Galerkin-Like method for generalized perturbed sweeping process with nonregular sets

Emilio VILCHES¹

Instituto de Ciencias de la Educación Universidad de O'Higgins Rancagua, Chile

> 25-29 September, 2017 CoSCDS Padova, Italy.

¹Joint work with Abderrahim Jourani

Emilio Vilches (UOH)

25-29 September, 2017 1 / 26

1日 ▶ ▲

Outline

The Galerkin-like method

2 The Generalized perturbed sweeping process

3 An existence result for the GPSP

4 Further results

1) The Galerkin-like method

2 The Generalized perturbed sweeping process

3 An existence result for the GPSP

Framework

Let H be a separable Hilbert space. In this talk we are interested in the following differential inclusion

$$\begin{cases} \dot{x}(t) \in F(t, x(t)) & \text{a.e. } t \in [T_0, T], \\ x(T_0) = x_0, \end{cases}$$
(\$\mathcal{P}\$)

where $F: [T_0, T] \times H \Longrightarrow H$ is a set-valued map with nonempty closed and convex values.

Framework: Standing Hypotheses (\mathcal{H}^F)

We assume the following *Standing Hypotheses*:

 (\mathcal{H}_1^F) For each $x \in H$, $F(\cdot, x)$ is measurable.

 (\mathcal{H}_2^F) For a.e. $t \in [T_0, T]$, $F(t, \cdot)$ is upper semicontinuous from H into H_w . (\mathcal{H}_3^F) There exist $c, d \in L^1(T_0, T)$ such that

$$d(0, F(t, x)) := \sup\{\|w\| : w \in F(t, x)\} \le c(t)\|x\| + d(t)$$

for all $x \in H$ and a.e. $t \in [T_0, T]$.

Existence for (\mathcal{P}) ?

Under (\mathcal{H}^F) , let us consider the following differential inclusion:

$$\begin{cases} \dot{x}(t) \in F(t, x(t)) & \text{a.e. } t \in [T_0, T], \\ x(T_0) = x_0. \end{cases}$$
(P)

There is a solution for (\mathcal{P}) ?

Theorem (Hájek-Johanis, 2010)

Let X be a separable infinite dimensional Banach space. Then there is a continuous mapping $f: X \to X$ such that the differential equation $\dot{x}(t) = f(x(t))$ has no solutions.

Existence for (\mathcal{P}) ?

Under (\mathcal{H}^F) , let us consider the following differential inclusion:

$$\begin{cases} \dot{x}(t) \in F(t, x(t)) & \text{a.e. } t \in [T_0, T], \\ x(T_0) = x_0. \end{cases}$$
(P)

There is a solution for (\mathcal{P}) ?

Theorem (Hájek-Johanis, 2010)

Let X be a separable infinite dimensional Banach space. Then there is a continuous mapping $f: X \to X$ such that the differential equation $\dot{x}(t) = f(x(t))$ has no solutions.

The Galerkin-Like method Approximation

For every $n \in \mathbb{N}$ let us consider the following differential inclusion:

$$\begin{cases} \dot{x}(t) \in F(t, P_n(x(t))) & \text{a.e. } t \in [T_0, T], \\ x(T_0) = P_n(x_0), \end{cases}$$
 (\$\mathcal{P}_n\$)

where P_n is the projector from H into span $\{e_1, \ldots, e_n\}$ and $(e_n)_{n \in \mathbb{B}}$ is an orthonormal basis of H.

The Galerkin-Like method

Existence for the approximation method

For every $n \in \mathbb{N}$ let us consider:

$$\begin{cases} \dot{x}(t) \in F(t, P_n(x(t))) & \text{a.e. } t \in [T_0, T], \\ x(T_0) = P_n(x_0), \end{cases}$$
 (\$\mathcal{P}_n\$)

Proposition (Jourani-Vilches, 2017)

Assume that (\mathcal{H}^F) holds. Then, for each $n \in \mathbb{N}$ there exists at least one solution $x_n \in AC([T_0, T]; H)$ of (\mathcal{P}_n) .

< ロ > < 四 > < 三 >

The Galerkin-Like method

Existence for the approximation method

For every $n \in \mathbb{N}$ let us consider:

$$\begin{cases} \dot{x}(t) \in F(t, P_n(x(t))) & \text{a.e. } t \in [T_0, T], \\ x(T_0) = P_n(x_0), \end{cases}$$
 (\mathcal{P}_n)

Proposition (Jourani-Vilches, 2017)

Assume that (\mathcal{H}^F) holds. Then, for each $n \in \mathbb{N}$ there exists at least one solution $x_n \in AC([T_0, T]; H)$ of (\mathcal{P}_n) . Moreover, the sequence $(x_n)_n$ is uniformly bounded in $AC([T_0, T]; H)$.

