Positive minimal time for the control of state-constrained dynamical systems

Jérôme Lohéac Emmanuel Trélat¹ Enrique Zuazua

¹Université Pierre et Marie Curie (Paris 6), Laboratoire J.-L. Lions

"Control of state constrained dynamical systems", Padova, Sept 2017

Consider a (finite- or infinite-dimensional) linear control system

 $\dot{y}(t) = Ay(t) + Bu(t)$

assumed to be controllable, without any state and control constraints.

For example, in finite dimension: Kalman condition

$$\Rightarrow \forall y^0, y^1 \in \mathbb{R}^n \qquad \forall T > 0 \qquad \exists u \in L^{\infty}(0, T; \mathbb{R}^m) \mid y(0) = y^0, \ y(T) = y^1$$

i.e., minimal controllability time $T_{\mathbb{R}^n}(y^0, y^1, A, B) = 0$

 \hookrightarrow one can steer the system from any point to any other in arbitrarily small time.

(日)

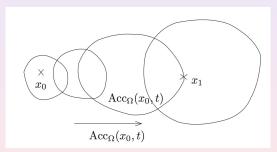
Now, let $C \subset \mathbb{R}^n$ with nonempty interior: set of state constraints.

Question:

Given $y^0, y^1 \in C$, is it possible to steer the system from y^0 to y^1 in arbitrarily small time T > 0, guaranteeing that $y(t) \in C \quad \forall t \in [0, T]$?

N.B.: no control constraint.

<u>Remark</u>: Existence of a positive minimal time is obvious <u>under control constraints</u>, without state constraints:



(日)

$$\dot{y}_1(t) = y_2(t), \quad \dot{y}_2(t) = u(t),$$

State constraint

 $y_2(t) \ge 0$

 \Rightarrow y₁(t) nondecreasing, and then one cannot pass from any point to any other.

Existing results on controllability under state constraints:

Krastanov Veliov 1992, Krastanov 2008, Heemels Camlibel 2007, Le Marigonda 2017 (+ upper estimates for the minimal time)

 \rightarrow This is not our objective here. Objective: minimal time under state constraints.

In the sequel we assume that y^0 and y^1 are steady-states.

 $\bar{y} \in C$ is a *steady-state* if there exists $\bar{u} \in \mathbb{R}^m$ such that $A\bar{y} + B\bar{u} = 0$.

<u>Remark</u>: for $C = [0, +\infty)^n$, any point of C is a steady-state if and only if

 $\operatorname{Im}(B) \cap \operatorname{Cone}^+(a_1, \ldots, a_n) \neq \emptyset,$

where $a_1, \ldots, a_n \in \mathbb{R}^n$ are the columns of *A*.

Assumption

(satisfied if \mathring{C} is convex)

 $y^0, y^1 \in \mathring{C}$ steady-states. We assume that there exists a path of steady-states $\tau \mapsto \overline{y}(\tau), 0 \leq \tau \leq 1$, such that $\overline{y}(0) = y^0$ and $\overline{y}(1) = y^1$, and $\overline{y}(\tau) \in \mathring{C} \quad \forall \tau \in [0, 1]$.

(日)

Under this steady-state connectedness assumption:

$$\exists T > 0 \quad \exists u \in L^{\infty}(0, T; \mathbb{R}^m) \mid y(0) = y^0, \ y(T) = y^1, \qquad y(t) \in C \quad \forall t \in [0, T]$$

(argument: iterated use of local controllability along the path of steady-states)

i.e., one can pass from any steady-state to any other one, remaining in $\mathring{\mathcal{C}},$ in time sufficiently large.

Under this steady-state connectedness assumption:

$$\exists T > 0 \quad \exists u \in L^{\infty}(0, T; \mathbb{R}^m) \mid y(0) = y^0, \ y(T) = y^1, \qquad y(t) \in C \quad \forall t \in [0, T]$$

(argument: iterated use of local controllability along the path of steady-states)

i.e., one can pass from any steady-state to any other one, remaining in $\mathring{\mathcal{C}},$ in time sufficiently large.

Question:

Can the time T be chosen arbitrarily small?

N.B.: no control constraint.

Answer: NO in general, even for unilateral state constraints!

