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System class
We consider nonlinear discrete time control systems

xu(n+ 1) = f(xu(n),u(n)), xu(0) = x

with xu(n) ∈ X, u(n) ∈ U , X, U normed spaces

Brief notation x+ = f(x, u)

Interpretation:

xu(n) = state of the system at time tn

u(n) = control acting from time tn to tn+1

f = solution operator of a controlled ODE/PDE
or of a discrete time model (or a numerical
approximation of one of these)
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The turnpike property

The turnpike property describes a behaviour of (approximately)
optimal trajectories for a finite horizon optimal control problem

minimise
u

JN(x,u) =
N−1∑
n=0

`(xu(n),u(n))

with state and input constraints xu(n) ∈ X, u(n) ∈ U

Informal description of the turnpike property: any optimal
trajectory stays near an equilibrium xe most of the time

We illustrate the property by two simple examples

Lars Grüne, The role of state constraints for turnpike behaviour and strict dissipativity, p. 5



The turnpike property

The turnpike property describes a behaviour of (approximately)
optimal trajectories for a finite horizon optimal control problem

minimise
u

JN(x,u) =
N−1∑
n=0

`(xu(n),u(n))

with state and input constraints xu(n) ∈ X, u(n) ∈ U

Informal description of the turnpike property: any optimal
trajectory stays near an equilibrium xe most of the time

We illustrate the property by two simple examples
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Example 1: minimum energy control

Example: Keep the state of the system inside a given interval
X minimising the quadratic control effort

`(x, u) = u2

with dynamics
x+ = 2x+ u

and constraints X = [−2, 2], U = [−3, 3]

For this example, the closer the state is to xe = 0, the cheaper
it is to keep the system inside X

 optimal trajectory should stay near xe = 0
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Example 1: optimal trajectories
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Example 2: a macroeconomic model
The second example is a 1d macroeconomic model

[Brock/Mirman ’72]

Minimise the finite horizon objective with

`(x, u) = − ln(Axα − u), A = 5, α = 0.34

with dynamics x+ = u

on X = U = [0, 10]

Here the optimal trajectories are less obvious

On infinite horizon, it is optimal to stay at the equilibrium

xe ≈ 2.2344 with `(xe, ue) ≈ 1.4673

One may thus expect that finite horizon optimal trajectories
also stay for a long time near that equilibrium
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Lars Grüne, The role of state constraints for turnpike behaviour and strict dissipativity, p. 9



Example 2: optimal trajectories

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

n

x
(n

)

Optimal trajectories for N = 5, . . . , 11
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Lars Grüne, The role of state constraints for turnpike behaviour and strict dissipativity, p. 9



Example 2: optimal trajectories

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

n

x
(n

)

Optimal trajectories for N = 5, . . . , 21
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How to formalize the turnpike property?
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Lars Grüne, The role of state constraints for turnpike behaviour and strict dissipativity, p. 10



How to formalize the turnpike property?

n
0 5 10 15 20 25

x
(n

)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of points outside the blue neighbourhood is bounded
by a number independent of N (here: by 8)
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The turnpike property: formal definitions
Let xe be an equilibrium, i.e., f(xe, ue) = xe

Turnpike property: For each ε > 0 and ρ > 0 there is Cρ,ε > 0
such that for all N ∈ N all optimal trajectories x? starting in
Bρ(x

e) satisfy the inequality

#
{
k ∈ {0, . . . , N − 1}

∣∣∣ ‖x?(k)− xe‖ ≥ ε
}
≤ Cρ,ε

Near equilibrium turnpike property: For each ε > 0, δ > 0 and
ρ > 0 there is Cρ,ε,δ > 0 such that for all x ∈ X and N ∈ N,
all trajectories xu with xu(0) = x ∈ Bρ(x

e) and
JN(x,u) ≤ N`(xe, ue) + δ satisfy the inequality

#
{
k ∈ {0, . . . , N − 1}

∣∣∣ ‖xu(k)− xe‖ ≥ ε
}
≤ Cρ,ε,δ
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History

Apparently first described by [von Neumann 1945]

Name “turnpike property” coined by
[Dorfman/Samuelson/Solow 1957]
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History

Apparently first described by [von Neumann 1945]

Name “turnpike property” coined by
[Dorfman/Samuelson/Solow 1957]

Extensively studied in the 1970s in mathematical
economy, cf. survey [McKenzie 1983]

Renewed interest in recent years [Zaslavski ’14,

Trélat/Zuazua ’15, Faulwasser et al. ’15, . . . ]

Many applications, e.g., structural insight in economic
equilibria; synthesis of optimal trajectories

[Anderson/Kokotovic ’87]

Lars Grüne, The role of state constraints for turnpike behaviour and strict dissipativity, p. 12



History

Apparently first described by [von Neumann 1945]

Name “turnpike property” coined by
[Dorfman/Samuelson/Solow 1957]

Extensively studied in the 1970s in mathematical
economy, cf. survey [McKenzie 1983]

Renewed interest in recent years [Zaslavski ’14,
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Application: Model predictive control
Turnpike properties are also pivotal for analysing economic
Model Predictive Control (MPC) schemes

MPC is a method in which an optimal control problem on an
infinite horizon

minimise
u

J∞(x,u) =
∞∑
n=0

`(xu(n),u(n))

is approximated by the iterative solution of finite horizon
problems

minimise
u

JN(x,u) =
N−1∑
n=0

`(xu(k),u(k))

with fixed N ∈ N
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MPC from the trajectory point of view

black = predictions (open loop optimization)

red = MPC closed loop
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Lars Grüne, The role of state constraints for turnpike behaviour and strict dissipativity, p. 14



MPC from the trajectory point of view

6

n

x

0 1 2 3 4 5 6

...

