

Stabilization of quasistatic evolution of elastoplastic systems subject to periodic loading

Oleg Makarenkov

Department of Mathematical Sciences University of Texas at Dallas

in cooperation with Ivan Gudoshnikov

A parallel network of elastoplastic springs

A parallel network of elastoplastic springs

Elastic deformation : s = Ae

Plastic deformation: $\dot{p} \in N_C(s)$

$$C = [c_{1}^{-}, c_{1}^{+}] \times \dots$$

$$\dots \times [c_{m}^{-}, c_{m}^{+}]$$

$$N_{[c_{1}^{-}, c_{1}^{+}]}(s) =\begin{cases} [0, \infty), & \text{if } s = c_{1}^{+}, \\ \{0\}, & \text{if } s \in (c_{1}^{-}, c_{1}^{+}) \\ (-\infty, 0], & \text{if } s = c_{1}^{-}. \end{cases}$$

Initial system of variational inequalities

Elastic deformation: s = Ae,

Plastic deformation: $\dot{p} \in N_C(s)$,

Geometric constraint: $e + p \in D\Re^n$,

Enforced constraint: $R^{T}(e+p) = l(t)$,

Tension/compression law

Elastic deformation: s = Ae,

Plastic deformation: $\dot{p} \in N_C(s)$,

Geometric constraint: $e + p \in D\Re^n$,

Enforced constraint: $R^{T}(e+p) = l(t)$,

Tension/compression law

Elastic deformation: s = Ae,

Plastic deformation: $\dot{p} \in N_C(s)$,

Geometric constraint: $e + p \in D\Re^n$,

Enforced constraint: $R^{T}(e+p) = l(t)$,

Tension/compression law

Elastic deformation: s = Ae,

Plastic deformation: $\dot{p} \in N_C(s)$,

Geometric constraint: $e + p \in D\Re^n$,

Enforced constraint: $R^{T}(e+p) = l(t)$,

Static balance: $s^1 + ... + s^m + r^1 + ... + r^q + f(t) = 0.$

For enforced constraint 1:

$$(e_4+p_4)+(e_7+p_7)+(e_5+p_5)-(e_1+p_1)=l_1(t)$$

Static balance law

Elastic deformation: s = Ae,

Plastic deformation: $\dot{p} \in N_C(s)$,

Geometric constraint: $e + p \in D\Re^n$,

Enforced constraint: $R^{T}(e+p) = l(t)$,

Static balance law

Elastic deformation: s = Ae,

Plastic deformation: $\dot{p} \in N_C(s)$,

Geometric constraint: $e + p \in D\Re^n$,

Enforced constraint: $R^{T}(e+p) = l(t)$,

Static balance: $s^1 + ... + s^m + r^1 + ... + r^q + f(t) = 0.$

For node 2:

$$-s_1+r_1+f_2(t)=0$$

Moreau sweeping process

Elastic deformation: s = Ae,

Plastic deformation: $\dot{p} \in N_C(s)$,

Geometric constraint: $e + p \in D(\mathfrak{R}^n)$,

Enforced constraint: $R^{T}(e+p) = l(t)$,

$$e + p \in U + g(t)$$

$$U = \left\{ x \in D(\Re^n) : R^T x = 0 \right\}$$

$$g(t) = \left(D \overline{\xi} l(t) \right) \Big|_{U}$$

$$V = A^{-1}U^{\perp}$$

Graph theory:

$$s^1 + ... + s^m = -D^T s$$

$$s^{1} + ... + s^{m} = -D^{T}s$$
 $r^{1} + ... + r^{q} = -D^{T}Rr$

$$s^{1} + ... + s^{m} + r^{1} + ... + r^{q} + f(t) = 0$$

$$e + h(t) \in V$$

 $f(t) = -D^T \overline{h}(t)$

 $h(t) = \left(A^{-1}\overline{h}(t)\right)$

Algebra:
$$\operatorname{Ker} D^T = (DR^n)^{\perp} \subset U^{\perp}$$

$$\dot{p} \in N_C(Ae)$$

$$e + p - g(t) + h(t) \in U$$

$$e + h(t) - g(t) \in V$$

$$y = e + h(t) - g(t)$$

$$z = e + p + h(t) - g(t)$$

$$\operatorname{rank}\left(D^T R\right) = q$$

$$-\dot{y} \in N_{\left(A^{-1}C + h(t) - g(t)\right) \cap V}^{A}(y)$$

$$\dot{z} \in \left(N_{\left(A^{-1}C + h(t) - g(t)\right)}^{A}(y) + \dot{y}\right) \cap U$$