FSMP

Geometric explanation: m = 1, i.e., B vector in \mathbb{R}^n

- No constraint on $u \Rightarrow$ "instantaneous" motions along **R***B* (with $u = \pm M, M \gg 1$)
- To move along **R***AB*, take u = +M, -M, +M, -M with $M \gg 1$ (Lie bracket)

Etc

 \hookrightarrow A state constraint $y(t) \in C$ may forbid such motions (in arbitrarily small time).

At this stage:

If C is bounded and if $y^0 \neq y^1$ then $T_C(y^0, y^1; A, B) > 0$.

i.e., a positive minimal time is required to steer the system from y^0 to y^1 under the state constraint $y(t) \in C$.

 \rightarrow Actually this is also true for unilateral constraints (depending on y^0, y^1)

(日) (四) (三) (三)

$$\dot{y}(t) = Ay(t) + Bu(t)$$

- $A: n \times n$, $B: n \times m$, Kalman condition
- No control constraint: $u(t) \in \mathbb{R}^m$
- State constraint: $y(t) \in C$, assumed to be unilateral and affine

 \rightarrow Analysis in several steps.

First step

Feedback equivalence and Brunovsky normal form

(A, B) feedback equivalent to (\tilde{A}, \tilde{B}) if:

 $\exists T \in \mathrm{GL}_n(\mathbb{R}) \quad \exists V \in \mathrm{GL}_m(\mathbb{R}) \quad \exists F \in \mathcal{M}_{m,n}(\mathbb{R}) \mid T^{-1}(A+BF)T = \tilde{A} \text{ and } T^{-1}BV = \tilde{B}$

i.e., changes of variables $y = T\tilde{y}$ and $u = Fy + V\tilde{u}$. New control system:

$$\dot{\tilde{y}}(t) = \tilde{A}\tilde{y}(t) + \tilde{B}\tilde{u}(t)$$

satisfying:

- Kalman
- No control constraint: $\tilde{u}(t) \in \mathbb{R}^m$
- State constraint: $\tilde{y}(t) \in T^{-1}C$

Analysis under unilateral state constraints

First step

Feedback equivalence and Brunovsky normal form

Setting $r = \operatorname{rank}(B)$, (A, B) is feedback equivalent to

$$A = \begin{pmatrix} A_{k_1} & 0 & \cdots & 0 \\ 0 & A_{k_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{k_r} \end{pmatrix}, \qquad B = \begin{pmatrix} b_{k_1} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & b_{k_2} & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & b_{k_r} & 0 & \cdots & 0 \end{pmatrix},$$

with

$$A_{k_{i}} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}, \qquad b_{k_{i}} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

(日)

First step

Feedback equivalence and Brunovsky normal form

Assume that m = 1 for simplicity. Then, in the new variables:

$$\dot{y}_1 = y_2, \qquad \dot{y}_2 = y_3, \qquad \dots \qquad \dot{y}_{n-1} = y_n, \qquad \dot{y}_n = u$$

Unilateral affine state constraint:

$$\langle \alpha, \mathbf{y}(t) \rangle = \alpha_1 \mathbf{y}_1(t) + \alpha_2 \mathbf{y}_2(t) + \dots + \alpha_n \mathbf{y}_n(t) \ge \beta$$

for some $\alpha \in \mathbb{R}^n \setminus \{0\}$ and $\beta \in \mathbb{R}$.

Second step

Reduction by Goh transformation

$$\dot{y}_1 = y_2, \quad \dot{y}_2 = y_3, \quad \dots \quad \dot{y}_{n-1} = y_n, \quad \dot{y}_n = u$$

$$\alpha_1 y_1(t) + \alpha_2 y_2(t) + \dots + \alpha_n y_n(t) \ge \beta, \qquad u(t) \in \mathbb{R}$$

Set $v(t) = y_n(t)$: new control. Then:

$$\dot{y}_1 = y_2, \qquad \dot{y}_2 = y_3, \qquad \dots \qquad \dot{y}_{n-1} = v$$

$$\alpha_1 y_1(t) + \alpha_2 y_2(t) + \dots + \alpha_{n-1} y_{n-1}(t) + \alpha_n v(t) \ge \beta$$

• if $\alpha_n = 0$, reiterate.

Do it until the coefficient in v is nonzero.

