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Introduction

Consider a (finite- or infinite-dimensional) linear control system

ẏ(t) = Ay(t) + Bu(t)

assumed to be controllable, without any state and control constraints.

For example, in finite dimension: Kalman condition

⇒ ∀y0, y1 ∈ IRn ∀T > 0 ∃u ∈ L∞(0,T ; IRm) | y(0) = y0, y(T ) = y1

i.e., minimal controllability time TIRn (y0, y1,A,B) = 0

↪→ one can steer the system from any point to any other in arbitrarily small time.
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Introduction

Now, let C ⊂ IRn with nonempty interior: set of state constraints.

Question:

Given y0, y1 ∈ C, is it possible to steer the system from y0 to y1 in arbitrarily small
time T > 0, guaranteeing that y(t) ∈ C ∀t ∈ [0,T ]?

N.B.: no control constraint.
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Introduction

Remark: Existence of a positive minimal time is obvious under control constraints,
without state constraints:
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Introduction

ẏ1(t) = y2(t), ẏ2(t) = u(t),

State constraint
y2(t) > 0

⇒ y1(t) nondecreasing, and then one cannot pass from any point to any other.

Existing results on controllability under state constraints:

Krastanov Veliov 1992, Krastanov 2008, Heemels Camlibel 2007,
Le Marigonda 2017 (+ upper estimates for the minimal time)

→ This is not our objective here. Objective: minimal time under state constraints.

In the sequel we assume that y0 and y1 are steady-states.
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Introduction

ȳ ∈ C is a steady-state if there exists ū ∈ IRm such that Aȳ + Bū = 0.

Remark: for C = [0,+∞)n , any point of C is a steady-state if and only if

Im(B) ∩ Cone+(a1, . . . , an) 6= ∅,

where a1, . . . , an ∈ IRn are the columns of A.

Assumption

y0, y1 ∈ C̊ steady-states.

We assume that there exists a path of steady-states τ 7→ ȳ(τ), 0 6 τ 6 1,

such that ȳ(0) = y0 and ȳ(1) = y1, and ȳ(τ) ∈ C̊ ∀τ ∈ [0, 1].

(satisfied if C̊ is convex)
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Introduction

Under this steady-state connectedness assumption:

∃T > 0 ∃u ∈ L∞(0,T ; IRm) | y(0) = y0, y(T ) = y1, y(t) ∈ C ∀t ∈ [0,T ]

(argument: iterated use of local controllability along the path of steady-states)

i.e., one can pass from any steady-state to any other one, remaining in C̊, in time
sufficiently large.
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Introduction

Under this steady-state connectedness assumption:

∃T > 0 ∃u ∈ L∞(0,T ; IRm) | y(0) = y0, y(T ) = y1, y(t) ∈ C ∀t ∈ [0,T ]

(argument: iterated use of local controllability along the path of steady-states)

i.e., one can pass from any steady-state to any other one, remaining in C̊, in time
sufficiently large.

Question:

Can the time T be chosen arbitrarily small?

N.B.: no control constraint.

Answer: NO in general, even for unilateral state constraints!
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Introduction

Geometric explanation: m = 1, i.e., B vector in IRn

No constraint on u ⇒ “instantaneous” motions along IRB (with u = ±M, M � 1)

To move along IRAB, take u = +M,−M,+M,−M with M � 1 (Lie bracket)

Etc

↪→ A state constraint y(t) ∈ C may forbid such motions (in arbitrarily small time).

At this stage:

If C is bounded and if y0 6= y1 then TC(y0, y1; A,B) > 0.

i.e., a positive minimal time is required to steer the system from y0 to y1 under the
state constraint y(t) ∈ C.