$$z(0) \in U$$

Moreau sweeping process

$$-\dot{y} \in N_{(A^{-1}C+h(t)-g(t))\cap V}^{A}(y),$$

 $\dim V = m - n + q + 1$

$$U = \left\{ x \in D\left(\mathfrak{R}^{n}\right) : R^{T} x = 0 \right\}$$

$$g(t) = \left(D\overline{\xi}l(t)\right)_{V}$$

$$f(t) = -D^{T}\overline{h}(t)$$

$$V = A^{-1}U^{\perp}$$

$$h(t) = \left(A^{-1}\overline{h}(t)\right)_{U}$$

$$y = e + h(t) - g(t)$$

Geometry of the moving constraint

$$-\dot{y} \in N_{C(t)}^A(y),$$

$$\Pi(t) = A^{-1}C + h(t) - g(t)$$

$$C(t) = \Pi(t) \cap V$$

$$U \otimes V = \mathbf{R}^m$$

$$(u,v)_A = \langle u, Av \rangle$$

$$h(t) \in U$$

$$g(t) \in V$$

$$\dim U = n - q - 1$$

$$\dim V = m - n + q + 1$$

n = number of nodes

m = number of springs

q = number of tension/compression constraints

A criterion for the safe load condition to hold

$$-\dot{y} \in N_{C(t)}^A(y),$$

$$C(t) = \Pi(t) \cap V$$

$$U \otimes V = \mathbf{R}^m$$

$$(u,v)_A = \langle u, Av \rangle$$

$$h(t) \in U$$

$$g(t) \in V$$

$$\dim U = n - q - 1$$

$$\dim V = m - n + q + 1$$

n = number of nodes

m = number of springs

q = number of tension/compression constraints

$$\Pi(t) = A^{-1}C + h(t) - g(t)$$

Proposition 1 (safe load):

$$-Ah(t) \in C \Rightarrow C(t) \neq \emptyset$$

$$C(t) = \emptyset \Rightarrow \text{plastic collapse}$$

A criterion for plastic shakedown to occur

Proposition 2 (plastic shakedown):

Assume that the safe load condition holds. If

$$||A^{-1}c^{-} - A^{-1}c^{+}||_{A} < ||g(t_{1}) - g(t_{2})||_{A},$$

then the sweeping process doesn't have any solutions that are constant on the interval $[t_1, t_2]$.

Dynamics under *T*-periodic loading

Existence of a periodic attractor

$$-\dot{y} \in N_{C(t)}^{A}(y)$$

Theorem 1 (existence of periodic attractor, Krejci): If C(t) is T-periodic, then the set of all T-periodic solutions is a global attractor. For each fixed $t \in [0, t]$, the active set J(t, x(t)) is the same for all $x \in ri(X)$.

if x(0) is an initial condition of a Tperiodic solution x(t) then the set of
initial conditions of all other Tperiodic solutions is a straight line.

Uniqueness of non-constant *T*-periodic solutions

$$-\dot{y} \in N_{C(t)}^A(y)$$

Theorem 2 (uniqueness of *T*-periodic solutions): Let $C(t) \subset \mathbb{R}^m$ be *T*-periodic. Assume that any *m* vectors out the collection $\{n_i\}$ are linearly independent and the number of adjoin facets doesn't exceed *m*. Then the sweeping process has at most one non-constant *T*-periodic solution.

