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Abstract. Preferences and uncertainty occur in many real-life prob-
lems. The theory of possibility is one non-probabilistic way of dealing
with uncertainty, which allows for easy integration with fuzzy prefer-
ences. In this paper we consider an existing technique to perform such
an integration and, while following the same basic idea, we propose var-
ious alternative semantics which allow us to observe both the preference
level and the robustness w.r.t. uncertainty of the complete instantiations.
We then extend this technique to other classes of soft constraints, proving
that certain desirable properties still hold.

1 Introduction

Preferences and uncertainty occur in many real-life problems. In this paper we
are concerned with the coexistence of such concepts in the same problem. In
particular, we consider uncertainty that comes from lack of data or imprecise
knowledge and scenarios where probabilistic estimates are not available.

The theory of possibility [9, 14] is one non-probabilistic way of dealing with
uncertainty, which allows for easy integration with fuzzy preferences [6]. In fact,
both possibilities and fuzzy preferences are values between 0 and 1 associated
to events and express the level of plausibility that the event will occur, or its
preference.

In our context, we will describe a real-life problem as set of variables with
finite domains and a set of soft constraints among subsets of the variables. A
variable will be said to be uncertain if we cannot decide its value. In this case,
we will associate a possibility degree to each value in its domain, which will tell
how plausible it is that the variable will get that value.

Soft constraints allow to express preferences over the instantiations of the
variables of the constraints. In particular, fuzzy preferences are values between
0 and 1, which are combined using the min operator, and are ordered in such a
way that higher values denote better preferences.

In this paper we consider an existing technique to integrate fuzzy preferences
and uncertainty, which uses possibility theory [6]. This technique allows one
to handle uncertainty within a fuzzy optimization engine. However, we claim
that the integration provided by this technique is too tight since the result-
ing ordering over complete assignments does not allow one to discriminate be-

L. Godo (Ed.): ECSQARU 2005, LNAI 3571, pp. 800–811, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Possibility Theory for Reasoning About Uncertain Soft Constraints 801

tween solutions which are highly preferred but assume unlikely events and so-
lutions which are not preferred but robust with respect to uncertainty. This
is due to the fact that a single value, which summarizes the contributions of
both the uncertain variables and the fuzzy preferences, is associated to each
solution.

While following the same basic idea of translating uncertainty into fuzzy
constraints, we propose various alternative semantics which allow us to observe
separately the preference level and the robustness of the complete instantiations.
More precisely, each solution will be associated to a pair of values between 0 and
1: one value will refer to the preference level, while the other one will refer to
the robustness of the solution w.r.t. the uncertain variables. In this way, given
a solution and the pair of values associated to it, we can see how preferred it is
according to the constraints, by looking at the first value of its pair, and also
how robust it is, by looking at the second value of its pair.

The desired ordering over such pairs will then be used to order the solutions.
Thus, by choosing different orderings, we can reason in a more or less pessimistic
way, giving more or less importance to the preferences w.r.t. the robustness of
the problem. In this way, we define a class of different semantics.

2 Soft Constraints

Soft constraints [2] are a very general formalism to describe quantitative prefer-
ences. In general, a soft constraint is just pair 〈def, con〉, where con is the set
of variables of the constraint (that is, its scope), and def is a function from the
Cartesian product of the domains of the variables in con to a preference set, say
A. Therefore def defines the constraint, by associating a level of preference from
A to each assignment of values to the variables of the constraint.

Set A can be totally or partially ordered, and its ordering, denoted by ≤, can
be used to order the assignments of values to variables: assignments correspond-
ing to higher preferences are more preferred. Moreover, a combination operation
× should be defined over A, to combine different constraints and generate the
preference level of an assignment of values to variables which range over the
scopes of several constraints. More precisely, A should have properties similar to
a semiring. We will therefore say that a soft constraints is defined over semiring

A. For more details on semiring-based soft constraints, see [2].
A soft constraint problem is usually denoted by a tuple 〈S, V,C〉 where S

is a semiring, V is a set of variables, and C is a set of soft constraints over
S whose scopes are subsets of these variables. An optimal solution of a soft
constraint problem is an assignment of its variables which is optimal according
to the ordering associated to the semiring.