→ Actually this is also true for unilateral constraints (depending on y0, y1)
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Analysis under unilateral state constraints

ẏ(t) = Ay(t) + Bu(t)

A : n × n, B : n ×m, Kalman condition

No control constraint: u(t) ∈ IRm

State constraint: y(t) ∈ C, assumed to be unilateral and affine

→ Analysis in several steps.
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Analysis under unilateral state constraints

First step

Feedback equivalence and Brunovsky normal form

(A,B) feedback equivalent to (Ã, B̃) if:

∃T ∈ GLn(IR) ∃V ∈ GLm(IR) ∃F ∈Mm,n(IR) | T−1(A+BF )T = Ã and T−1BV = B̃

i.e., changes of variables y = T ỹ and u = Fy + Vũ. New control system:

˙̃y(t) = Ãỹ(t) + B̃ũ(t)

satisfying:

Kalman

No control constraint: ũ(t) ∈ IRm

State constraint: ỹ(t) ∈ T−1C
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Analysis under unilateral state constraints

First step

Feedback equivalence and Brunovsky normal form

Setting r = rank(B), (A,B) is feedback equivalent to

A =


Ak1 0 · · · 0
0 Ak2 · · · 0
...

...
. . .

...
0 0 · · · Akr

 , B =


bk1 0 · · · 0 0 · · · 0
0 bk2 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · bkr 0 · · · 0

 ,

with

Aki
=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 , bki
=


0
0
...
0
1
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Analysis under unilateral state constraints

First step

Feedback equivalence and Brunovsky normal form

Assume that m = 1 for simplicity. Then, in the new variables:

ẏ1 = y2, ẏ2 = y3, . . . ẏn−1 = yn, ẏn = u

Unilateral affine state constraint:

〈α, y(t)〉 = α1y1(t) + α2y2(t) + · · ·+ αnyn(t) > β

for some α ∈ IRn \ {0} and β ∈ IR.
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Analysis under unilateral state constraints

Second step

Reduction by Goh transformation

ẏ1 = y2, ẏ2 = y3, . . . ẏn−1 = yn, ẏn = u

α1y1(t) + α2y2(t) + · · ·+ αnyn(t) > β, u(t) ∈ IR

Set v(t) = yn(t): new control. Then:

ẏ1 = y2, ẏ2 = y3, . . . ẏn−1 = v

α1y1(t) + α2y2(t) + · · ·+ αn−1yn−1(t) + αnv(t) > β

if αn = 0, reiterate.

Do it until the coefficient in v is nonzero.
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Analysis under unilateral state constraints

Second step

Reduction by Goh transformation

Then:
ẏ1 = y2, ẏ2 = y3, . . . ẏk = v

α1y1(t) + α2y2(t) + · · ·+ αk yk (t) + αk+1v(t) > β

→ mixed state-control constraint

and the initial optimal control problem is equivalent to the problem of steering in minimal
time the above reduced control system in IRk from πk y0 to πk y1 under the mixed state-
control constraint.

Multi-input case: same procedure on each block.
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Analysis under unilateral state constraints

Third step

Change of control

ẏ1 = y2, ẏ2 = y3, . . . ẏk = v i.e., ẏ = Ak y + bk v

α1y1(t) + α2y2(t) + · · ·+ αk yk (t) + αk+1v(t)︸ ︷︷ ︸> β

w(t): new control

Then:
ẏ = (Ak − bkα

>)y + αk+1bk w

w(t) > β

Multi-input case (m > 1):

this third step is performed on one control only, all other m − 1 controls being unconstrained.
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Analysis under unilateral state constraints

Fourth step

Static equivalence and Brunovsky normal form

(A,B) equivalent to (Ã, B̃) if ∃T ∈ GLn(IR) | T−1AT = Ã and T−1B = B̃

i.e., change of variable y = T ỹ . Normal form:

Ã =


Ãk1 ∗ · · · ∗

0 Ãk2

. . .
...

...
. . .

. . . ∗
0 · · · 0 Ãkr

 , B̃G =


bk1 0 · · · 0
0 bk2 · · · 0
...

...
. . .