Uniqueness of non-constant *T*-periodic solutions

$$-\dot{y} \in N_{C(t)}^{A}(y), \quad C(t) = (A^{-1}C + h(t) - g(t)) \cap V$$

Theorem 3 (uniqueness of non-constant *T*-periodic solutions):

Let h(t) and g(t) be T-periodic. Assume that $\dim V = m-1$. If V is either between the blue vertex and the blue triangle or between the green vertex and the green triangle, then C(t) is a simplex and the sweeping process has at most one non-constant T-periodic solution.

Structurally stable family of periodic solutions

$$m \times (m-n+1)$$
-matrix that solves
$$(D^{\perp})^T D = 0_{(m-n+1)\times(m-n+1)}$$

$$D^{\perp} = \begin{pmatrix} 0\\1\\1\\0\\-1 \end{pmatrix} \quad R = \begin{pmatrix} 1\\1\\1\\1\\0 \end{pmatrix}$$

Thank you for your attention !!!

References:

- [1] S. Adly, M. Ait Mansour, L. Scrimali, Sensitivity analysis of solutions to a class of quasi-variational inequalities. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 8 (2005), no. 3, 767-771.
- [2] I. Gudoshnikov, O. Makarenkov, Stabilization of quasistatic evolution of elastoplastic systems subject to periodic loading, submitted, https://arxiv.org/abs/1708.03084
- [3] P. Krejci, Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gattotoscho, 1996.
- [4] J. J. Moreau, On unilateral constraints, friction and plasticity. New variational techniques in mathematical physics (Centro Internaz. Mat. Estivo (C.I.M.E.), II Ciclo, Bressanone, 1973), pp. 171–322. Edizioni Cremonese, Rome, 1974.

Static balance law

Elastic deformation: s = Ae,

Plastic deformation: $\dot{p} \in N_C(s)$,

Geometric constraint: $e + p \in D\Re^n$,

Enforced constraint: $R^{T}(e+p) = l(t)$,

Geometric constraint and enforced constraint combined

Elastic deformation: s = Ae,

Plastic deformation: $\dot{p} \in N_C(s)$,

Geometric constraint: $e + p \in D\Re^n$,

Enforced constraint: $R^{T}(e+p) = l(t)$,

$$e+p\in U^{l(t)},$$

$$e + p \in U^{l(t)},$$

$$U^{l} = \left\{ x \in D \,\mathfrak{R}^{n} : R^{T} x = l \right\}$$

Geometric constraint and enforced constraint combined

Elastic deformation: s = Ae,

Plastic deformation: $\dot{p} \in N_C(s)$,

Geometric constraint: $e + p \in D\Re^n$,

Enforced constraint: $R^{T}(e+p) = l(t)$,

$$e + p \in U^{l(t)},$$

$$U^{l} = \left\{ x \in D \Re^{n} : R^{T} x = l \right\}$$

$$R^{T}D\overline{\xi} = I_{q \times q}$$

$$x = x|_{U} + x|_{V}$$

$$e + p \in U + g(t),$$

$$U = \left\{ x \in D \,\mathfrak{R}^n : R^T x = 0 \right\}, \ g(t) = \left(D \,\overline{\xi} l(t) \right) \Big|_V, \ V = A^{-1} U^{\perp}$$

Elastic deformation : s = Ae,

Plastic deformation: $\dot{p} \in N_C(s)$,

Geometric constraint: $e + p \in D(\Re^n)$,

Enforced constraint: $R^{T}(e+p) = l(t)$,

$$e+p\in U^{l(t)},$$

 $U^{l} = \left\{ x \in D\left(\mathfrak{R}^{n}\right) : R^{T} x = l \right\}$

$$R^{T}D\overline{\xi} = I_{q \times q}$$

$$x = x|_{U} + x|_{V}$$

$$e+p\in U+g(t),$$

$$U = \{x \in D(\mathfrak{R}^n) : R^T x = 0\}, \ g(t) = (D\overline{\xi}l(t))|_{V}, \ V = A^{-1}U^{\perp}$$