This general description of soft constraints instantiates to several classes of
concrete constraints:

– Fuzzy constraints: when A = [0, 1], ≤ is derived by the max operator, and the
combination operator is min. This means that a fuzzy constraint associates
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an element between 0 and 1 to each instantiation of its variables, that values
closer to 1 denote a higher preference, and that the preferences of two or
more constraints are combined by taking their minimum value.

– Hard constraints: they can also be described by this framework, by just
choosing A = {true, false}, ≤ derived by logical or (thus 1 is better than
0), and combination is logical and.

– Weighted constraints: they are soft constraints where each assignment of
values to variables has a weight, and the goal is to minimize the sum of
the weights: this can be cast by choosing A as the set of possible weights,
by deriving the ordering by the min operator, and by using the sum as the
combination operator.

The concept of fuzzy constraint, as defined above, was originally based on
the notion of fuzzy set [14, 8, 11]. A fuzzy set A is a subset of a referential set
U whose boundaries are gradual. More formally: the membership function µA

of a fuzzy set A assigns to each element u ∈ U its degree of membership µA(u)
usually taking values in [0, 1]. If µA(u) = 1, it means that u belongs to A, while
µA(u) = 0 means that u does not belong to A. If µA(u) is between 0 and 1, then
it means that u ∈ A with degree µA(u).

The complement of a fuzzy set A in U is denoted AC and its membership
function is µAC = 1−µA. The union and intersection of fuzzy sets are obtained
by respectively taking the maximum and the minimum of membership degrees
of each element of U in each of the fuzzy sets.

Fuzzy constraints use the notion of fuzzy sets to describe the level of prefer-
ence of a certain assignment of values to variables. More precisely, a soft fuzzy

constraint [6] C on variables {x1, . . . , xn} is associated with a fuzzy relation
R, i.e. a fuzzy subset of D1 × · · · × Dn of values that more or less satisfy C.
A membership function µR is associated with relation R and specifies for each
tuple (d1, . . . , dn) ∈ D1 × · · · × Dn the level of satisfaction µR(d1, . . . , dn) in
a set L, which is totally ordered (e.g. [0,1]). In particular, µR(d1, . . . , dn) =
1 if tuple (d1, . . . , dn) totally satisfies C, µR(d1, . . . , dn) = 0 if it totally vi-
olates C, and 0 < µR(d1, . . . , dn) < 1 if it partially satisfies C. Moreover,
µR(d1, . . . , dn) > µR(d′1, . . . , d

′
n) means that tuple (d1, . . . , dn) is better than

tuple (d′1, . . . , d
′
n).

In the following we will use two operations on fuzzy constraints [6]: projec-
tion and combination. The projection of a fuzzy constraint, represented by fuzzy
relation R on variables {x1, . . . , xk} ⊆ V (R) = {x1, . . . , xn}, is a fuzzy rela-
tion R↓{x1,...,xk} defined on {x1, . . . , xk} such that: µR↓{x1,...,xk}(d1, . . . , dk) =
sup{d=(d1,...,dn)|d↓{x1,...,xk}=(d1,...,dk)} µR(d). The conjunctive combination of two
fuzzy constraints, represented by fuzzy relations Ri and Rj , is a fuzzy relation
Ri ⊗ Rj defined on variables V (Ri) ∪ V (Rj) such that: µRi⊗Rj

(d1, . . . , dk) =

min(µRi
(d1, . . . , dk)↓V (Ri), µRj

(d1, . . . , dk)↓V (Rj)) where µRi⊗Rj
(d1, . . . , dk)

evaluates to what extent (d1, . . . , dk) satisfies both Ci and Cj .
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3 Possibility Theory

A possibility distribution [14] is the membership function of a fuzzy set A attached
to a single-valued variable x. It is denoted πx = µA and represents the set of
more or less plausible, mutually exclusive values of x. A possibility distribution
is similar to a probability density. However, πx(u) = 1 only means that x = u

is a plausible situation, which cannot be excluded. Thus, a degree of possibility
can be viewed as an upper bound of a degree of probability.

Possibility theory encodes incomplete knowledge while probability accounts
for random and observed phenomena. In particular, the complete ignorance
about x is expressed by πx(u) = 1, for all u ∈ U , because in this case all
values u are plausible for x and so it is impossible to exclude any of them.
Whereas, πx(ū) = 1 for a specific value ū and πx(u) = 0 otherwise, expresses the
complete knowledge about x, because in this case only the value ū is plausible
for x.

