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Optimal visiting problem

Problem: visit three sites
minimizing time,
with evolution subject to

y'(t)=fly(t), a(t)), y(0)=x

t (x)=inf{t>0|Vie{l,2,3}30<t <t,y(t)eT,}
T(x)=Inft (x) optimal visiting function



 The problem is obviously reminiscent of the
famous Traveling Salesman Problem:

minimizing the length of the path for passing
through m cities.

* |tis then characterized by a high
computational complexity: many sub-

problems must be addressed before solving
the initial problem.






T, minimum time function for reaching 7,, which solves
sup{- f(x,a)-VT(x)}=1
T =0 on 07,




T, minimum time function for reaching 7,, which solves

{sup{— f(x,a)-VT(x)}=1

a

T =0 on 017,



T, minimum time function for reaching 7,, which solves

{sup{— f(x,a)-VT(x)}=1

a

T =0 on 07,



T, , optimalvisting function for reaching 7, e T,, which solves
sup{- f(x,a)-VT(x)}=1

/\

T =T, on o1,
T =T, on 017,

"




T, , optimalvisiting function for reaching 7, e 7,, which solves
sup{-— f(x,a)-VT(x)}=1

a

T =T, on 07T,
T =T, on 017,

\

N




T, , optimal visiting function for reaching 7, e 7,
which solves
(sup{— f(x,a)-VT(x)}=1

a

sT =T, on 01,

LT =T, on 07,




T, , ; optimal visting function for reaching 7,,7, and T;,
which solves
sup{— f(x,a)-VT(x)}=1

d JT=T,5 0n o7,
T =T, on 017,

\T :TL2 on 07,

m=3 = 7=2™M-1 sub-problems



Goal

Use Dynamic Programming for writing a
“single” equation uniquely satisfied by the
optimal visiting function.

An immediate problem:

The Dynamic Programming Principle does not
hold.

“Pieces of optimal trajectories are not
optimal”!
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Need of memory

We need a sort of memory!

We have to keep in mind whether the i-th target is already
visited or not.

For every i, we need a positive scalar w, evolving in time, which
is zero if and only if we have already reached the i-th target.

Such memory variables must depend on the sequences of
reached values only, and not on the time-scale.

They must be rate-independent memory variables.
They exhibit hysteresis.

u, (t) = dist(y(t), 7). w(t) = min(dist(y(), 7)) = min u, (r)

7€[0,t] 7€[0,t]
Bellman '62 (added variables for TSP and DPP)
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Hysteresis

w(t)=Flu(.)](t)

In particular, the operator F is causal (i.e. F[u](t) dependsonlyonu,, ;)

it is not linear,

It is not differentiable,

w(-) may be discontinuous,

F[uo @] =F[u] - @, forany (positive) time -scaling ¢ (rate - independence),

and tipically the relationship u+— w=F[u(:)] is not a "differential" relationship
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The PIay operator

" / /

Given u(t), the value of w(t) encodes the
information about the past evolution of u.
And this only depends on the values

reached by u in the past.




The Play operator
(a one-dimensional sweeping process)

Variational inequality
{W' ) (u(t) —w(t)-v)=0 V|v|<a foralmost everyt

lu(t) —w(t) |<a Wt
w'(t) 6I[_a,a] (u(t)—w(t)) a.e.t

Discontinuous ODE
W' (t) = x, (u(t), w(t))(u'(t))" — g, (u(t), w(t))(u'(t))” foralmost everyt
)_{1 if u—w=a

Z: (W 0 otherwise
(u'(1))" = max{u' (t),0f
(u'(t))” =max{-u'(t),0}



The Play operator
(a one-dimensional sweeping process)

* Reflecting (absorbing) boundary
e Skorokhod problem
* Sweeping process
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IOw'a) = I e 0(y(t), wit), cr(t))dt

V (x,w°) =inf J(x,w°, &)



Optimal control with hysteresis

AN +H(MXwV,,V,)=0In Q

a

Discontinuous ODE
W' (1) = g, (u(t), wt)(u'(t)" — g, (u(t),w(t)(u'(t))” foralmosteveryt

(— pf (x,w,a)

H (x,w, p,q) =sup{—q(z, (x, w) £ * (x,w,a) - 7, (x,w) f ~(x,w,a))
: \—Z(x,w, a)

e




Optimal control with hysteresis

AV +H (x,w,V,,V,)>0 in Q

a

AV +H.(x,w,V,,V,)<0 in Q

a

(— pf (x,w,a)
H™(X,W, p,q) =sups+q z, (x,w) f " (x,w,a) +q" z,(x,w) f ~(x,w,a)

\—é(x, w, a)

AV +H((x,wV, ,0)=0 in Q
' Neumann boundary conditions on 0Q,

a

V"







Characterization

* The value function Vis the unique continuous

viscosity solution of the Hamilton-Jacobi
problem.

