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Abstract

Preferences and uncertainty occur in many real-life
problems. The theory of possibility is one way of deal-
ing with uncertainty, which allows for easy integration with
fuzzy preferences. In this paper we consider an existing
technique to perform such an integration and, while follow-
ing the same basic idea, we propose to generalize it to other
classes of preferences and to probabilistic uncertainty while
maintaining certain desirable properties.

1 Introduction

Preferences and uncertainty occur in many real-life prob-
lems. In this paper we are concerned with the coexistence
of such concepts in the same problem. In particular, we
consider uncertainty that comes from imprecise knowledge.

The theory of possibility [4, 9] is one non-probabilistic
way of dealing with uncertainty, which allows for easy inte-
gration with fuzzy preferences [2]. In fact, both possibilities
and fuzzy preferences are values between 0 and 1 associated
to events and express the level of plausibility that the event
will occur, or its preference.

In our context, we will describe a real-life problem as set
of variables with finite domains and a set of soft constraints
among subsets of the variables. A variable will be said to
be uncertain if we cannot decide its value. In this case, we
will associate a possibility degree to each value in its do-
main, telling how plausible it is that the variable will get
that value.

Soft constraints [1] allow to express preferences over the
instantiations of the variables of the constraints. In particu-
lar, fuzzy preferences are values between 0 and 1, which are
combined using the min operator, and are ordered in such
a way that higher values denote better preferences. Prob-
abilistic preferences represent probabilities, hence they are
values between 0 and 1 and they are combined via multi-
plication: the goal is to maximize the product of the prob-
abilities. Weighted constraints use instead preferences rep-

resenting costs which are combined by summing them: the
goal is to minimize the sum of the weights.

In this paper we consider existing techniques to inte-
grate fuzzy preferences and uncertainty, which use possi-
bility theory [2, 8]. The approach in [8] allows one to han-
dle uncertainty within a fuzzy optimization engine, and at
the same time to observe separately the preference level and
the robustness of the complete instantiations. This approach
has certain desirable properties, that we describe formally.

We then generalize the approach, and its properties, in
order to use it also for other classes of soft constraints, not
necessarily fuzzy, and to probabilistic uncertainty, by point-
ing out a sufficient condition for the properties to hold. This
allows us to handle the coexistence of preferences and un-
certainty in a more general setting.

2 Soft constraints

Soft constraints [1] are a very general formalism to de-
scribe quantitative preferences. In general, a soft constraint
is just pair 〈def, con〉, where con is the set of variables of
the constraint (that is, its scope), and def is a function from
the Cartesian product of the domains of the variables in con
to a preference set, say A. Therefore def defines the con-
straint, by associating a level of preference from A to each
assignment of values to the variables of the constraint.

Set A can be totally or partially ordered, and its order-
ing, denoted by ≤, can be used to order the assignments
of values to variables: assignments corresponding to higher
preferences are more preferred. Moreover, a combination
operation × should be defined over A, to combine different
constraints and generate the preference level of an assign-
ment of values to variables which range over the scopes of
several constraints. More precisely, A should have proper-
ties similar to a semiring. We will therefore say that a soft
constraint is defined over semiring A. For more details on
semiring-based soft constraints, see [1].

A soft constraint problem is usually denoted by a tuple
〈S, V, C〉 where S is a semiring, V is a set of variables, and
C is a set of soft constraints over S whose scopes are subsets



of these variables. An optimal solution of a soft constraint
problem is an assignment of its variables which is optimal
according to the ordering associated to the semiring.

This general description of soft constraints instantiates
to several classes of concrete constraints:

• Fuzzy constraints: when A = [0, 1], ≤ is derived by
the max operator, and the combination operator is min.
This means that a fuzzy constraint associates an ele-
ment between 0 and 1 to each instantiation of its vari-
ables, that values closer to 1 denote a higher prefer-
ence, and that the preferences of two or more con-
straints are combined by taking their minimum value.

• Hard constraints: when A = {true, false}, ≤ de-
rived by logical or (thus 1 is better than 0), and combi-
nation is logical and.

• Weighted constraints: they are soft constraints where
each assignment of values to variables has a weight,
and the goal is to minimize the sum of the weights:
this can be cast by choosing A as the set of possible
weights, by deriving the ordering by the min operator,
and by using the sum as the combination operator.