The possibility of an event “x ∈ E”, denoted by Π(x ∈ E), is Π(x ∈ E) =
supumin(πx(u), µE(u)) = supu∈Eπx(u).

If an event has possibility equal to 1, it means that it is totally possible.
However, it could also not happen. Therefore it means that we are completely
ignorant about its occurrence. On the contrary, having a possibility equal to 0
means that the event for sure will not happen.

The dual measure of necessity of “x ∈ E”, denoted by N(x ∈ E), evaluates
the extent to which “x ∈ E” is certainly true, N(x ∈ E) = infumax(c(πx(u)),
µE(u)) = infu/∈E(c(πx(u))) = 1 − Π(x ∈ EC). where c is the order reversing
map such that c(p) = 1 − p and EC is the complement of E in U .

N(x ∈ E) = 1 when it is certain that x ∈ E. On the contrary, having necessity
equal to 0 means that the event is not necessary at all, although it may happen.
In fact, N(x ∈ E) = 0 iff P (x ∈ EC) = 1.

For example, if we have a possibility distribution π, attached to a variable
x with domain Dx = {5, 6, 7, 8}, such that π(5) = 0.9, π(6) = 0.4, π(7) =
0.7, π(8) = 0.5, then, if A = {5, 6} is a subset of Dx, the possibility degree
of the event x ∈ A is Π(A) = supd∈Aπ(d) = sup{0.9, 0.4} = 0.9, whereas
the necessity degree of the same event, x ∈ A, is N(A) = infd6∈Ac(π(d)) =
inf{c(π(7)), c(π(8))} = inf{c(0.7), c(0.5)} = inf{0.3, 0.5} = 0.3. Computing
N(A) using the formula N(A) = 1 − Π(Ā) is the same, in fact, N(A) = 1 −
Π(Ā) = 1 − supd∈Āπ(d) = 1 − sup{0.7, 0.5} = 1 − 0.7 = 0.3.

4 Uncertainty in Soft Constraints

Whereas in usual soft constraint problems all the variables are assumed to be
controllable, that is, their value can be decided according to the constraints
which relate them to other variables, in many real-world problems uncertain
parameters must be used. Such parameters are associated with variables which
are not under the user’s direct control and thus cannot be assigned. Only Nature
will assign them.
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Formally, we can define an uncertain soft constraint problem as a tuple
〈S, Vc, Vu, C〉, where S is a semiring, Vc is the set of controllable variables, Vu is
the set of uncontrollable variables, and C is the set of soft constraints. The soft
constraints in C may involve any subset of variables of Vc ∪ Vu.

While in a classical soft constraint problem we can decide how to assign the
variables to make the assignment optimal, in the presence of uncertain parame-
ters we must assign values to the controllable variables guessing what Nature will
do with the uncontrollable variables. So, in this paper an optimal solution for
an uncertain soft constraint problem is an assignment of values to the variables
in Vc such that, whatever Nature will decide for the variables in Vu, the overall
assignment will be optimal. This is a pessimistic view and other definitions of
solutions can be considered [1].

For example, we could be satisfied with finding an assignment of values to the
variables in Vc such that, for at least one assignment decided by Nature for the
variables in Vu, the overall assignment will be optimal. This definition follows
an optimistic view. Other definitions can be between these two extremes.

Moreover, the uncontrollable variables can be equipped with additional infor-
mation on the likelyhood of their values. Such information can be given in several
ways, depending on the amount and precision of knowledge we have. In this paper
for expressing such information we will consider possibility distribution. This in-
formation can be used to infer new soft constraints over the controllable variables,
expressing the compatibility of the controllable parts of the problem with the
uncertain parameters, and can be used to change the notion of optimal solution.

5 Unifying Fuzzy Preferences and Uncertainty via

Possibility Theory

Possibility theory [14] can be used to code some information about the uncertain
variables in an uncertain soft constraint problem. In this section we will describe
an existing approach for uncertain fuzzy soft constraints and later we will show
how to modify it and extend it also to other classes of soft constraints.