...
0 0 · · · bkr


for some G ∈Mm,kr (IR), with

Ãki
=



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−aki

n −aki
n−1 · · · · · · −aki

1

 , bki
=


0
0
...
0
1
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Analysis under unilateral state constraints

Fourth step

Static equivalence and Brunovsky normal form

We have thus reduced our problem to the minimal time problem:

min tf , ẏ = Ay + Bu, y(0) = y0, y(tf ) = y1, u1(t) > β

Replacing the control u1 with β + u1, setting r = βb1 (with b1 = first column of B), we
have the minimal time problem

min tf , ẏ = Ay + Bu + r , y(0) = y0, y(tf ) = y1, u1(t) > 0

Since y(t) = etAy0 +
∫ t

0 e(t−s)A ds r +
∫ t

0 e(t−s)ABu(s) ds, we consider

min tf , ẏ = Ay + Bu, y(0) = 0, y(tf ) = y1, u1(t) > 0
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Analysis under unilateral state constraints

min tf , ẏ = Ay + Bu, y(0) = 0, y(tf ) = y1, u1(t) > 0

Accessible set in time T :

A0(0,T ) =

{
y f ∈ IRn | ∃u ∈ L∞(0,T ; IRm),

ẏ = Ay + Bu, y(0) = 0, y(T ) = y f

u1(t) > 0 ∀t ∈ [0,T ]

}

→ convex cone with vertex at 0, evolving continuously wrt T

B̂1 = matrix B of which the first column has been removed.

If m > 1 and if (A, B̂1) satisfies Kalman then A0(0,T ) = IRn ∀T > 0.

Otherwise, A0(0,T ) is a proper convex cone, isomorphic to the positive quadrant
of IRn, for T > 0 small enough.

⇒ this explains why TC(y0, y1,A,B) > 0 or = 0, depending on y0 and y1
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Analysis under unilateral state constraints

min tf , ẏ = Ay + Bu, y(0) = 0, y(tf ) = y1, u1(t) > 0

Accessible set in time T :

A0(0,T ) =

{
y f ∈ IRn | ∃u ∈ L∞(0,T ; IRm),

ẏ = Ay + Bu, y(0) = 0, y(T ) = y f

u1(t) > 0 ∀t ∈ [0,T ]

}

→ convex cone with vertex at 0, evolving continuously wrt T

B̂1 = matrix B of which the first column has been removed.

If m > 1 and if (A, B̂1) satisfies Kalman then A0(0,T ) = IRn ∀T > 0.

Otherwise, A0(0,T ) is a proper convex cone, isomorphic to the positive quadrant
of IRn, for T > 0 small enough.

Only for T small. Indeed take y ′1 = y2, y ′2 = −y1 + u, u > 0,

shoot in time τ > 0 small a point 6= 0, then take u = 0 and follow the circle

around 0 (in time 6 2π). Hence A0(0,T ) = IR2 ∀T > 2π.
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Further results

Exactly at time T = TC(y0, y1,A,B), there does not exist any (classical) L∞
control steering the system from y0 to y1.

lim
M→+∞

T M
C (y0, y1; A,B) = TC(y0, y1; A,B)

(i.e., ‖u‖ 6 M, with M → +∞)

Alternative issues for investigation:

Impulsive optimal control (sparsity, time support of impulses).

Regularity of the minimal time.

(many existing results...)
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Examples

ẏ1 = y1 + u
ẏ2 = 2y2 + u

y0 =

(
1

1/2

)
, y1 =

(
2
1

)
, y1(t) > 0, y2(t) > 0

Then: TC(y0, y1) = ln(2), TC(y1, y0) = 0.
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Examples

ẏ1 = y1 + u
ẏ2 = 2y2 + u

y0 =

(
1

1/2

)
, y1 =

(
2
1

)
, y1(t) > 0, y2(t) > 0

Then: TC(y0, y1) = ln(2), TC(y1, y0) = 0.

Steer the system from y0 to y1 under the control constraint |u| 6 3
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Examples

ẏ1 = y1 + u
ẏ2 = 2y2 + u

y0 =

(
1

1/2

)
, y1 =

(
2
1

)
, y1(t) > 0, y2(t) > 0

Then: TC(y0, y1) = ln(2), TC(y1, y0) = 0.