Second step

Reduction by Goh transformation

Then:

$$\dot{y}_1 = y_2, \qquad \dot{y}_2 = y_3, \qquad \dots \qquad \dot{y}_k = v$$

$$\alpha_1 \mathbf{y}_1(t) + \alpha_2 \mathbf{y}_2(t) + \dots + \alpha_k \mathbf{y}_k(t) + \alpha_{k+1} \mathbf{v}(t) \ge \beta$$

 \rightarrow mixed state-control constraint

and the initial optimal control problem is equivalent to the problem of steering in minimal time the above reduced control system in \mathbb{R}^k from $\pi_k y^0$ to $\pi_k y^1$ under the mixed state-control constraint.

Multi-input case: same procedure on each block.

Third step

Change of control

$$\dot{y}_1 = y_2, \quad \dot{y}_2 = y_3, \quad \dots \quad \dot{y}_k = v \quad i.e., \quad \dot{y} = A_k y + b_k v$$

 $\alpha_1 y_1(t) + \alpha_2 y_2(t) + \dots + \alpha_k y_k(t) + \alpha_{k+1} v(t) \ge \beta$

w(t): new control

Then:

$$\dot{y} = (A_k - b_k \alpha^\top) y + \alpha_{k+1} b_k w$$
$$w(t) \ge \beta$$

Multi-input case (m > 1):

this third step is performed on one control only, all other m-1 controls being unconstrained.

(日)

Fourth step

Static equivalence and Brunovsky normal form

(*A*, *B*) equivalent to (\tilde{A}, \tilde{B}) if $\exists T \in GL_n(\mathbb{R}) \mid T^{-1}AT = \tilde{A}$ and $T^{-1}B = \tilde{B}$ i.e., change of variable $y = T\tilde{y}$. Normal form:

$$\tilde{A} = \begin{pmatrix} \tilde{A}_{k_1} & * & \cdots & * \\ 0 & \tilde{A}_{k_2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & \tilde{A}_{k_r} \end{pmatrix}, \qquad \tilde{B}G = \begin{pmatrix} b_{k_1} & 0 & \cdots & 0 \\ 0 & b_{k_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & b_{k_r} \end{pmatrix}$$

for some $G \in \mathcal{M}_{m,k_r}(\mathbb{R})$, with

$$\tilde{A}_{k_{i}} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_{n}^{k_{i}} & -a_{n-1}^{k_{i}} & \cdots & \cdots & -a_{1}^{k_{i}} \end{pmatrix}, \quad b_{k_{i}} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

Fourth step

Static equivalence and Brunovsky normal form

We have thus reduced our problem to the minimal time problem:

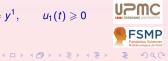
min
$$t_f$$
, $\dot{y} = Ay + Bu$, $y(0) = y^0$, $y(t_f) = y^1$, $u_1(t) \ge \beta$

Replacing the control u_1 with $\beta + u_1$, setting $r = \beta b_1$ (with $b_1 =$ first column of *B*), we have the minimal time problem

min t_f , $\dot{y} = Ay + Bu + r$, $y(0) = y^0$, $y(t_f) = y^1$, $u_1(t) \ge 0$

Since $y(t) = e^{tA}y^0 + \int_0^t e^{(t-s)A} ds r + \int_0^t e^{(t-s)A} Bu(s) ds$, we consider

min t_f , $\dot{y} = Ay + Bu$, y(0) = 0, $y(t_f) = y^1$, $u_1(t) \ge 0$



FSMP

Analysis under unilateral state constraints

$$\min t_f, \qquad \dot{y} = Ay + Bu, \qquad y(0) = 0, \quad y(t_f) = y^1, \qquad u_1(t) \ge 0$$

Accessible set in time T:

$$A_{0}(0,T) = \left\{ y^{f} \in \mathbb{R}^{n} \mid \exists u \in L^{\infty}(0,T;\mathbb{R}^{m}), \quad \begin{array}{l} \dot{y} = Ay + Bu, \quad y(0) = 0, \ y(T) = y^{f} \\ u_{1}(t) \ge 0 \quad \forall t \in [0,T] \end{array} \right\}$$

ightarrow convex cone with vertex at 0, evolving continuously wrt T

 \hat{B}_1 = matrix *B* of which the first column has been removed.