In [6] it is shown how it is possible to replace a fuzzy constraint involving
at least one uncontrollable variable with a fuzzy constraint over controllable
variables only. Consider a fuzzy constraint C, represented by the fuzzy relation
R, which relates a set of controllable variables X = {x1, . . . , xn} to a set of
uncertain parameters Z = {z1, . . . , zk} with domains A1, . . . , Ak. The knowl-
edge of the uncertain parameters is modeled with the possibility distribution
πZ defined on AZ = A1 × · · · × Ak. The constraint C is considered satisfied
by the assignment d = (d1, . . . , dn) ∈ D1 × · · · × Dn if, whatever the values

of z = (z1, . . . , zk), d is compatible with z, i.e., the set of possible values for
z is included in T = (R ⊗ {(d1, . . . , dn)})↓Z . Obviously µT (a) = µR(a, d) and
µ′(d) = µ′

R(d) = N(d satisfiesC) = N(z ∈ T ) = infa∈AZ
max(µT (a), c(πZ(a)))

= c(supa∈AZ
min(c(µT (a)), πZ(a))). If C is a hard constraint, then the for-

mula above still applies, and becomes the following one: N(d satisfiesC) =
inf

a/∈T=(R∩{d})
↓DZ

c(πZ(a)).
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Fig. 1. An example of application of algorithm DFP

Notice that, when C is a soft constraint, µ′ is computed by applying the min

operator between preferences and possibilities. This can be done since their scales
are equal assuming the commensurability between preferences and possibilities.

Summarizing, the method proposed in [6], which we call Algorithm DFP

(by the name of the authors), for managing uncertainty in a fuzzy CSP, is the
following:

1. It starts from an uncertain fuzzy CSP, say P .
2. P is reduced to a fuzzy constraint problem P ′: all the constraints which link

uncertain parameters to decision variables are replaced by fuzzy constraints
only among the decision variables. The new preference levels of the decision
variables in such new constraints are computed by applying the specific
procedure given above in this section.

3. P ′ has only fuzzy constraints, therefore it can be solved by applying the
usual method for solving fuzzy CSPs, i.e. using the min operator to com-
bine the constraints and choosing the complete assignments with the highest
preference.

An application of algorithm DFP to an uncertain fuzzy CSP is shown in
Figure 1. Part (a) shows a fuzzy CSP with uncertainty. There are three decision
variables (X,Y,W ), one uncertain variable (Z), and two constraints: one, CXY Z ,
among X,Y and Z with function µ and another one, CXW , between X and
W with function µ1. The constraint CXY Z has membership function µ. The
possibility distribution πZ describes the plausibility of Z. Part (b) shows the
fuzzy constraint problem on variables X and Y obtained by the one in part (a).
Part (c) shows the complete assignments of the problem in part (b) with their
preference degrees defined by µt.

In [6] the following property is given.

Property 1: µ′
R(d) ≥ α means that if it is taken for granted that the actual value

of z has plausibility strictly greater than c(α), then it is sure that the decision
d satisfies C at least at level α (i.e., µ′

R(d) ≥ α means that if πZ(a) > c(α) ⇒
µR(d, a) ≥ α, where a is the actual value of z).
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6 Derived Properties

Property 1 continues to hold also if the uncertain parameters are provided with
a probability distribution, probZ , and not a possibility one. We have proved this
recalling that a possibility is an upper bound to a probability. In this case,
Property 1 becomes: µ′

R(d) ≥ α means that if probZ(a) > c(α) ⇒ µR(d, a) ≥ α,
where a is the actual value of z.

Moreover we have proved the following two properties:

Property 1.1: Once the possibilities of uncertain parameters, defined by πZ

are fixed, if we consider an assignment d to the decision variables X1, . . . ,Xk

and an assignment d′ such that, µ(d, a) ≤ µ(d′, a) ∀a, then the new preference
incorporating also uncertainty µ′ is such that µ′(d) ≤ µ′(d′).

Property 1.2: Once the preferences µ(d, a) are fixed, where d is an assignment
to the decision variables X1, . . . ,Xk and a is the value of uncertain parame-
ters, if π1 and π2 are two possibility distributions on uncertain parameters such
that π1(a) ≥ π2(a) ∀a, then the new preferences incorporating also uncertainty
are such that µ′

1(d) ≤ µ′
2(d), where µ′

1 is the preference obtained considering
possibility distribution π1 and µ′

2 considering possibility distribution π2.