Steer the system from y0 to y1 under the control constraint |u| 6 10
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Examples

ẏ1 = y1 + u
ẏ2 = 2y2 + u

y0 =

(
1

1/2

)
, y1 =

(
2
1

)
, y1(t) > 0, y2(t) > 0

Then: TC(y0, y1) = ln(2), TC(y1, y0) = 0.

Steer the system from y0 to y1 under the control constraint |u| 6 50
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Examples

ẏ1 = y1 + u
ẏ2 = 2y2 + u

y0 =

(
1

1/2

)
, y1 =

(
2
1

)
, y1(t) > 0, y2(t) > 0

Then: TC(y0, y1) = ln(2), TC(y1, y0) = 0.

Steer the system from y1 to y0 under the control constraint |u| 6 3
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E. Trélat Minimal time under state constraints



Finite dimension Infinite dimension

Examples

ẏ1 = y1 + u
ẏ2 = 2y2 + u

y0 =

(
1

1/2

)
, y1 =

(
2
1

)
, y1(t) > 0, y2(t) > 0

Then: TC(y0, y1) = ln(2), TC(y1, y0) = 0.

Steer the system from y1 to y0 under the control constraint |u| 6 10
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Examples

ẏ1 = y1 + u
ẏ2 = 2y2 + u

y0 =

(
1

1/2

)
, y1 =

(
2
1

)
, y1(t) > 0, y2(t) > 0

Then: TC(y0, y1) = ln(2), TC(y1, y0) = 0.

Steer the system from y1 to y0 under the control constraint |u| 6 50
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Examples

ż1 = v
ż2 = z1

z0 =

(
0
−3

)
, z1 =

(
0
3

)
, more complicated state constraints

Then: TC(z0, z1) = ln(2) + 7/4.
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Examples

ẏ1 = y1 + u
ẏ2 = 2y2 + u
ẏ3 = 3y3 + u

z0 =

 1
1/2
1/3

 , z1 =

 2
1

2/3


Control constraint |u| 6 5:
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Generalizations

Linear control system with nonlinear state constraint c(y) > 0: similar analysis,
leading to

ẏ = Ay − Bc(y) + Bw , w > 0

Similar analysis for some classes of control-affine systems

ẏ(t) = f0(y(t)) +
m∑

i=1

ui (t)fi (y(t))

with nonlinear Brunovsky normal form.
(involutive distribution of controlled vector fields, cf Isidori)

N.B.: zero minimal time if Hörmander condition on the controlled vector fields.
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Minimal time for the heat equation

Heat equation
∂t y = 4y

Under homogeneous Dirichlet conditions: nonnegativity is preserved.

Infinite velocity of propagation⇒ controllability in arbitrarily small time
(with internal or boundary control).

Question

What happens under a nonnegativity state constraint?
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Minimal time for the heat equation

1D heat equation with Dirichlet boundary control, under nonnegativity state constraint:

∂t y = ∂2
x y , 0 < x < 1

y(t , 0) = u0(t), y(t , 1) = u1(t) Dirichlet controls

y(0) = y0 > 0, y(T ) = y1 constant (steady-state)

y(t , x) > 0 ∀t ∈ [0,T ] ∀x ∈ (0, 1) state constraint
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Minimal time for the heat equation

1D heat equation with Dirichlet boundary control, under nonnegativity state constraint:

∂t y = ∂2
x y , 0 < x < 1

y(t , 0) = u0(t), y(t , 1) = u1(t) Dirichlet controls

y(0) = y0 > 0, y(T ) = y1 constant (steady-state)

y(t , x) > 0 ∀t ∈ [0,T ] ∀x ∈ (0, 1) state constraint

This is equivalent to:

∂t y = ∂2
x y , 0 < x < 1

y(t , 0) = u0(t) > 0, y(t , 1) = u1(t) > 0 nonnegative Dirichlet controls

y(0) = y0 > 0, y(T ) = y1 constant (steady-state)

Then, by comparison principle: sup
x∈[0,1]

y(t , x) > y0 exp(−π2t)

and thus if 0 < y1 < y0, then T (y0, y1) > 1
π2 ln

(
y0

y1

)
> 0 (positive minimal time).