...

...
x

black = predictions (open loop optimization)

red = MPC closed loop
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Approximation result for MPC

If the finite horizon problems have the turnpike property, then
a rigorous approximation result can be proved

The result exploits that the red closed loop trajectory
approximately follows the first part of the black predictions up
to the equilibrium

We illustrate this behaviour by our second example for N = 10
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Strict dissipativity



Dissipativity

x+ = f(x, u)

Introduce functions s : X × U → R and λ : X → R

s(x, u) supply rate, measuring the (possibly negative)
amount of energy supplied to the system via
the input u in the next time step

λ(x) storage function, measuring the amount of
energy stored inside the system when the system
is in state x

Lars Grüne, The role of state constraints for turnpike behaviour and strict dissipativity, p. 18



Dissipativity

Definition [cf. Willems ’72] The system is called strictly
pre-dissipative if there are xe ∈ X, α ∈ K such that for all
x ∈ X, u ∈ U the inequality

λ(x+) ≤ λ(x) + s(x, u)− α(‖x− xe‖)

holds

α ∈ K: α : R+
0 → R+

0 , continuous,
strictly increasing, α(0) = 0

r(0, 0)

rα( )

The system is called strictly dissipative if it is strictly
pre-dissipative with λ bounded from below

Lars Grüne, The role of state constraints for turnpike behaviour and strict dissipativity, p. 19
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Physical interpretation of dissipativity

λ(x+) ≤ λ(x) + s(x, u)− α(‖x− xe‖)

physical interpretation of strict dissipativity

:

λ(x) = energy stored in the system
s(x, u) = energy supplied to the system

strict dissipativity:

energy can not be generated inside the system

a certain amount of energy α(‖x− xe‖) must be
dissipated (= given to the environment)

Lars Grüne, The role of state constraints for turnpike behaviour and strict dissipativity, p. 20
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History
Dissipativity was defined for continuous time systems in
[Jan C. Willems, Dissipative Dynamical Systems, Part I & II, 1972]

(still one of the best readings on the topic)

It was the result of the endeavour to generalise passivity

(passivity = dissipativity with s(x, u) = 〈y, u〉, where y = h(x) is

the output of the system)

Passivity, in turn, is a classical property of electrical circuits

Strict (or strong) dissipativity is mentioned in [Willems ’72] but
is not so often used; strict passivity is more commonly found

Dissipativity has widespread applications in stability theory and
optimal control

Translation to discrete time systems is quite straightforward
[Byrnes/Lin ’94]

Lars Grüne, The role of state constraints for turnpike behaviour and strict dissipativity, p. 21
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Relation between strict dissipativity and turnpike
The relation between strict dissipativity and turnpike
behaviour was investigated in detail in [Gr., Müller ’17]

Typical result:

Theorem: Assume X is closed and bounded and U is
compact, ` is continuous and bounded from below, xe is an
equilibrium around which the system is locally controllable and
ue ∈ argmin{`(xe, u) |u ∈ U, f(xe, u) = xe}

Then the following statements are equivalent

(a) The system is strictly dissipative with supply rate
s(x, u) = `(x, u)− `(xe, ue) and a bounded storage
function

(b) The near equilibrium turnpike property holds
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Lars Grüne, The role of state constraints for turnpike behaviour and strict dissipativity, p. 22



Relation between strict dissipativity and turnpike
The relation between strict dissipativity and turnpike
behaviour was investigated in detail in [Gr., Müller ’17]

Typical result:

Theorem: Assume X is closed and bounded and U is
compact, ` is continuous and bounded from below, xe is an
equilibrium around which the system is locally controllable and
ue ∈ argmin{`(xe, u) |u ∈ U, f(xe, u) = xe}

Then the following statements are equivalent

(a) The system is strictly dissipative with supply rate
s(x, u) = `(x, u)− `(xe, ue) and a bounded storage
function

(b) The near equilibrium turnpike property holds
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Linear quadratic problems



LQ problems
From now on we consider linear quadratic finite dimensional
discrete time problems with X = Rn, U = Rm,

x+ = Ax+Bu, `(x, u) = xTQx+ uTRu+ bTx+ dTu

with Q = CTC and R > 0

We call an eigenvalue µ of A unobservable, if the
corresponding eigenvector v satisfies

Cv = 0

Note: unobservable eigenvectors satisfy vTQv = 0 ⇒ they
are not visible in the quadratic part of the cost function