7 Separation and Projection

By using algorithm DFP, the preference of a complete assignment is the mini-
mum value among all the preferences of the constraints, both the original fuzzy
constraints and those obtained via the transformation which eliminates the un-
controllable variables. By looking again at Figure 1, we can see that the overall
preference is min(F,U), where F is the minimum of the preferences in the ini-
tially given fuzzy constraints only on decision variables, and U is the minimum
of the preferences of the new fuzzy constraints. This means, for example, that a
low overall preference may be caused from a low preference in some of the new
fuzzy constraints (when U is less than F ), that is, a low compatibility with the
uncertain events, or also from a low preference on some fuzzy constraint initially
given only on decision variables (when F is less than U). In oder words, some
information is lost by passing from F and U to min(F,U).

In other words, according to algorithm DFP, an assignment d associated with
the pair of preferences 〈F,U〉 is compared with another one d′ associated with
the pair 〈F ′, U ′〉 by just comparing min(F,U) and min(F ′, U ′): d is better than
d′ iff min(F,U) > min(F ′, U ′). Consider the following situations:

– F = F ′ and U > U ′: in this case, one would like to say that d is better than
d′. However, this is the case only if F > U ′, but not if U ′ > F , in which case
d and d′ are equally preferred. The same reasoning holds also in the dual
case when U = U ′.

– F = U ′ and U = F ′: in this case, d and d′ are equally preferred, inde-
pendently of the ordering of the two values. This means that the same
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importance is given to both components of the pair, and there is no way
to distinguish or consider differently the preference derived from the initial
fuzzy constraints among decision variables (that is, F ) and the measure of
certainty of the problem (that is, U) w.r.t. uncertain parameters.

This problem is caused by the fact that, by using the min operator, one
forgets about all the other elements, which are higher than the minimum. This
is usually called the ”drowning effect” [10].

To avoid this problem, it is important to keep separate these two components
(F and U), rather than applying the min operator over them. Other approaches
have gone in this direction. For example, in [1] there are two components which
are indeed computed separately; however, solutions are then ordered only via
the minimum or the maximum between the two values.

However, just keeping the two components separate will not give the desired
ordering among the solutions. In fact, by replacing a fuzzy constraint c between
decision variables X and uncertain parameters Y with a new constraint c′ over X,
and by computing the pair of preferences 〈F,U〉, it may happen that F is greater
than all the preferences appearing in the constraint c. Thus the overall preference
for a solution may be high even if this solution has a very low compatibility with
all the values of the uncertain variables.

This can be solved by performing, for each constraint c involving both deci-
sion and uncertain variables (X and Z), a projection over the decision variables.
This will create a new constraint c′′ over X where, for each assignment of values
to its variables, the preference is computed by assuming the best in the uncer-
tain parameters. Since preferences are combined via the min operator, this new
constraint will force the overall preference to be no higher than its best prefer-
ence. Given an assignment to decision variables, we denote with P the minimum
preference over these new projection constraints. Such value P , combined with
F given by the initial constraints, defines the new preference value FP .

We have proved that min(F,U) ≤ P , which implies that projections would
be redundant in algorithm DFP, since it computes as final preference min(F,U).

We therefore propose the following algorithm, which we will call algorithm

SP (from separation and projection), to handle uncertain fuzzy constraint prob-
lems:

1. It starts from an uncertain fuzzy CSP with fuzzy constraints C.
2. All the constraints which link uncertain parameters to decision variables are

replaced by fuzzy constraints only among the decision variables. Let us call
Cu such new constraints.

3. It computes the projection constraints, say Cp.
4. For each complete assignment, it computes its overall preference as a pair

〈FP , U〉, where FP = min(F, P ) and F , P , and U are, respectively,the min-
imum preference over the constraints in C, Cp, and Cu.

Algorithm SP differs from algorithm DFP for points 3 and 4.
Let us consider the following example, where we have a complete assignment

d with preference given by the pair 〈F = 0.3, U = 0.9〉 and another one d′ with
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〈F = 0.9, U = 0.3〉. According to algorithm DFP, d is considered equal to d′

since d and d′ have the same preference min(F,U) = 0.3. We will show that our
method distinguishes among them. Since d is associated with the pair 〈0.3, 0.9〉
then the best preference that could be obtained is F = 0.3. Moreover there is
at least a value ā for the uncertain parameters such that the tuple (d, ā) has
preference 0.3, since in this case P ≥ min(F,U) = 0.3 implies FP = F . In
addition certainty degree U = 0.9 implies if πZ(a) > 0.1 then µ(d, a) ≥ 0.9,
where a is the actual value of z. Thus the preference of (d, a) is < 0.3 only if
πZ(a) ≤ 0.1. This means we have a high certainty to obtain as final preference
FP = 0.3.