The Galerkin-Like method

Convergence of the approximation method

Theorem (Jourani-Vilches, 2017)

Assume that (\mathcal{H}^F) holds. Assume that the sequence $(P_n(x_n(t)))_n$ is relatively compact for all $t \in [T_0, T]$. Then there exists a subsequence $(x_{n_k})_k$ of $(x_n)_n$ converging strongly pointwise to a solution $x \in AC([T_0, T]; H)$ of

$$\begin{cases} \dot{x}(t) \in F(t, x(t)) & a.e. \ t \in [T_0, T], \\ x(T_0) = x_0. \end{cases}$$

2 The Generalized perturbed sweeping process

3) An existence result for the GPSP

Generalized perturbed sweeping process (GPSP)

The generalized perturbed sweeping process (GPSP):

$$\begin{cases} -\dot{u}(t) = Bv(t) & \text{a.e. } t \in [T_0, T]; \\ -\dot{v}(t) \in N\left(C(t, u(t), v(t)); v(t)\right) + F(t, u(t), v(t)) + Au(t) & \text{a.e. } t \in [T_0, T]; \\ u(T_0) = u_0, v(T_0) = v_0 \in C(T_0, u_0, v_0), \end{cases}$$

where $A: U \to V$ and $B: V \to U$ are two bounded linear operators.

Assumptions on the moving sets

 (\mathcal{H}^C) $C \colon [T_0, T] \times U \times V \rightrightarrows V$ has nonempty closed values.

• There exist $\zeta \in AC([T_0, T]; \mathbb{R}), L_1 \ge 0$ and $L_2 \in [0, 1[$ such that for all $s, t \in [T_0, T]$ and all $x, y \in U$ and $u, v \in V$

 $Hauss(C(t, x, u), C(s, y, v)) \le |\zeta(t) - \zeta(s)| + L_1 ||x - y|| + L_2 ||u - v||.$

• For every $t \in [T_0, T]$, every r > 0 and every pair of bounded sets A, B, the set $C(t, A, B) \cap r\mathbb{B}$ is relatively compact.

Geometry of the moving sets

Reduction of GPSP

Reduction of the GPSP to an unconstrained differential inclusion

$$\begin{cases} -\dot{u}(t) = Bv(t) & \text{a.e. } t \in [T_0, T], \\ -\dot{v}(t) \in N\left(C(t, u(t), v(t)); v(t)\right) & \\ + F(t, u(t), v(t)) + Au(t) & \text{a.e. } t \in [T_0, T], \\ u(T_0) = u_0, v(T_0) = v_0 \in C(T_0, u_0, v_0). \end{cases}$$

Reduction of GPSP

Reduction of the GPSP to an unconstrained differential inclusion

$$\begin{cases}
-\dot{u}(t) = Bv(t) & \text{a.e. } t \in [T_0, T]; \\
-\dot{v}(t) \in m(t, u(t), v(t)) \partial d_{C(t, u(t), v(t))}(v(t)) \\
+ F(t, u(t), v(t)) + Au(t) & \text{a.e. } t \in [T_0, T], \\
u(T_0) = u_0, v(T_0) = v_0 \in C(T_0, u_0, v_0),
\end{cases}$$

$$(\mathcal{P}_{\text{Red}})$$

where m(t, u, v) is a positive function.

Reduction of GPSP

Reduction of the GPSP to an unconstrained differential inclusion

By using the inclusion:

$$\partial d_S(x) \subseteq N(S;x) \cap \mathbb{B} \quad x \in S.$$

If we can prove that

 $v(t) \in C(t, u(t), v(t))$ for all $t \in [T_0, T]$.

Then, any solution of $(\mathcal{P}_{\text{Red}})$ is a solution of GPSP.

The Galerkin-like method

2 The Generalized perturbed sweeping process

3 An existence result for the GPSP

4 Further results

17/26

25-29 September, 2017

First main result

Theorem (Jourani-Vilches, 2017)

Assume that the following assumptions hold true:

• (\mathcal{H}^F) and (\mathcal{H}^C) hold.

2 The family $(C(t, u, v))_{\{(t, u, v) \in [T_0, T] \times H \times H\}}$ is equi-uniformly subsmooth. Then, there exists at least one solution of the GPSP:

$$\begin{cases} -\dot{u}(t) = Bv(t) & a.e. \ t \in [T_0, T], \\ -\dot{v}(t) \in N \left(C(t, u(t), v(t)); v(t) \right) + F(t, u(t), v(t)) + Au(t) & a.e. \ t \in [T_0, T], \\ u(T_0) = u_0, v(T_0) = v_0 \in C(T_0, u_0, v_0), \end{cases}$$

Second main result

Theorem (Jourani-Vilches, 2017)

Assume that the following assumptions hold true:

• (\mathcal{H}^F) and (\mathcal{H}^C) hold.