The same holds for solutions x(t) starting in v with u(t) ≡ 0
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Storage functions for LQ problems

x+ = Ax+Bu, s(x, u) = xTQx+ uTRu+ bTx+ dTu

Lemma: For LQ problems, a storage function λ can always be
chosen of the form

λ(x) = xTPx+ qTx

with P satisfying

Q+ P − ATPA > 0

This matrix inequality has a solution P if and only if all
unobservable eigenvalues satisfy |µ| 6= 1

Moreover, the solution satisfies P > 0 if and only if all
unobservable eigenvalues satisfy |µ| < 1 (“(A,C) detectable”)
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Strict dissipativity and pre-dissipativity

Lemma: The LQ-problem is strictly dissipative if and only if
P > 0 or X is bounded

Proof: “⇐” is straightforward, since under these conditions
λ(x) = xTPx+ qTx is obviously bounded from below

“⇒” needs some more work in order to show that
P ≥ 0,P 6> 0 contradicts strict dissipativity for unbounded X
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Main results



Main result without state constraints
Without state constraints:

Theorem: Consider the LQ problem with (A,B) stabilizable,
Q = CTC and state and control constraint sets X = Rn and
U ⊆ Rm. Then the following properties are equivalent

(i) The problem is strictly dissipative at an equilibrium
(xe, ue) ∈ int (X× U)

(ii) The problem has the turnpike property at an equilibrium
(xe, ue) ∈ int (X× U)

(iii) The pair (A,C) is detectable, i.e., all unobservable
eigenvalues µ of A satisfy |µ| < 1

Moreover, if one of these properties holds, then the equilibria
in (i) and (ii) coincide
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Main result with state constraints
With bounded state constraints:

Theorem: Consider the LQ-problem with Q = CTC and state
and control constraint sets X ⊂ Rn bounded and U ⊆ Rm.
Then the following properties are equivalent

(i) The problem is strictly pre-dissipative at an equilibrium
(xe, ue) ∈ int (X× U)

(ii) The problem has the near equilibrium turnpike property at
an equilibrium (xe, ue) ∈ int (X× U)

(iii) All unobservable eigenvalues µ of A satisfy |µ| 6= 1

Moreover, if one of these properties holds, then the equilibria
in (i) and (ii) coincide. If, in addition, (A,B) is stabilizable
then the turnpike property holds.
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Discussion

Obviously, the conditions in the state constrained case are
significantly less restrictive

:

with bounded state constraints, all unobservable
eigenvalues µ of A must satisfy |µ| 6= 1, i.e., all
unobservable uncontrolled solutions must converge to 0
or diverge to ∞ exponentially fast

without bounded state constraints, all unobservable
eigenvalues µ of A must satisfy |µ| < 1, i.e., all
unobservable uncontrolled solutions must converge to 0
exponentially fast

Is there an intuitive explanation for this fact?
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Example 1 reloaded

Cost function `(x, u) = u2

⇒ Q = 0, C = 0

Dynamics x+ = 2x+ u

⇒ µ = 2

Constraints X = [−2, 2], U = [−3, 3]

The dynamics have the (single) eigenvalue µ = 2, which is
unobservable

Hence, the turnpike property holds for bounded constraints (as
we have seen) but it cannot hold for X = R

Indeed, in this case all optimal solutions grow exponentially,
because u ≡ 0 is clearly the optimal control
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Lars Grüne, The role of state constraints for turnpike behaviour and strict dissipativity, p. 31



Example 1 reloaded

Cost function `(x, u) = u2 ⇒ Q = 0, C = 0

Dynamics x+ = 2x+ u ⇒ µ = 2

Constraints X = [−2, 2], U = [−3, 3]

The dynamics have the (single) eigenvalue µ = 2, which is
unobservable

Hence, the turnpike property holds for bounded constraints (as
we have seen) but it cannot hold for X = R

Indeed, in this case all optimal solutions grow exponentially,
because u ≡ 0 is clearly the optimal control
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Conclusion
General principle for bounded constraints:

The solutions belonging to eigenvalues |µ| > 1 become
unbounded without control action

The bounded constraints make the unbounded solutions
expensive, because we need to counteract using
“expensive” control action

This forces the optimal trajectories to the turnpike

Hence, state constraints help to enforce the turnpike
property, which is in many regards a desirable feature

Outlook

Analyse these relations for continuous time and infinite
dimensional systems

What happens if xe is at the boundary of X?

Lars Grüne, The role of state constraints for turnpike behaviour and strict dissipativity, p. 32
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Lars Grüne, The role of state constraints for turnpike behaviour and strict dissipativity, p. 32



Conclusion
General principle for bounded constraints:

The solutions belonging to eigenvalues |µ| > 1 become
unbounded without control action

The bounded constraints make the unbounded solutions
expensive, because we need to counteract using
“expensive” control action

This forces the optimal trajectories to the turnpike

Hence, state constraints help to enforce the turnpike
property, which is in many regards a desirable feature

Outlook

Analyse these relations for continuous time and infinite
dimensional systems

What happens if xe is at the boundary of X?
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