On the contrary, the fact F = 0.9 for d′ doesn’t imply that such preference
is obtained by any pair (a, d′). In fact, assume that P is 0.4. Then for any pair
(a, d′) the preference is ≤ 0.4. This is an example of how the information in F

can be misleading when the components of the preferences are kept separate and
thus needs to be corrected combining it with P . Moreover U = 0.3 means that
if πZ(a) > 0.7 then µ(d, a) ≥ 0.3, where a is the actual value of z. Hence we
can have a high possibility ≤ 0.7 to have a preference strictly less than 0.3, i.e.,
d′ may have preference 0.9 if P ≥ 0.9, but there is a high possibility (≤ 0.7) to
have a preference < 0.3.

As it can be seen for the reasoning above d and d′ differ on both preference and
robustness. This is why we believe it is reasonable to define distinct semantics
ordering d and d′ differently. In particular, if for example we assume that P = 0.9
for d′:

– We should prefer d over d′ if we want be safe, because assignment d is more
cautious than d′, showing a low preference similar to the one that can really
happen.

– On the other hand, we should prefer d′ over d if we want be risky, because
assignment d′ is more risky than d, showing the best preference that we can
obtain, if we are very lucky, i.e., with a low possibility.

– We should not choose between d′ and d if we want be diplomatic, i.e., we
want to have a high preference with a high certainty.

In Figure 2 (a) there is the new fuzzy CSP obtained from the one in Figure 1
(a) after applying the projection of the ternary constraint CXY Z on the decision
variables X and Y , and the usual step 2 of the algorithm. In Figure 2 (b) all
the complete assignments to decision variables of the FCSP. Each assignment,
d, is associated with a tuple of three preference values: the first one (P ) is the
preference obtained by the projection constraints, the second one (F ) is the
preference given by the initial fuzzy constraint CXW , and the third one is the
value obtained by the uncertain parameter Z, which represents the certainty

that d satisfies CXY Z .
Given an assignment d to the decision variables and the pair 〈FP , U〉 com-

puted as described above, FP tells us how much d is preferred by the constraints,
while U represents to what extent it is impossible to have a possible value of the
uncertain parameters violating the constraints involving uncertain parameters.
This means that 1 − U gives an idea of the risk of hitting a value of uncertain



Possibility Theory for Reasoning About Uncertain Soft Constraints 809

w

y

µ (x=1, y=2)=0.6

(x=2, y=2)=0.6µ

µ (x=2, y=1)=0.4

µ (x=1, y=2)=0.6

µ (x=1, y=1)=0.5

µ (x=1, y=1)=0.5

(x=2, y=2)=0.6µ

µ (x=2, y=2, w=6)=<min(0.6, 0.2), 0.6)>=<0.2, 0.6>

µ (x=2, y=2, w=5)=<min(0.6, 0.9), 0.6)>=<0.6, 0.6>

µ (x=2, y=1, w=6)=<min(0.5, 0.2), 0.4)>=<0.2, 0.4>

µ (x=2, y=1, w=5)=<min(0.5, 0.9), 0.4)>=<0.5, 0.4>

µ (x=1, y=2, w=6)= =<0.3, 0.6><min(0.6, 0.3), 0.6)>

µ (x=1, y=2, w=5)=<min(0.6, 0.4), 0.6)>=<0.4, 0.6>

P UF

µ (x=1, y=1, w=6)=<min(0.5, 0.3), 0.5)>=<0.3, 0.5>

µ (x=1, y=1, w=5)=<min(0.5, 0.4), 0.5)>=<0.4, 0.5>

µ (x=2, y=1)=0.5
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P       
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’

’

’

’

µ (x=2, w=6)=0.2

1

1

1

1

Fig. 2. Result of algorithm SP for the uncertain fuzzy CSP in Figure 1 (a)

parameter that is inconsistent with d, hence U can be seen as a measure of the
certainty of d.

U is computed as in [6], so Properties 1, 1.1 and 1.2 still hold. We recall
that these properties state that U can increase only in two cases: either when
the possibilities of the uncertain parameters remain fixed and the preferences
of the constraints involving them increase, or when preferences are fixed but
possibilities decrease.