• If m > 1 and if (A, \hat{B}_1) satisfies Kalman then $A_0(0, T) = \mathbb{R}^n \quad \forall T > 0.$

• Otherwise, $A_0(0, T)$ is a proper convex cone, isomorphic to the positive quadrant of \mathbb{R}^n , for T > 0 small enough.

 \Rightarrow this explains why $T_C(y^0, y^1, A, B) > 0$ or = 0, depending on y^0 and y^1

FSMP

Analysis under unilateral state constraints

min
$$t_f$$
, $\dot{y} = Ay + Bu$, $y(0) = 0$, $y(t_f) = y^1$, $u_1(t) \ge 0$

Accessible set in time T:

$$\mathcal{A}_{0}(0,T) = \left\{ y^{f} \in \mathbb{R}^{n} \mid \exists u \in L^{\infty}(0,T;\mathbb{R}^{m}), \quad \begin{array}{l} \dot{y} = Ay + Bu, \quad y(0) = 0, \ y(T) = y^{f} \\ u_{1}(t) \geq 0 \quad \forall t \in [0,T] \end{array} \right\}$$

ightarrow convex cone with vertex at 0, evolving continuously wrt T

 $\hat{B}_1 =$ matrix *B* of which the first column has been removed.

• If m > 1 and if (A, \hat{B}_1) satisfies Kalman then $A_0(0, T) = \mathbb{R}^n \quad \forall T > 0.$

• Otherwise, $A_0(0, T)$ is a proper convex cone, isomorphic to the positive quadrant of \mathbb{R}^n , for T > 0 small enough.

Only for *T* small. Indeed take $y'_1 = y_2$, $y'_2 = -y_1 + u$, $u \ge 0$, shoot in time $\tau > 0$ small a point $\neq 0$, then take u = 0 and follow the circle around 0 (in time $\le 2\pi$). Hence $A_0(0, T) = \mathbb{R}^2 \quad \forall T > 2\pi$.

Further results

• Exactly at time $T = T_C(y^0, y^1, A, B)$, there does not exist any (classical) L^{∞} control steering the system from y^0 to y^1 .

•
$$\lim_{M \to +\infty} T_C^M(y^0, y^1; A, B) = T_C(y^0, y^1; A, B)$$

(i.e., $||u|| \leq M$, with $M \to +\infty$)

Alternative issues for investigation:

- Impulsive optimal control (sparsity, time support of impulses).
- Regularity of the minimal time.

(many existing results...)

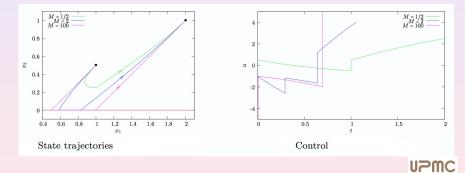
FSMP

E

Examples

$$\begin{array}{ll} \dot{y}_1 = y_1 + u \\ \dot{y}_2 = 2y_2 + u \end{array} \qquad y^0 = \begin{pmatrix} 1 \\ 1/2 \end{pmatrix}, \quad y^1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \qquad y_1(t) \ge 0, \quad y_2(t) \ge 0 \end{array}$$

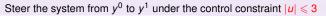
Then: $T_C(y^0, y^1) = \ln(2), \quad T_C(y^1, y^0) = 0.$

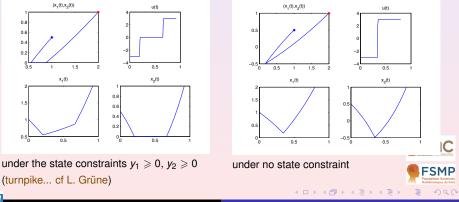


(日)

$$\begin{array}{ll} \dot{y}_1 = y_1 + u \\ \dot{y}_2 = 2y_2 + u \end{array} \qquad y^0 = \begin{pmatrix} 1 \\ 1/2 \end{pmatrix}, \quad y^1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \qquad y_1(t) \ge 0, \quad y_2(t) \ge 0 \end{array}$$

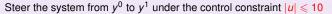
Then: $T_C(y^0, y^1) = \ln(2), \quad T_C(y^1, y^0) = 0.$