• Probabilistic constraints: they are soft constraints
where each assignment is associated to a probability,
which informally represents the chance for the assign-
ment to satify the constraint in the real problem. Con-
straints are then combined by multiplying the associ-
ated probabilities, and max is used to induce the or-
dering over preferences: the best solutions have the
highest probability.

The concept of fuzzy constraint, as defined above, was
originally based on the notion of fuzzy set [3, 6, 9]. A fuzzy
set A is a subset of a referential set U whose boundaries
are gradual. More formally: the membership function µA

of a fuzzy set A assigns to each element u ∈ U its de-
gree of membership µA(u) usually taking values in [0, 1]. If
µA(u) = 1, it means that u belongs to A, while µA(u) = 0
means that u does not belong to A. If µA(u) is between 0
and 1, then it means that u ∈ A with degree µA(u).

Fuzzy constraints use the notion of fuzzy sets to describe
the level of preference of a certain assignment of values to
variables. More precisely, a soft fuzzy constraint [2] C on
variables {x1, . . . , xn} is associated with a fuzzy relation
R, i.e. a fuzzy subset of D1 × · · · ×Dn of values that more
or less satisfy C. A membership function µR is associated
with relation R and specifies for each tuple (d1, . . . , dn) ∈
D1 × · · · × Dn the level of satisfaction µR(d1, . . . , dn) in
a set L, which is totally ordered (e.g. [0,1]). In particu-
lar, µR(d1, . . . , dn) = 1 if tuple (d1, . . . , dn) totally sat-
isfies C, µR(d1, . . . , dn) = 0 if it totally violates C, and

0 < µR(d1, . . . , dn) < 1 if it partially satisfies C. More-
over, µR(d1, . . . , dn) > µR(d′1, . . . , d′n) means that tuple
(d1, . . . , dn) is better than tuple (d′1, . . . , d

′
n).

In the following we will use two operations on
fuzzy constraints [2]: projection and combination.
The projection of a fuzzy constraint, represented by
fuzzy relation R on variables {x1, . . . , xk} ⊆ V (R)
= {x1, . . . , xn}, is a fuzzy relation R↓{x1,...,xk} defined on
{x1, . . . , xk} such that: µR↓{x1,...,xk}(d1, . . . , dk) =
sup{d=(d1,...,dn)|d↓{x1,...,xk}=(d1,...,dk)} µR(d).
The conjunctive combination of two fuzzy con-
straints, represented by fuzzy relations Ri and Rj ,
is a fuzzy relation Ri ⊗ Rj defined on variables
V (Ri) ∪ V (Rj) such that: µRi⊗Rj (d1, . . . , dk) =
min(µRi(d1, . . . , dk)↓V (Ri), µRj (d1, . . . , dk)↓V (Rj))
where µRi⊗Rj (d1, . . . , dk) evaluates to what extent
(d1, . . . , dk) satisfies both Ci and Cj .

3 Possibility theory

A possibility distribution [9] is the membership func-
tion of a fuzzy set A attached to a single-valued variable
x. It is denoted πx = µA and represents the set of more or
less plausible, mutually exclusive values of x. A possibil-
ity distribution is similar to a probability density. However,
πx(u) = 1 only means that x = u is a plausible situation,
which cannot be excluded. Thus, a degree of possibility can
be viewed as an upper bound of a degree of probability.

The possibility of an event “x ∈ E”, E ⊆ U ,
denoted by Π(x ∈ E), is formally Π(x ∈ E) =
supumin(πx(u), µE(u)) = supu∈Eπx(u). If an event has
possibility equal to 1, it means that it is totally possible, but
it could also not happen and so we are completely ignorant
about its occurrence. On the contrary, having a possibility
equal to 0 means that the event will not happen.

The dual measure of necessity of “x ∈ E”, denoted by
N(x ∈ E), evaluates the extent to which “x ∈ E” is cer-
tainly true, i.e. to what extent the proposition “x ∈ E” is
implied by the item of information “x ∈ A”: N(x ∈ E) =
infumax(c(πx(u)), µE(u)) = infu/∈E(c(πx(u))) = 1 −
Π(x ∈ EC), where c is the order reversing map such that
c(p) = 1 − p and EC is the complement of E in U .
N(x ∈ E) = 1 when it is certain that x ∈ E. On the
contrary, having necessity equal to 0 means that the event
is not necessary at all, although it may happen. In fact,
N(x ∈ E) = 0 iff Π(x ∈ EC) = 1.