8 Three New Semantics

Consider two solutions d and d′ and the corresponding pairs of values 〈FP (d),
U(d)〉 = 〈a1, b1〉 and 〈FP (d′), U(d′)〉 = 〈a2, b2〉.

The first semantics we propose, that we will call Risky, can be seen as a
Lex ordering on pairs 〈ai, bi〉, with the first component as the most important
feature. Hence

– if a1 > a2 then 〈a1, b1〉 >R 〈a2, b2〉 (and the opposite for a2 > a1);

– if a1 = a2 then

• if b1 > b2 then 〈a1, b1〉 >R 〈a2, b2〉 (and the opposite for b2 > b1);

• if b1 = b2 then 〈a1, b1〉 = 〈a2, b2〉.

Informally, the idea is to give more importance to the preference level that
can be reached in the best case (a higher ai) considering less important a high
risk of being inconsistent (a low certainty bi).

The second semantics, called Safe, follows the opposite attitude with the
respect to the previous one: it can be seen as a Lex ordering on pairs 〈ai, bi〉,
with the second component as most important feature. Hence:
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Table 1. Dubois et al. semantics compared to Risky, Safe and Diplomatic

Dubois et al. Risky Safe Dipl.

= <,>, = <,>,= <,>,=, ⊲⊳

> <,> <,> >, ⊲⊳

< <,> <,> <, ⊲⊳

– if b1 > b2 then 〈a1, b1〉 >S 〈a2, b2〉 (and the opposite for b2 > b1);
– if b1 = b2 then

• if a1 > a2 then 〈a1, b1〉 >S 〈a2, b2〉 (and the opposite for a2 > a1);
• if a1 = a2 then 〈a1, b1〉 = 〈a2, b2〉.

Informally, the idea is to give more importance to the certainty level that can
be reached (a higher bi) considering less important having a high preference (a
high ai).

Our third semantics, called Diplomatic, aims at giving the same importance
to the two aspects of a solution: preference and certainty. In order to do that,
it is obtained via the Pareto ordering on pairs 〈ai, bi〉, where both components
have the same importance. Hence:

– if a1 ≤ a2 and b1 ≤ b2 then 〈a1, b1〉 ≤D 〈a2, b2〉 (and the opposite for a2 ≤ a1

and b2 ≤ b1);
– if a1 = a2 and b1 = b2 then 〈a1, b1〉 = 〈a2, b2〉;
– else 〈a1, b1〉 ⊲⊳ 〈a2, b2〉.

In this definition ⊲⊳ stands for incomparability. The idea is that a pair is to
be preferred to another only if it wins both on preference and certainty, leaving
incomparable all the pairs that have one component higher and the other lower.
Contrarily to the diplomatic semantics, the other two semantics produce a total
order over the solutions.

Figure 2 (b) shows a solution of the FCSP in Figure 1 which is optimal
according to all semantics.

Let us now consider an example that explains the differences between our
semantics and the approach of [6]. Suppose we have two complete assignments,
d1 and d2, with preference resp. 0.3 and 0.5, and certainty resp. 0.5 and 0.3.
Then the method of [6] would say that they are equally good, since it would
just consider the minimum of each pair, that is, 0.3. On the other hand, for our
semantics we have the following ordering: 〈0.3, 0.5〉 <R 〈0.5, 0.3〉 according to
Risky; 〈0.3, 0.5〉 >S 〈0.5, 0.3〉 according to Safe; 〈0.3, 0.5〉 ⊲⊳ 〈0.5, 0.3〉 according
to Diplomatic.

In general, the comparison among the orders induced by our three semantics
and the one of the method in [6] can be seen in Table 1.
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9 Conclusion and Future Work

We defined a new way to deal with preference and uncertainty which assumes
commensurability but does not mix preferences and compatibility with uncertain
events. This allows us to obtain a solution ordering which better reflects the
desirability and the robustness of a solution. Other approaches which do not
mix these two aspects [12, 5, 3, 4] do not assume commensurability and thus
cannot compare directly preferred assignments and uncertain events.

We plan to develop a solver that can handle problems with several classes
of soft constraints, together with uncertainty expressed via possibility or proba-
bility distributions. The solver will be able to generate orderings according the
three semantics proposed in this paper as well as others that we will define by
following different optimistic or pessimistic approaches.

We plan also to extend the results of this paper to other classes of soft con-
straints (such as probabilistic and weighted) and also to probabilistic uncertainty.
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