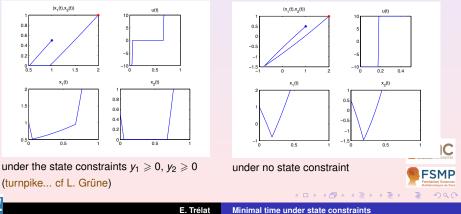




$$\begin{array}{ll} \dot{y}_1 = y_1 + u \\ \dot{y}_2 = 2y_2 + u \end{array} \qquad y^0 = \begin{pmatrix} 1 \\ 1/2 \end{pmatrix}, \quad y^1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \qquad y_1(t) \ge 0, \quad y_2(t) \ge 0 \end{array}$$

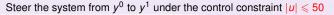
Then: $T_C(y^0, y^1) = \ln(2), \quad T_C(y^1, y^0) = 0.$

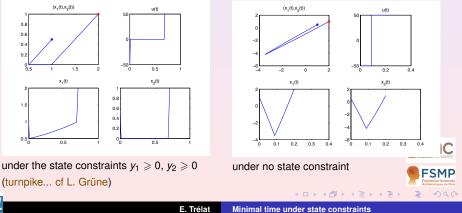




$$\begin{array}{ll} \dot{y}_1 = y_1 + u \\ \dot{y}_2 = 2y_2 + u \end{array} \qquad y^0 = \begin{pmatrix} 1 \\ 1/2 \end{pmatrix}, \quad y^1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \qquad y_1(t) \ge 0, \quad y_2(t) \ge 0 \end{array}$$

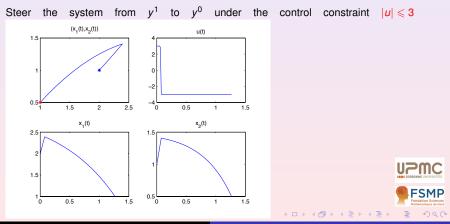
Then: $T_C(y^0, y^1) = \ln(2), \quad T_C(y^1, y^0) = 0.$





$$\begin{array}{ll} \dot{y}_1 = y_1 + u \\ \dot{y}_2 = 2y_2 + u \end{array} \qquad y^0 = \begin{pmatrix} 1 \\ 1/2 \end{pmatrix}, \quad y^1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \qquad y_1(t) \ge 0, \quad y_2(t) \ge 0 \\ \end{array}$$

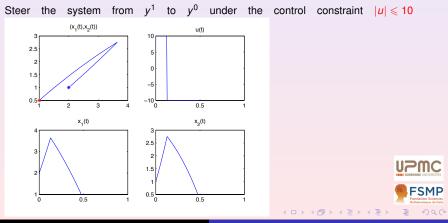
Then: $T_C(y^0, y^1) = \ln(2), \quad T_C(y^1, y^0) = 0.$



E. Trélat Minimal time under state constraints

$$\begin{array}{ll} \dot{y}_1 = y_1 + u \\ \dot{y}_2 = 2y_2 + u \end{array} \qquad y^0 = \begin{pmatrix} 1 \\ 1/2 \end{pmatrix}, \quad y^1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \qquad y_1(t) \ge 0, \quad y_2(t) \ge 0 \\ \end{array}$$

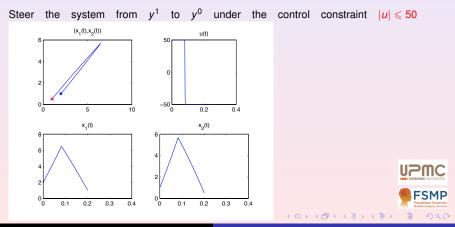
Then: $T_C(y^0, y^1) = \ln(2), \quad T_C(y^1, y^0) = 0.$



E. Trélat Minimal time under state constraints

$$\begin{array}{ll} \dot{y}_1 = y_1 + u \\ \dot{y}_2 = 2y_2 + u \end{array} \qquad y^0 = \begin{pmatrix} 1 \\ 1/2 \end{pmatrix}, \quad y^1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \qquad y_1(t) \ge 0, \quad y_2(t) \ge 0 \\ \end{array}$$