4 Uncertainty in soft constraints

Whereas in usual soft constraint problems all the vari-
ables are assumed to be controllable, that is, their value can
be decided according to the constraints which relate them



to other variables, in many real-world problems uncertain
parameters must be used. Such parameters are associated
with variables which are not under the user’s direct control
and thus cannot be assigned. Only Nature will assign them.

Formally, we can define an uncertain soft constraint
problem as a tuple 〈S, Vc, Vu, C〉, where S is a semiring,
Vc is the set of controllable variables, Vu is the set of un-
controllable variables, and C is the set of soft constraints.
The soft constraints in C may involve any subset of vari-
ables of Vc ∪ Vu. While in a classical soft constraint prob-
lem we can decide how to assign the variables to make the
assignment optimal, in the presence of uncertain parameters
we must assign values to the controllable variables guessing
what Nature will do with the uncontrollable variables. So,
in this paper an optimal solution for an uncertain soft con-
straint problem is an assignment of values to the variables
in Vc such that, whatever Nature will decide for the vari-
ables in Vu, the overall assignment will be optimal. This
means that we can make the assumption that the values of
the uncontrollable variables are never observable, i.e., they
are decided upon without observing the values of the un-
controllable variables. This is a pessimistic view and other
definitions of solutions can be considered. Moreover, the
uncontrollable variables can be equipped with additional in-
formation on the likelyhood of their values. In this paper
we will consider two ways of expressing such information:
possibilities and probabilities.

The next section describes two existing approaches [2, 8]
for integrating fuzzy constraints and uncertainty given by
possibilities. In both, the original problem is replaced by
another one without uncontrollable variables and with new
soft constraints depending on the possibilistic distributions.
In [8] the two sets of constraints are kept separate, thus al-
lowing for a fine discrimination between preferences and
robustness to uncertainty.

5 Unifying fuzzy preferences and uncertainty
via possibility theory

In [2] it is shown how it is possible to replace a fuzzy
constraint involving at least one uncontrollable variable
with a fuzzy constraint over controllable variables only.
Consider a fuzzy constraint C, represented by the fuzzy
relation R, which relates a set of controllable variables
X = {x1, . . . , xn} to a set of uncertain parameters Z =
{z1, . . . , zk} with domains A1, . . . , Ak. The knowledge
of the uncertain parameters is modeled with the possibil-
ity distribution πZ defined on AZ = A1 × · · · × Ak .
The constraint C is considered satisfied by the assign-
ment d = (d1, . . . , dn) ∈ D1 × · · · × Dn if, what-
ever the values of Z , z = (z1, . . . , zk), d is compatible
with z, i.e., the set of possible values for z is included
in T = (R ⊗ {(d1, . . . , dn)})↓Z . Therefore µT (a) =

µR(a, d) and µ′(d) = µ′
R(d) = N(d satisfies C) =

N(z ∈ T ) = infa∈AZmax(µT (a), c(πZ (a))) =
c(supa∈AZmin(c(µT (a)), πZ (a))). If C is a hard
constraint, then the formula above still applies, and
becomes the following one: N(d satisfies C) =
inf

a/∈T=(R∩{d})↓DZ
c(πZ(a)).

The method proposed in [2], which we call Algorithm
DFP (by the name of the authors), for managing uncertainty
in a fuzzy CSP, starts from an uncertain fuzzy CSP, say
ufcsp, that is then reduced to a fuzzy constraint problem
fcsp: all the constraints which link uncertain parameters
to decision variables are replaced by fuzzy constraints only
among the decision variables. The new preference levels of
the decision variables in such new constraints are computed
by applying the specific procedure defining µ′. fcsp has
only fuzzy constraints, hence it can be solved by applying
the usual method for solving fuzzy CSPs, i.e. using the min
operator to combine the constraints and choosing the com-
plete assignments with the highest preference.

In [2] the following property is given:
Property 1. µ′(d) ≥ α iff, when πZ(a) > c(α) then

µR(d, a) ≥ α, where a is the actual value of Z .
Moreover, from the definition of µ′, the following two

properties can also be proved [8].
Property 2. Given the possibilities of uncertain param-

eters, defined by πZ , an assignment d to the decision vari-
ables X1, . . . , Xk, and two preference functions µ1 and µ2

such that µ1(d, a) ≤ µ2(d, a) for all a assignments to Z ,
then µ′

1(d) ≤ µ′
2(d).