$$s^1 + \dots + s^m = -D^T s$$

Elastic deformation : s = Ae,

Plastic deformation: $\dot{p} \in N_C(s)$,

Geometric constraint: $e + p \in D(\mathbb{R}^n)$,

Enforced constraint: $R^{T}(e+p) = l(t)$,

$$e + p \in U^{l(t)},$$

$$U^{l} = \left\{ x \in D(\mathfrak{R}^{n}) : R^{T} x = l \right\}$$

$$R^{T}D\overline{\xi} = I_{q \times q}$$

$$x = x|_{U} + x|_{V}$$

$$e+p\in U+g(t),$$

$$U = \left\{ x \in D\left(\mathfrak{R}^{n}\right) : R^{T}x = 0 \right\}, \ g(t) = \left(D\overline{\xi}l(t)\right)\Big|_{V}, \ V = A^{-1}U^{\perp}$$

$$s^1 + \dots + s^m = -D^T s$$

$$r^1 + \dots + r^q = -D^T R r$$

Graph theory:
$$-D^{T}R^{k}=(0,...,0,1,0,...,0,-1,0,...,0)^{T}$$

$$I^{k}$$
-th component I^{k} -th component

Elastic deformation: s = Ae,

Plastic deformation: $\dot{p} \in N_C(s)$,

Geometric constraint: $e + p \in D(\mathbb{R}^n)$,

Enforced constraint: $R^{T}(e+p) = l(t)$,

$$e + p \in U^{l(t)},$$

$$U^{l} = \left\{ x \in D(\mathfrak{R}^{n}) : R^{T} x = l \right\}$$

Static balance:

$$s^{1} + ... + s^{m} + r^{1} + ... + r^{q} + f(t) = 0.$$
 $-D^{T}s - D^{T}Rr + f(t) = 0$

$$-D^T s - D^T R r + f(t) = 0$$

$$R^{T}D\overline{\xi} = I_{q \times q}$$

$$x = x|_{U} + x|_{V}$$

$$e+p\in U+g(t)$$
,

$$U = \left\{ x \in D\left(\mathfrak{R}^{n}\right) : R^{T}x = 0 \right\}, \ g(t) = \left(D\overline{\xi}l(t)\right)\Big|_{V}, \ V = A^{-1}U^{\perp}$$

$$s^1 + \dots + s^m = -D^T s$$

$$D^{T} = \begin{array}{c} \text{i-th node} & +1 \\ \text{j.th spring} \\ \text{spring} \\ \text{$$

$$r^1 + \dots + r^q = -D^T R r$$

Graph theory: $-D^TR^k=(0,\ldots,0,1,0,\ldots,0,-1,0,\ldots,0)^T$ I^k -th component J^k -th component

Elastic deformation: s = Ae,

Plastic deformation: $\dot{p} \in N_C(s)$,

Geometric constraint: $e + p \in D(\mathbb{R}^n)$,

Enforced constraint: $R^{T}(e+p) = l(t)$,

$$e + p \in U^{l(t)},$$

$$U^{l} = \left\{ x \in D(\mathfrak{R}^{n}) : R^{T} x = l \right\}$$

Static balance:

$$s^{1} + ... + s^{m} + r^{1} + ... + r^{q} + f(t) = 0.$$
 $-D^{T}s - D^{T}Rr + f(t) = 0$

$$-D^T s - D^T R r + f(t) = 0$$

$$R^{T}D\overline{\xi} = I_{q \times q}$$

$$x = x\big|_{U} + x\big|_{V}$$

$$e+p\in U+g(t),$$

$$U = \left\{ x \in D\left(\mathfrak{R}^{n}\right) : R^{T}x = 0 \right\}, \ g(t) = \left(D\overline{\xi}l(t)\right)\Big|_{V}, \ V = A^{-1}U^{\perp}$$

$$s^1 + \dots + s^m = -D^T s$$

Graph theory: $r^1 + ... + r^q = -D^T R r$

$$s + Rr + \overline{h}(t) \in \text{Ker}D^{T}$$

$$f(t) = -D^{T}\overline{h}(t)$$

$$s + \overline{h}(t) \in U^{\perp}$$

$$s + h(t) \in U^{\perp}$$

$$h(t) = A(A^{-1}\overline{h}(t))_{U}$$

Py applying
$$\Lambda^{-1}$$

$$e + A^{-1}h(t) \in V$$

By applying A^{-1}