F. B.: Dynamic Programming for some optimal control problems with hysteresis,
NODEA, 2002



Back to optimal visiting

Suppose that we have m targets to visit, 7, —c R".

u, (t) = dist(y(t), 7.), W (t) = min(dist(y(z), 7)) = min u,(z)

7€[0,t] 7€[0,t]

The new state variableis (x,w) = (x,w,,...,w_) e R"xR"
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The optimal visiting problem

The distance function is not regularin R".
Vj=1..m, let g;:R" — R besuch that
g, €C'(R",R)nLip(R",R),g;20,9,(x) =0 xe T,

We consider the controlled system with hysteresis
in the new extended variable (y,w) e R™™"

y'(t) = T (y(0), a(t))

w,(t) = 52[g o yI(t), j=1..m
Y(0) =%, W (0) =WY,.... W, (1) =W}

N

T (X, W,,..., w_) minimum time to reach
T = {(x,wl,...,wm) e R"™™w,; =0V =1,...,m}

DPP holds but T is not continuous



 Tis not continuous on the boundaries of the
targets!

(z,,0,...,0), T(z,¢,0,...,0)>c>0

/’v

S (x,0,...,0), T(x,0,...,0)=0



A Mayer problem

We then consider the value function for a Mayer problem
V(W ,..., W2, t) = inf (w, (t) +---+w_(t))

T(x) =inf{t>0V (x,w’,t) =0}

Knowing V, we can get informations on the optimal visiting function T.



A Mavyer problem

* The value function V is continuous.
 DPP holds.
* Vis the uniqgue continuous viscosity solution of

V. (X, w,1) +sup{— f(x,a)-V.V(X,w,t)+ Zm:aV (X, w,1)

= j

;((gj(x),wj)(ng(x). f (X,a))}zo

V(X,W,0) =W, +W, +---+W,

F. B.-M. Benetton: About an optimal visting problem, Appl.Math.Optim, 2012



Wi

‘splitting the equation on
(g/(x),w,)-planes’

Neumann boundaryWon

A

Continuous equation

] gi(x)



Switching memory

Up to now the added memory variables were
continuous in time.

This is good, of course.

However, we can also consider switching memory
variables.

Every memory variable wi is a time dependent
‘label’ taking value 0 and 1

‘1’ means: target Ti not reached yet
‘O’ means: target T already reached



Control of tourists flow

 The problem | am going to present takes
inspiration from the problem of governing the
flow of tourists inside the historical center of a
heritage art city.

* F B.-R. Pesenti: Non-memoryless pedestrian flow in a crowded environment with
target sets, to appear on Annals of ISDG vol 15

* Here | present a possible model for flow of
excursionists (daily tourists that arrive in the
city in the morning and go away in the
evening).



Control of excursionists flow

First of all excursionists have only two main attractions they
want to visit.

The two attractions are not necessarily of the same
interest: a main attraction P1 and a minor attraction P2.

The excursionists arrive at the train station during a fixed
interval of time.

They may decide to first visit attraction P1 and then
attraction P2 or vice-versa. This choice may, for example,
depend on the crowdedness and on the expected waiting
time.

They have to return back to the station at the fixed time T.



Some features of the model

(Memory) Excursionists may occupy at the same
instant the same place in the path but they may have
different purposes: someone has already visited P1
only, someone else P2 only, someone both, someone
else nothing.

At the initial time they all have the same purposes.

During the day they split into several “populations”
with different purposes.

And possibly they eventually recover into the same
population.

Excursionists in the same point at the same instant may
have “different past histories”.



The model

We describe the path of excursionists inside the city as a
circular graph with three identified points:
S

S the station
P1 the attraction 1
P2 the attraction 2 P2

The position of an excursionist is given by the parameter
3€[0,27]



Memory

To the state 3 we add two more parameters
w, and w, which may take values O or 1.

w,=1 means P1 is not visited yet.
w, =0 means P1 is already visited
w,=1 means P2 is not visited yet
w,=0 means P2 is already visited.