Less obviously (and more surprisingly), this is actually also true when y0 < y1.
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Minimal time for the heat equation

1D heat equation with Dirichlet boundary control, under nonnegativity state constraint:

∂t y = ∂2
x y , 0 < x < 1

y(t , 0) = u0(t), y(t , 1) = u1(t) Dirichlet controls

y(0) = y0 > 0, y(T ) = y1 constant (steady-state)

y(t , x) > 0 ∀t ∈ [0,T ] ∀x ∈ (0, 1) state constraint

Theorem

Given any y0 ∈ L2(0, 1) and any y1 > 0 such that y0 6= y1:

Controllability can be achieved in large enough time, with controls in L1(0,T ) or
even in C∞([0,T ]). (proof by duality)

T (y0, y1) > 0 positive minimal time
(proof by spectral decomposition; lower estimates on the minimal time)

Exactly at time T = T (y0, y1), controllability can be achieved with nonnegative
Radon measures controls. (more regular controls? open question)
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Minimal time for the heat equation

1D heat equation with Dirichlet boundary control, under nonnegativity state constraint:

∂t y = ∂2
x y , 0 < x < 1

y(t , 0) = u0(t), y(t , 1) = u1(t) Dirichlet controls

y(0) = y0 > 0, y(T ) = y1 constant (steady-state)

y(t , x) > 0 ∀t ∈ [0,T ] ∀x ∈ (0, 1) state constraint

Simulation with y0 = 5 and y1 = 1

Simulation with y0 = 1 and y1 = 5:
Constraint 50 on the controls
Constraint 3000 on the controls

Numerical observation: sparsity of controls and
of their support (Dirac impulses).

In contrast: control of minimal
L2 norm, without state
constraint.
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1D heat equation with Neumann boundary control, under nonnegativity state
constraint:

∂t y = ∂2
x y , 0 < x < 1

∂x y(t , 0) = v0(t), ∂x y(t , 1) = v1(t) Neumann controls

y(0) = y0 > 0, y(T ) = y1 constant (steady-state)

y(t , x) > 0 ∀t ∈ [0,T ] ∀x ∈ (0, 1) state constraint

Similar results.

Simulation with y0 = 5 and y1 = 1:
Constraint 20 on the controls
Constraint 3000 on the controls

Numerical observation: nonsaturating control (kind of singular control)

+ “Dirac chattering” at the end.
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Generalizations to multi-D heat equations

Positive minimal time in the following cases:

Dirichlet boundary controls along the whole boundary, under nonnegativity state
or control constraints (both are equivalent).

Controllability exactly in time T
(
y0, y1) with Radon measure controls.

Lower estimate for T (y0, y1) when the domain is a ball.

Neumann boundary controls along the whole boundary, under nonnegativity
state constraints.

In contrast, under nonnegativity control constraints: T (y0, y1) = +∞ (i.e.,
controllability fails).

First: extension to the unit ball (and spectral Sturm-Liouville decomposition).

Then, in a general domain: comparison by restriction to an internal ball.
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Open questions

Uniqueness of (Radon measure) controls at the minimal time.

Regularity of controls at the minimal time: number of switchings, “Dirac
chattering”?

Regularity of the minimal time function.

Turnpike and sparse structure.

Convergence of minimal times of discrete finite-dimensional models to infinite
dimension.

More general PDE models.

J. Lohéac, E. Trélat, E. Zuazua,
- Minimal controllability time for the heat equation under unilateral state or control constraints, M3AS 2017.
- Minimal controllability time for finite dimensional systems under state constraints, ongoing.
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