Property 3. Given a preference function µ, an assign-
ment d to the decision variables X1, . . . , Xk, and two possi-
bility distributions π1 and π2 on Z , such that π1(a) ≥ π2(a)
for all a, then µ′

1(d) ≤ µ′
2(d), where µ′

i is the preference
function obtained considering πi, i=1,2.

By using algorithm DFP, the overall preference for a so-
lution is min(F, U), where F is the minimum of the prefer-
ences in the initial fuzzy constraints only on decision vari-
ables, and U is the minimum of the preferences of the new
fuzzy constraints. This means that a low overall preference
may be caused from a low preference in some of the new
fuzzy constraints (when U is less than F ), that is, a low
compatibility with the uncertain events, or also from a low
preference on some fuzzy constraint initially given only on
decision variables (when F is less than U ).

In [8] these two components (F and U ) are kept sep-
arate, rather than combined with min, by performing, for
each constraint involving both decision and uncertain vari-
ables (X and Z), a projection over the decision variables,
that is a new constraint over X where, for each assignment
of values to its variables, the preference is computed by as-
suming the best in the uncertain parameters. Since prefer-
ences are combined via the min operator, this new constraint
will force the overall preference to be no higher than its best



preference. Given an assignment to decision variables, we
denote with P the minimum preference over these new pro-
jection constraints. The value P , combined with preference
F given by the initial constraints only on controllable vari-
ables, defines the new preference FP .

The algorithm presented in [8], called algorithm SP
(from separation and projection) starts from an uncertain
fuzzy CSP with fuzzy constraints C, and then all the con-
straints which link uncertain parameters to decision vari-
ables are replaced by fuzzy constraints, say Cu, only among
the decision variables. After that, it computes the projec-
tion constraints, say Cp, and for each complete assignment,
it computes its overall preference as a pair 〈FP , U〉, where
FP = min(F, P ) and F , P , and U are, respectively, the
minimum preference over C, Cp, and Cu.

Given an assignment d to the decision variables, the pair
〈FP , U〉 represents two degrees of satisfaction: a sure one
and an expected one. More precisely, FP tells us how much
d is preferred by the constraints, while 1 − U gives an idea
of the risk of hitting a value of uncertain parameter that is
inconsistent with d, hence U can be seen as a measure of
the certainty (or robustness) of d. Notice that, since U is
computed as in [2], Properties 1, 2 and 3 still hold.

Let us consider the following example, where we have
two complete assignments: d with F = 0.3, P = 0.9, and
U = 0.9, and d′ with F = 0.9, P = 0.9, and U = 0.3. The
algorithm DFP, considers d equally preferred to d′ since d
and d′ have the same preference min(F, U) = 0.3. How-
ever, d and d′ differ on both preference and robustness.

The approach based on algorithm SP preserves such a
difference, by defining various semantics exploiting both el-
ements of the pair 〈FP , U〉 to deduce a solution ordering.

Given two solutions d and d′ and the corresponding pairs
of values 〈FP (d), U(d)〉 = 〈a1, b1〉 and 〈FP (d′), U(d′)〉 =
〈a2, b2〉, in [8] three semantics are presented for ordering
them: Risky, a Lex ordering on pairs 〈ai, bi〉, with the first
component as the most important feature, that gives more
importance to the preference level that can be reached in
the best case (a higher ai) considering less important a high
risk of being inconsistent (a low certainty bi), Safe, that fol-
lows the opposite attitude with the respect to the previous
one, that can be seen as a Lex ordering on pairs 〈ai, bi〉,
with the second component as most important feature, and
Diplomatic that aims at giving the same importance to the
preference and the certainty, i.e., that a pair is to be preferred
to another only if it wins both on preference and certainty,
leaving incomparable all the pairs that have one component
higher and the other lower.

6 A generalized approach

The methods described in the previous sections can han-
dle only uncertainty in fuzzy constraints. In the following of

the paper we will extend the method in [8] to other classes
of soft constraints and to probabilistic uncertainty. In partic-
ular, we will consider the combinations of fuzzy, probabilis-
tic and weighted constraints with possibilistic uncertainty.

To do this, we now redefine SP for generic soft con-
straints and generic uncertainty. Then we will define the
extensions above as instances of this general framework.

We recall that in Fuzzy CSPs with uncertainty the
preferences of a new constraints C, obtained removing
the uncertain parameters, is computed via the formula
µ′(d) = infa∈AZmax(µT (a), c(πZ(a))), where T = (R⊗
{(d1, . . . , dn)})↓Z , R is the fuzzy relation defining the con-
straint C, c is the order reversing map such that c(p) = 1−p
and πZ is the possibilistic distribution.

