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Optimal visiting problem
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• The problem is obviously reminiscent of the 
famous Traveling Salesman Problem: 
minimizing the length of the path for passing 
through m cities.

• It is then characterized by a high 
computational complexity: many sub-
problems must be addressed before solving 
the initial problem.
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Goal

• Use Dynamic Programming for writing a 
“single” equation uniquely satisfied by the 
optimal visiting function.

• An immediate problem:

• The Dynamic Programming Principle does not 
hold.

• “Pieces of optimal trajectories are not 
optimal”!
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Need of memory

• We need a sort of memory!

• We have to keep in mind whether the i-th target is already 
visited or not.

• For every i, we need a positive scalar wi, evolving in time, which 
is zero if and only if we have already reached the i-th target.

• Such memory variables must depend on the sequences of 
reached values only, and not on the time-scale.

• They must be rate-independent memory variables.

• They exhibit hysteresis.

• Bellman ’62 (added variables for TSP and DPP)
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Hysteresis
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Hysteresis cycle
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The Play operator
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The Play operator
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The Play operator
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Given u(t), the value of w(t) encodes the
information about the past evolution of u.
And this only depends on the values 
reached by u in the past.



The Play operator 
(a one-dimensional sweeping process)
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• Reflecting (absorbing) boundary

• Skorokhod problem

• Sweeping process

The Play operator 
(a one-dimensional sweeping process)



Optimal control with hysteresis
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Characterization

• The value function V is the unique continuous
viscosity solution of the Hamilton-Jacobi
problem. 

• F. B.: Dynamic Programming for some optimal control problems with hysteresis, 
NODEA, 2002



Back to optimal visiting
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The optimal visiting problem
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• T is not continuous on the boundaries of the 
targets!
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(x,0,…,0), T(x,0,…,0)=0

(z,ε,0,…,0), T(z,ε,0,…,0)>c>0



A Mayer problem
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A Mayer problem

• The value function V is continuous.

• DPP holds.

• V is the unique continuous viscosity solution of

F. B.-M. Benetton: About an optimal visting problem, Appl.Math.Optim, 2012
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‘splitting the equation on 
(gj(x),wj)-planes’

gj(x)

wj

Continuous equation

Neumann boundary condition



Switching memory

• Up to now the added memory variables were
continuous in time.

• This is good, of course.

• However, we can also consider switching memory
variables.

• Every memory variable wi is a time dependent
‘label’ taking value 0 and 1

• ‘1’ means: target Ti not reached yet

• ‘0’ means: target Ti already reached



Control of tourists flow

• The problem I am going to present takes 
inspiration from the problem of governing the 
flow of tourists inside the historical center of a 
heritage art city.

• F. B.-R. Pesenti: Non-memoryless pedestrian flow in a crowded environment with 
target sets, to appear on Annals of ISDG vol 15  

• Here I present a possible model for flow of 
excursionists (daily tourists that arrive in the 
city in the morning and go away in the 
evening).



Control of excursionists flow

• First of all excursionists have only two main attractions they 
want to visit.

• The two attractions are not necessarily of the same 
interest: a main attraction P1 and a minor attraction P2.

• The excursionists arrive at the train station during a fixed 
interval of time.

• They may decide to first visit attraction P1 and then 
attraction P2 or vice-versa. This choice may, for example, 
depend on the crowdedness and on the  expected waiting 
time. 

• They have to return back to the station at the fixed time T.



Some features of the model

• (Memory) Excursionists may occupy at the same 
instant the same place in the path but they may have 
different purposes: someone has already visited P1 
only, someone else P2 only, someone both, someone 
else nothing.

• At the initial time they all have the same purposes.
• During the day they split into several “populations” 

with different purposes. 
• And possibly they eventually recover into the same 

population.
• Excursionists in the same point at the same instant may 

have “different past histories”.



The model

• We describe the path of excursionists inside the city as a 
circular graph with three identified points:                                                                        

S
• S the station                                          
• P1 the attraction 1
• P2 the attraction 2                           P2                               P1

• The position of an excursionist is given by the parameter 
[



Memory

• To the state  we add two more parameters 
w1 and w2 which may take values 0 or 1.

• w1=1 means P1 is not visited yet.

• w1 =0 means P1 is already visited

• w2=1 means P2 is not visited yet

• w2=0 means P2 is already visited.

• We have then four states/modes : (,1,1), 
(,0,1), (,1,0), (,0,0).
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State (1,1),    B(1,1)
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State (0,1),    B(0,1)
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State (1,0),     B(1,0)
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State (0,0), B(0,0)
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State space

• The state space is then

B(1,1)  B(0,1)0

B(1,0)0  B(0,0)00
=

B 



Switching representation in line 
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The mean field game model
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Switching

• From B(1,1) we may switch on B(0,1) and on 
B(1,0)

• From B(0,1) we may switch on B(0,0)

• From B(1,0) we may switch on B(0,0)

• From B(0,0) we do not switch away



Exit time interpretation

• Given M

• In every one of the first three branches we may 
interpret the optimal control problem as a finite 
horizon/exit time optimal control problem

• The exit cost is given by the value function on the 
point where we switch on.

• On the fourth branch B(0,0), the problem is just a 
finite horizon problem with all given data. 



HJB problem

V(.,0,0,.)

V(.1.0,.)

V(.,0,1,.)

V(.,1,1.)



The transport equation

• If it optimally behaves, then every excursionist moves 
with the optimal feedback

• Due to our simple model (the simple controlled 
dynamics, the non-dependence of Fw1,w2 on , the one-
dimensionality,…) 

• (We also suppose that the initial distribution m0 is 
everywhere zero in all branches).

• The feedback optimal control has some good 
properties 

),,,(),,,( 2121

* twwVtwwu  



The transport equation

• No excursionist will return back on its path when 
inside the same branch (that is not an optimal 
behavior).

• To stop is not an optimal behavior (apart the case 
that we are at the station and that we stop there 
until T.)

• When arrived on a switching point, the best 
choice is to immediately switch.

• These facts simplify a little bit the transport 
equation.



The transport equation
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“characteristics”

• We can treat the datum g(t) as a boundary 
condition in s at the right as well as at the 
left

2s1

g(t)

m0=0



Equilibrium Mean Field

• This function (after some 
relaxation/convexification) is usc (closed graph) 
and convex/compact as function from 
C([0,T];P(B)) into itself which is convex.

• Hence, there exists a fixed point (an equilibrium).
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Mathematical Hysteresis Models
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Viscosity Solutions for Hamilton-
Jacobi-Bellman equations
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Mean field games
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