Then: $T_C(y^0, y^1) = \ln(2), \quad T_C(y^1, y^0) = 0.$

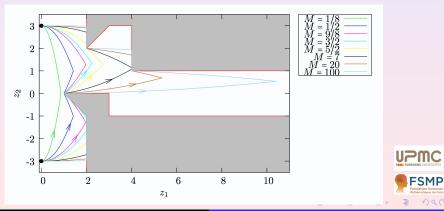


E. Trélat Minimal time under state constraints

$$\dot{z}_1 = v$$

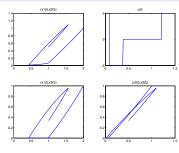
 $\dot{z}_2 = z_1$ $z^0 = \begin{pmatrix} 0\\ -3 \end{pmatrix}, \quad z^1 = \begin{pmatrix} 0\\ 3 \end{pmatrix},$ more complicated state constraints

Then: $T_C(z^0, z^1) = \ln(2) + 7/4.$

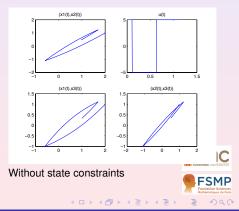


$$\begin{array}{ll} \dot{y}_1 = y_1 + u \\ \dot{y}_2 = 2y_2 + u \\ \dot{y}_3 = 3y_3 + u \end{array} \quad z^0 = \begin{pmatrix} 1 \\ 1/2 \\ 1/3 \end{pmatrix}, \quad z^1 = \begin{pmatrix} 2 \\ 1 \\ 2/3 \end{pmatrix}$$

Control constraint $|u| \leq 5$:



With state constraints $y_1(t) \ge 0$, $y_2(t) \ge 0$, $y_3(t) \ge 0$



Generalizations

 Linear control system with nonlinear state constraint c(y) ≥ 0: similar analysis, leading to

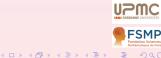
$$\dot{y} = Ay - Bc(y) + Bw, \qquad w \ge 0$$

Similar analysis for some classes of control-affine systems

$$\dot{y}(t) = f_0(y(t)) + \sum_{i=1}^m u_i(t)f_i(y(t))$$

with nonlinear Brunovsky normal form. (involutive distribution of controlled vector fields, cf Isidori)

N.B.: zero minimal time if Hörmander condition on the controlled vector fields.



Minimal time for the heat equation

Heat equation

$$\partial_t y = \triangle y$$

• Under homogeneous Dirichlet conditions: nonnegativity is preserved.

● Infinite velocity of propagation ⇒ controllability in arbitrarily small time (with internal or boundary control).

Question

What happens under a nonnegativity state constraint?

Infinite dimension

Minimal time for the heat equation

1D heat equation with Dirichlet boundary control, under nonnegativity state constraint:

$$\begin{array}{ll} \partial_t y = \partial_x^2 y, & 0 < x < 1 \\ y(t,0) = u_0(t), & y(t,1) = u_1(t) & \text{Dirichlet controls} \\ y(0) = y^0 \ge 0, & y(T) = y^1 \text{ constant (steady-state)} \\ y(t,x) \ge 0 & \forall t \in [0,T] & \forall x \in (0,1) & \text{state constraint} \end{array}$$

Infinite dimension

Minimal time for the heat equation

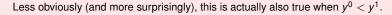
1D heat equation with Dirichlet boundary control, under nonnegativity state constraint:

$$\begin{array}{ll} \partial_t y = \partial_x^2 y, & 0 < x < 1 \\ y(t,0) = u_0(t), & y(t,1) = u_1(t) & \text{Dirichlet controls} \\ y(0) = y^0 \ge 0, & y(T) = y^1 \text{ constant (steady-state)} \\ y(t,x) \ge 0 & \forall t \in [0,T] & \forall x \in (0,1) & \text{state constraint} \end{array}$$

This is equivalent to:

$$\begin{aligned} \partial_t y &= \partial_x^2 y, & 0 < x < 1 \\ y(t,0) &= u_0(t) \ge 0, & y(t,1) = u_1(t) \ge 0 & \text{nonnegative Dirichlet controls} \\ y(0) &= y^0 \ge 0, & y(T) = y^1 \text{ constant (steady-state)} \end{aligned}$$

Then, by comparison principle: $\sup_{x \in [0,1]} y(t,x) \ge y^0 \exp(-\pi^2 t)$ and thus if $0 < y^1 < y^0$, then $T(y^0, y^1) \ge \frac{1}{\pi^2} \ln\left(\frac{y^0}{y^1}\right) > 0$ (positive minimal time).