• The family $(C(t))_{\{t \in [T_0,T]\}}$ is positively α -far.

Then, there exists at least one solution of the GPSP:

 $\begin{cases} -\dot{u}(t) = Bv(t) & a.e. \ t \in [T_0, T]; \\ -\dot{v}(t) \in N(C(t); v(t)) + F(t, u(t), v(t)) + Au(t) & a.e. \ t \in [T_0, T]; \\ u(T_0) = u_0, v(T_0) = v_0 \in C(T_0), \end{cases}$

Moreau's perturbed sweeping process

Corollary (Jourani & Vilches, 2017)

Assume that the following assumptions hold true:

- (\mathcal{H}^F) and (\mathcal{H}^C) hold.
- The family $(C(t))_{t \in [T_0,T]}$ is positively α -far.

Then, there exists at least one solution of

$$\begin{cases} -\dot{v}(t) \in N(C(t); v(t)) + F(t, v(t)) & a.e. \ t \in [T_0, T]; \\ v(T_0) = v_0 \in C(T_0). \end{cases}$$

State-dependent sweeping process

Corollary (Jourani & Vilches, 2017)

Assume that the following assumptions hold true:

- (\mathcal{H}^F) and (\mathcal{H}^C) hold.
- The family $\{C(t,v): (t,v) \in [T_0,T] \times H\}$ is equi-uniformly subsmooth.

Then, there exists at least one solution of

$$\begin{cases} -\dot{v}(t) \in N(C(t,v(t));v(t)) + F(t,v(t)) & a.e. \ t \in [T_0,T];\\ v(T_0) = v_0 \in C(T_0,v_0). \end{cases}$$

Second-order sweeping process

Corollary (Jourani & Vilches, 2017)

Assume that the following assumptions hold true:

- (\mathcal{H}^F) and (\mathcal{H}^C) hold.
- The family $\{C(t, u, v) : (t, u, v) \in [T_0, T] \times H \times H\}$ is equi-uniformly subsmooth.

Then, there exists at least one solution of

 $\begin{cases} -\ddot{u}(t) \in N \left(C(t, u(t), \dot{u}(t)); \dot{u}(t) \right) + F(t, u(t), \dot{u}(t)) & a.e. \ t \in [T_0, T]; \\ u(T_0) = u_0, \dot{u}(T_0) = v_0 \in C(T_0, u_0, v_0). \end{cases}$

2 The Generalized perturbed sweeping process

3 An existence result for the GPSP

Sweeping processes with nonlocal initial conditions

We have applied the Galerkin-like method to the perturbed sweeping process with nonlocal initial conditions:

$$\begin{cases} \dot{x}(t) \in -N(C(t); x(t)) + F(t, x(t)) & \text{a.e. } t \in [T_0, T], \\ x(T_0) = Mx \in C(T_0), \end{cases}$$

where $M: C([T_0, T]; H) \rightarrow H$ is a nonlocal operator, e.g.,

- $Mx = \pm x(T)$ (periodic and anti-periodic initial conditions);
- $Mx = \frac{1}{T-T_0} \int_{T_0}^T x(s) ds$ (mean value initial conditions);
- $Mx = \sum_{k=1}^{k_0} \alpha_i x(t_i)$ with $\alpha_i \in \mathbb{R}$ and $\sum_{i=1}^{k_0} |\alpha_i| \le 1$, where $T_0 < t_1 < \cdots < t_{k_0} \le T$ (multi-point initial condition).

2) The Generalized perturbed sweeping process

3) An existence result for the GPSP

25/26

25-29 September, 2017

- [1] P. Hájek and M. Johanis On Peano's theorem in Banach spaces *J. Differential equations*, 249:3342-3351, 2010.
- [2] A. Jourani and E. Vilches Galerkin-Like Method and Generalized Perturbed Sweeping Process with Nonregular Sets SIAM J. Control Optim., 55(4):2412-2436, 2017.
- [3] A. Jourani and E. Vilches Constrained Differential Inclusions with Nonlocal Initial Conditions *Submitted*.

26/26

25-29 September, 2017

Galerkin-Like method for generalized perturbed sweeping process with nonregular sets

Emilio VILCHES²

Instituto de Ciencias de la Educación Universidad de O'Higgins Rancagua, Chile

> 25-29 September, 2017 CoSCDS Padova, Italy.

²Joint work with Abderrahim Jourani

Emilio Vilches (UOH)