Let us consider any semiring S = {A, +,×, 0, 1}, where
≤S is the semiring ordering on A (we denote incomparabil-
ity with ��S). The formula above can be generalized to deal
with any semiring as follows:

µ′(d) = infa∈AZ (µT (a) + c(πZ(a)))

where + refers to the one of the semiring operations, inf
is one of the bottom elements of AZ (i.e., an element such
that ∀a′ ∈ AZ with a′ 
= a then a′ >S a or a′ ��S a),
[0, 1] ⊆ A, πZ is a possibilistic distribution and c is a is an
order-reversing map w.r.t. semiring S, that is bijection from
[0,1] to [0,1] such that, for each a1, a2 ∈ [0, 1], a1 ≤ a2 if
and only if c(a1) ≥S c(a2) and c(c(a)) = a for all a.

Notice that, by generalizing the formula,the set of val-
ues for the possibilities remains [0, 1]. When working with
other classes of soft constraints rather than fuzzy CSPs, then
µT (a) = µR(d, a), where µR associates a preference from
set A to an assignment. In particular, µR is the preference
function of the soft constraint R.

The algorithm SP [8], can be generalized as follows: it
starts from an uncertain soft CSP 〈S, Vc, Vu, C〉, then all
the constraints which link variables in Vu to variables in
Vc are replaced by soft constraints, say Cu, defined by µ′,
only among variables in Vc. After that, all the constraints
which link variables in Vu to variables in Vc are used to
compute their projection constraints, say Cp, over variables
in Vc. Finally, for each assignment of the variables in Vc, it
computes its overall preference as the pair 〈FP , U〉, where
FP = F × P and F , P , and U are, resp., the preference of
the assignment over the constraints in C, Cp, and Cu.

We recall that, given a soft constraint R, defined on
variables X and Z its projection over X is defined by
µP (d) =

∑
a∈AZ

µR(d, a). We have proved that proper-
ties 1, 2, 3 hold for generic soft constraints where the set A
of the semiring is totally ordered.

General Property 1: µ′(d) ≥S α if and only if, when
πZ(a) > c(α), then µR(d, a) ≥S α.

If A is partially ordered, this property doesn’t hold.
However, two slightly weaker properties can be proved.



Weak general Property 1 ( 
≤): µ′(d) 
≤S α if and only
if, when πZ(a) ≥ c(α), then µR(d, a) 
≤S α.

Weak general Property 1 ( 
<): µ′(d) 
<S α if and only
if, when πZ(a) > c(α), then µR(d, a) 
<S α.

It can be proved that properties 2, 3 hold for problems
with generic soft constraints and uncertainty described by
πZ that can be a possibilistic distribution.

General Property 2: Given πZ and two preference
functions µ1 and µ2 such that µ1(d, a) ≤S µ2(d, a) for all
a assignments to Z , then µ′

1(d) ≤S µ′
2(d), where µ′

i is the
preference function obtained considering µi, i=1,2.

General Property 3: Given a preference function µ and
two distributions π1 and π2 on Z , such that π1(a) ≥ π2(a)
for all a, then µ′

1(d) ≤S µ′
2(d), where µ′

i is the preference
function obtained considering πi, i=1,2.

If A is partially ordered, general property 2 and 3 assume
a slightly weaker form. The only change in the statement is
that µ′

1(d) ≤S µ′
2(d) is replaced with µ′

1(d) 
>S µ′
2(d).

Since these properties hold in general, then we can safely
and effectively handle problems with many kinds of soft
constraints as well as uncertain possibilistic variables.

The generic semantics are defined like those ones in [8],
except that ≤ is replaced by ≤S .

7 Uncertain Probabilistic CSPs

In several real-life scenarios, fuzzy constraints are not
the ideal setting. Probabilistic CSPs (PCSPs) [7] model
those situations where each constraint c has a certain prob-
ability p(c), indipendent from the probability of the other
constraints, to be part of the given real problem. The proba-
bility levels on constraints give then, to each instantation of
all the variables, a probability that it is a solution of the real
problem. Constraints are combined by multiplying the asso-
ciated probabilities and the aim is to get those instantiations
with the maximum probability. The semiring corresponding
to PCSPs is S = {[0, 1], max,×, 0, 1}.

Uncertain PCSPs are PCSPs where there are not only
controllable variables but also uncontrollable variables. We
assume here that the values in the domains of the uncontrol-
lable variables are defined by a possibility distribution.

