propagation modeling in piezoelectric solids.

The techniques based on the Preisach model
Offer a tool for modeling the butterfly magnetostrictive hysteresis;
Are accessible to standard identification methods;
Are relatively simple and robust; error estimates can easily be derived;
Can be coupled with the full system of balance PDEs describing, e.g.,
vibrations of piezoelectric beams.
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