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A parallel network of elastoplastic springs
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The length of an elastoplastic spring consists of two components the elastic and plastic ones. When the stress of the spring is within the plastic limits [c1^-,c1^+], stretching and compressing the spring changes the elastic component of the length according to Hooke’s law. When the plastic limit c1^+ is reached and one attempts to stretch the spring further, the elastic component doesn’t change, but the plastic component increases to match the required stretching. 
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Initial system of variational inequalities
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Elastic deformation :
Plastic deformation :

Geometric constraint :
Enforced constraint :
Static balance:

s = Ae,

p e Nc(s),

e+ pe DR",

R'(e+p)=1(t),

S +s"+ri 4+ 4ri+ f(t)=0.
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Tension/compression law
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Tension/compression law
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Elastic deformation: s= Ae, i
For enforced constraint 1:

Plastic deformation:: p & Nc(s), (e4+ps)t(estp7)+(es+ps)-(e1+py)=14(1)

Geometric constraint: e+ p e DR",
Enforced constraint: R’ (e+ p) =1(t),
Static balance: S +s"+ri 4+ 4ri+ f(t)=0.



Static balance law
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Plastic deformation :

Geometric constraint :
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Static balance law

Elastic deformation :
Plastic deformation :

Geometric constraint :
Enforced constraint :
Static balance:

S = Ae,
For node 2:

peN(s), -5, +1,+,(1)=0

e+ pe DR",
R"(e+p)=1(t), y

S +s"+rt 4+ 4ri+ f(t)=0.
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Elastic deformation:
Plastic deformation :

Geometric constraint :
Enforced constraint :

Graph theory:  s'+

Static balance:

Algebra: KerD' =(DR") cU*

p € Nc (Ae)
e+p—g()+h(t)eU
e+h(t)—g(t) eV

Moreau sweeping process

s = Ae,
pe N.(9), e+pelU+g(t)
e+ pe DR, U={eD®"):Rx=0}
REe+p) =10, 7 a0=(pAO)|
V=AU
ts™=-D"s rr+..+r=—D'Rr e+h(t) eV

f(t)=—D"h(t)
h(t) = (AR (D)),

Sttt ri+ f(1)=0 =)

y=e+h(t)-g(t) =¥ € Nfcongy-siohv (V)
Emsss—— Ze (N(i_lcm(t)_g(t))(y) + y)ﬂu
z=e+ p+h(t)—g(t) 2(0) €U

rank (DTR) =q
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Moreau sweeping process
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)ﬂv(y), dimV =m-n+q+1
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V=AU" h(t) = (A—lﬁ(t)}u y=e+h(t)-g(t)



Geometry of the moving constraint

-yeNLy(y),  TI(t)=A"C+h(t)-g(®)
Ct)=II{t)NV
U®V =R"

(U,v),, =(u, Av)
h(t)eU

g(t)eV

dimU =n-qg-1
dimV =m-n+q+1
n =number of nodes
m =number of springs

G(1) —

g = number of tension/compression constraints



A criterion for the safe load condition to hold

—yeNZy(y),  II()=A"C+h(t)-g(t)
Ct)=II{t)NV

U®V =R"

(U,v),, =(u, Av)

h(t)eU

g(t)eV

dimU =n-q-1 Proposition 1 (safe load):
dimV =m-n+q+1 ~-Ah(t)eC = C(t) £

n =number of nodes C(t) = @ = plastic collapse

m =number of springs

g = number of tension/compression constraints



A criterion for plastic shakedown to occur

Proposition 2 (plastic shakedown):
Assume that the safe load condition holds. If

|A™ e — A7 e la < lg(t) — g(t2) | »

then the sweeping process doesn’t have any solutions that are constant
on the interval [t,, t,].



Dynamics under T-periodic loading




Existence of a periodic attractor

-Yye Né(t)()/)

Theorem 1 (existence of periodic attractor, Krejci): If C(t) i1s T-periodic,
then the set of all T-periodic solutions is a global attractor. For each
fixed te[0,t], the active set J(t,x(t)) is the same for all x € ri(X).

x(t,) 20)  x(0)

_/

J(ty, X(t)) = {5}, J(t,, y(ty)) = & If X(0) is an initial condition of a T-
X(t) 1s T-periodic = periodic solution x(t) then the set of
= y(t) is not T-periodic Initial conditions of all other T-

and z(t) i1s not T-periodic periodic solutions is a straight line.