We have then four states/modes : (4 1,1),
('9/0/1)1 (‘9/1/0)1 (81010)'
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(0,0)
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State space

* The state space is then

(B(1,1)x(1,1) U B(0,1)x(0,1)U

B(1,0)x(1,0) U B(0,0)x(0,0))
x[0,T]=
B x[0,T]



Switchi
witching representation in line
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The mean field game model

F'(s)=u(s), d(t)=39

M =(m", m® m"° m*®):Bx[0,T]— [0,+o],

(3, Wy, W, ,t) > m™* (9,1)

J (9, W, w,,t,u,M)= ](@+ (Y, [s])]ds

+C W, (T) +CoW, (T) + Gy (K(T) - 4,)°



Switching

From B(1,1) we may switch on B(0,1) and on
B(1,0)

From B(0,1) we may switch on B(0,0)
From B(1,0) we may switch on B(0,0)
From B(0,0) we do not switch away



Exit time interpretation

Given M

In every one of the first three branches we may
interpret the optimal control problem as a finite
horizon/exit time optimal control problem

The exit cost is given by the value function on the
point where we switch on.

On the fourth branch B(0,0), the problem is just a
finite horizon problem with all given data.



HJB problem

1 |
—Vi(0,1,1,1) + EM(H, 1,1,8)[2 = FEY(M(t))  in ]64,02[x]0, T
4 V(Hl,l,l,tj:V(ﬂl,[}, ]_._,t) in ]G,T] V( 11)
I’;(ﬁz,l,l,t) :V(Qg,l,ﬁ,t) in ][]_,T] FEIESL
| V(0,1,1,T) = ¢1 + ¢z + c3(0 —86,)° in |0, O]
VL6.0,1,0)+ 3 [Vp(6,0, DO = FOV(M(D) 0 16, — 27, 6,[x]0,T]
V(,0,1,) < { V(f2—2m0,1,t) =V(6,0,0,1) ' in 0, 7]
V(65,0,1.%) =V (6,,0,0,1) D% in 10, T
L V(6,0,1,T) = co +c3(6 —6,)? in 6, — 27, 5[
( —V;(60,1,0,t) + %M(ﬁ, 1,0,1)]* = FUO6A4(1))  in 16y, 01 + 2m[x]0, T
{ V(0:,1,0,t) =V (6:,0,0,1) / in ]0,T]
V(61 + 2m,1,0,t) = V(6,04 in ]0, T V(.1.0,.)
\, -V-{gr lDaT) =0 5 in ]91 6']_ + 2??[

=
V(.00 . Vi(0,0,0,8) + =[Va(6,0,0,0)2 = FOO(M(t)) in [0,27)x]0,T]
V(0,0,0,T) = c5(6 — 0s)? in [0, 27]



The transport equation

If it optimally behaves, then every excursionist moves
with the optimal feedback

u (3w, w,,t) =-V,($w,w,,t)

Due to our simple model (the simple controlled
dynamics, the non-dependence of F***? on 3, the one-
dimensionality,...)

(We also suppose that the initial distribution m,, is
everywhere zero in all branches).

The feedback optimal control has some good
properties



The transport equation

No excursionist will return back on its path when
inside the same branch (that is not an optimal
behavior).

To stop is not an optimal behavior (apart the case
that we are at the station and that we stop there
until T.)

When arrived on a switching point, the best
choice is to immediately switch.

These facts simplify a little bit the transport
equation.



The transport equation

=0

=0

=0

m"?(01,t) =m0 (0, 1) + m' (0, + 27, 1)

00 {Tnﬂdﬂ)t(ﬁ,f) 1 [u*(ﬁ,ﬂ,ﬂ,t)m.ﬂ-‘“(ﬁ, f)] -0
m
?RDJJ (H?! I.} — _IR(LI(HE _ gﬂ_: t:] _|_ IRD J{H I_}



“characteristics”

 We can treat the datu&h(t) as a boundary

condition in s at the
left

=S

t as well as at the

— a(t)

% |

m,=0



Equilibrium Mean Field

—~

M-V >u =V, > M

* This function (after some

relaxation/convexification) is usc (closed graph)
and convex/compact as function from
C([0,T],P(B)) into itself which is convex.

* Hence, there exists a fixed point (an equilibrium).
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