Infinite dimension

NC

MP

э

Minimal time for the heat equation

1D heat equation with Dirichlet boundary control, under nonnegativity state constraint:

$$\begin{array}{ll} \partial_t y = \partial_x^2 y, & 0 < x < 1 \\ y(t,0) = u_0(t), & y(t,1) = u_1(t) & \text{Dirichlet controls} \\ y(0) = y^0 \ge 0, & y(T) = y^1 \text{ constant (steady-state)} \\ y(t,x) \ge 0 & \forall t \in [0,T] & \forall x \in (0,1) & \text{state constraint} \end{array}$$

Theorem

Given any $y^0 \in L^2(0, 1)$ and any $y^1 > 0$ such that $y^0 \neq y^1$:

- Controllability can be achieved in large enough time, with controls in $L^1(0, T)$ or even in $C^{\infty}([0, T])$. (proof by duality)
- $T(y^0, y^1) > 0$ positive minimal time

(proof by spectral decomposition; lower estimates on the minimal time)

• Exactly at time $T = T(y^0, y^1)$, controllability can be achieved with nonnegative Radon measures controls. (more regular controls? open question)

Infinite dimension

Minimal time for the heat equation

1D heat equation with Dirichlet boundary control, under nonnegativity state constraint:

$$\begin{array}{ll} \partial_t y = \partial_x^2 y, & 0 < x < 1 \\ y(t,0) = u_0(t), & y(t,1) = u_1(t) & \text{Dirichlet controls} \\ y(0) = y^0 \ge 0, & y(T) = y^1 \text{ constant (steady-state)} \\ y(t,x) \ge 0 & \forall t \in [0,T] & \forall x \in (0,1) & \text{state constraint} \end{array}$$

• Simulation with
$$y^0 = 5$$
 and $y^1 = 1$

- Simulation with $y^0 = 1$ and $y^1 = 5$:
 - Constraint 50 on the controls
 - Constraint 3000 on the controls

<u>Numerical observation</u>: sparsity of controls and of their support (Dirac impulses).

Minimal time for the heat equation

1D heat equation with Neumann boundary control, under nonnegativity state constraint:

 $\begin{array}{l} \partial_t y = \partial_x^2 y, \qquad 0 < x < 1 \\ \partial_x y(t,0) = v_0(t), \qquad \partial_x y(t,1) = v_1(t) \qquad \text{Neumann controls} \\ y(0) = y^0 \ge 0, \qquad y(T) = y^1 \text{ constant (steady-state)} \\ y(t,x) \ge 0 \quad \forall t \in [0,T] \quad \forall x \in (0,1) \quad \text{state constraint} \end{array}$

Similar results.

- Simulation with $y^0 = 5$ and $y^1 = 1$:
 - Constraint 20 on the controls
 - Constraint 3000 on the controls

Numerical observation: nonsaturating control (kind of singular control)

+ "Dirac chattering" at the end.

Minimal time for the heat equation

Generalizations to multi-D heat equations

Positive minimal time in the following cases:

 Dirichlet boundary controls along the whole boundary, under nonnegativity state or control constraints (both are equivalent).

Controllability exactly in time $T(y^0, y^1)$ with Radon measure controls.

Lower estimate for $T(y^0, y^1)$ when the domain is a ball.

 Neumann boundary controls along the whole boundary, under nonnegativity state constraints.

In contrast, under nonnegativity control constraints: $T(y^0, y^1) = +\infty$ (i.e., controllability fails).

First: extension to the unit ball (and spectral Sturm-Liouville decomposition). Then, in a general domain: comparison by restriction to an internal ball.

Minimal time for the heat equation

Open questions

- Uniqueness of (Radon measure) controls at the minimal time.
- Regularity of controls at the minimal time: number of switchings, "Dirac chattering"?
- Regularity of the minimal time function.
- Turnpike and sparse structure.
- Convergence of minimal times of discrete finite-dimensional models to infinite dimension.
- More general PDE models.

J. Lohéac, E. Trélat, E. Zuazua,

- Minimal controllability time for the heat equation under unilateral state or control constraints, M3AS 2017.
- Minimal controllability time for finite dimensional systems under state constraints, ongoing.