To make sure that the desired properties 1, 2, and 3 hold
in this setting, we just need to check whether the assump-
tions we made are met: [0, 1] ⊆ A and c is an bijection from
[0,1] to [0,1] such that, for each a1, a2 ∈ [0, 1], a1 ≤ a2 if
and only if c(a1) ≥S c(a2) and c(c(a)) = a for all a.

The first assumption is trivially true since A = [0, 1]. As
for the second one, we consider c(x) = 1 − x for all x,
which satisfies the order-reversing property. In fact, given
a1, a2 ∈ [0, 1], with a1 ≤ a2 then 1 − a1 ≥S 1 − a2, since
max(1 − a1, 1 − a2) = 1 − a1. In this setting, we have

µ′(d) = mina∈AZmax(µT (a), 1 − πZ(a)).

Figure 1 shows a soft CSP with uncertainty. There are three
decision variables (X, Y, W ), one uncertain variable (Z),
and two constraints: CXY Z with function µ and CXW with
function µ1. The possibility distribution πZ describes the
plausibility of Z .
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Figure 1. An uncertain soft CSP.

Figure 2 shows the result of applying SP to the prob-
lem in Figure 1, seen as an uncertain PCSP. In this case,
the algorithm is instantiated with ×S = ×, +S = max,
and c(p) = 1 − p. In particular, Figure 2 (a) shows the re-
sulting probabilistic CSP obtained by the algorithm, while
Figure 2 (b) shows all complete assignments, together with
the associated pair.
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Figure 2. Result of algorithm SP for the un-
certain soft CSP in Figure 1, seen as an un-
certain PCSP.

8 Uncertain Weighted CSPs

In several situations where neither fuzzy nor probabilis-
tic constraints are ideal, weighted constraints can be useful
to model preferences. For example, when dealing with costs



which are naturally combined by a sum. In this setting, pref-
erences are penalties (or costs) to be added, and the best
solutions are those with the smallest preference. Thus oper-
ators + and min are the instantiation of the operators × and
+ of the general case. Therefore, the semiring to be used is
S = {R+, min, +, +∞, 0}.

Uncertain Weighted CSPs are Weighted CSPs where
there are both controllable and uncontrollable variables. We
assume here that the values in the domains of the uncontrol-
lable variables are defined by a possibility distribution.

The three desired property hold if we choose c as the
identity map. In fact, [0, 1] ⊆ R+. Moreover, c is an order-
reversing map w.r.t semiring S. In fact, given a1, a2 ∈ [0, 1]
such that a1 ≤ a2, we have a1 ≥S a2 since min(a1, a2) =
a1. The instantiated formula for µ′ is then

µ′(d) = maxa∈Azmin(µT (a), πZ (a))).

Figure 3 shows how algorithm SP works on weighted CSP
with possibilitic uncertainty, as the one in Figure 1 (where
preferences are interpreted as costs). Figure 2 (a) shows
the resulting weighted CSP, while Figure 2 (b) shows all
complete assignments, together with the associated pair. In
this problem the optimal solution obtained using the Risky
semantics is different from the one obtained using Safe,
whereas Diplomatic considers them both optimal.
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Figure 3. Result of algorithm SP for the un-
certain soft CSP in Figure 1, seen as an un-
certain weighted CSP.

9 Probabilistic and possibilistic uncertainty

In the previous sections we have considered different
classes of soft constraints with uncertainty described via a
possibilitic distribution. Here we assume that some uncon-
trollable variables are defined by a possibilistic distribution,
while for others by a probabilistic distribution.

In this case, we could get to the usual setting by replacing
probabilities with possibilities. In [5] it is presented a way
to do this. Thus we could use such a method to obtain only
one kind of distribution and then use our approach.

However, transforming a probability into a possibility
distribution we loose information, and solutions have a
lower robustness. In fact, using property 3, it is possible
to see that, if we use possibilities, which are higher than
probabilities, we get a smaller robustness value. Thus we
can say that the robustness value obtained in this way is a
lower bound to the certainty that the values of the decision
variables are compatible with the uncertain variables.

10 Future work

We plan to develop a solver that can handle problems
with several classes of soft constraints, together with un-
certainty expressed via possibility or probability distribu-
tions. The solver will be able to generate orderings accord-
ing the three semantics proposed in this paper as well as
others that we will define by following different optimistic
or pessimistic approaches.
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