Uniqueness of non-constant T-periodic solutions

-Yye Né(t)()/)

Theorem 2 (uniqueness of T-periodic solutions): Let C(t) = R™ be
T-periodic. Assume that any m vectors out the collection {n;} are linearly
Independent and the number of adjoin facets doesn’t exceed m. Then the
sweeping process has at most one non-constant T-periodic solution.
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Uniqueness of non-constant T-periodic solutions

—ye N?(t)(Y)1 C(t)=(A_1C+h(t)—g(t))ﬂV

Theorem 3 (unigueness of non-constant T-periodic solutions):

Let h(t) and g(t) be T-periodic. Assume that dimV =m-1. If V is

either between the blue vertex and the blue triangle or

between the green vertex and the green triangle, then C(t) is a simplex and
the sweeping process has at most one non-constant T-periodic solution.




Structurally stable family of periodic solutions
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Thank you for your attention !!!
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Static balance law

Elastic deformation: s= Ae,
Plastic deformation: p e N.(9),

Geometric constraint: e+ p e DR",

Enforced constraint: R’ (e+ p) =1(t),
Static balance: S +s"+ri 4+ 4ri+ f(t)=0.



Geometric constraint and enforced constraint combined

Elastic deformation: s= Ae,

Plastic deformation: pe N,(S),

Geometric constraint: e+ p e DR", e+peU'®,
Enforced constraint: R (e+ p) =1(t), - U'= {x ceDR":R'x= I}
Static balance: S +Ss" %+ () =0.



Geometric constraint and enforced constraint combined

Elastic deformation: s= Ae,
Plastic deformation: pe N,(S),

Geometric constraint: e+ p e DR", e+peU'®,
Enforced constraint: R (e+ p) =1(t), = u' ={X€ DR": RTx:I} =

Static balance: S +Ss" %+ () =0.

R'DE =1, e+peU+g(t),
= U=lxeDW":R'x=0}, 9(t) =(Dai())] . v =A"U"

X= X‘U +X‘V



Static balance

Elastic deformation: s= Ae,
Plastic deformation: pe N,(S),

Geometric constraint: e+ p e D(R"), e+pel'?,
Enforced constraint: R'(e+ p)=I(t), = u- {XE D(R"):R"x= I} hand
Static balance: S 4+Ss" %+ f(t)=0.
R'DS =14 e+peU+g(t),
= U-leD®"):Rx=0} g(t)=(DAW)| ,V =AU
x=x|, +X, Y

st+..+s"=-D's

S )
" N
D" = k,']-'l D' = o D;
j j
g- Vi S/ g 2 %
A, —
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Static balance

Elastic deformation: s= Ae,
Plastic deformation: pe N,(S),

Geometric constraint: e+ p e D(R"), e+pel'?,
Enforced constraint: R'(e+ p)=1(t), - U'= {XE D(R"):R'x= |}
Static balance: S 4+Ss" %+ f(t)=0.
T __

RTDe =1gq e+peU+g(t),

 —— . _ B
U={eD®"):R"x=0}, gt)=(DA®)) ,v=A"

X=X, +X| Y

s'+..+s"=-D's r+..+rf=-D'Rr
"SR

Graph theory:
- D'Rk=(0,...,0,1,0,...,0,-1,0,...,0)7

+
—

/~th node

£ Ik-th component ~ Jk-th component

Lﬁuuds yr-~




Static balance

Elastic deformation: s= Ae,
Plastic deformation: pe N,(S),

Geometric constraint: e+ p e D(R"), e+pel'?,
Enforced constraint: R (e+ p)=1(t), - u'= {XE D(R"):R'x= |} -
Static balance: S +s" '+ +r'+ f(t)=0. @mp -D's—D'Rr+f(t)=0
THE —

RTDe =1gq e+peU+g(t),

 —— . = _
U={eD®"):R"x=0}, gt)=(DA®)) ,v=A"

X=X, +x|, Y

s'+..+s"=-D's r+..+rf=-D'Rr
"SR

Graph theory:
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Static balance

Elastic deformation: s= Ae,
Plastic deformation: pe N,(S),

Geometric constraint: e+ p e D(R"), e+pel'?,
Enforced constraint: R' (e+ p) =1(t), = U'= {XE D(R"):R'x= |} =
Static balance: St +s"+ri+.4r'+f(t)=0. @mp —D's—D'Rr+f(t)=0
THE _
RTDe =1gq e+peU+g(t),
 —— . _ B
U={eD®"):R"x=0}, gt)=(DA®)) ,v=A"
X:X‘U +X‘V !
s'+.+s"=-D's Graph theory: r*+..+r®=-D"Rr
s+Rr+h(t) e KerD' . . s+h(t)eU™
= f(t)=-D"h(t) " sth@eUn = h(t) = A(A‘lﬁ(t)}U -

-1
4—>Byapplying = e+ Ah(t) eV
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