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ABSTRACT
Preferences of a single agent are often partially ordered. For

example, it may be hard to compare a novel with a biogra-

phy. In such a situation, the agent may want the novel and

the biography to be considered incomparable. We consider

here how to aggregate the partially ordered preferences of

multiple agents in order to return a set of most preferred

outcomes. We define the notion of strategy-proofness for

such a scenario. This is when preference aggregation can-

not be manipulated. We prove that if there is no dictator,

agents can manipulate the result by voting strategically to

determine the most preferred outcomes. This extends the

well-known theorem by Gibbard and Satterthwaite for total

orders.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—

Distributed Artificial Intelligence

General Terms
Theory

Keywords
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1. INTRODUCTION
Many problems require us to combine the preferences of

different agents. For example, when planning a wedding,

we must combine the preferences of the bride, the groom

and possibly some or all of the in-laws. Typically such

preferences are partial orders over the outcomes. We can

view many different mechanisms for preference aggregation

in terms of voting. Each agent is voting for their preferred

outcomes. When aggregating preference orders, one may be
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interested in obtaining a combined ordering among the out-

comes, or just the set of most preferred outcomes (also called

the winners). The first choice, in which the aggregation

function is called a social welfare function, provides more

information about the combined preference ordering since

it tells us the ordering between any pair of outcomes. The

second scenario, in which the aggregation function, called a

social choice function, returns a set, is less informative but

often enough when we are just interested in choosing one of

the most preferred outcomes.

In this paper we will consider social choice functions. Thus

the result of aggregating preferences will be just a set of out-

comes. A very desirable property of preference aggregation

is non-manipulability (also called strategy proofness). It

should not be possible for agents to manipulate the election

by voting strategically. Strategic voting is when agents ex-

press preferences which are different from their real ones, to

get the result they want. If this is possible, then the prefer-

ence aggregation rule is said to be manipulable. For social

choice rules on totally ordered preferences, the Gibbard Sat-

terthwaite theorem [3] proves that it is not possible to be at

same time non-manipulable and have no dictators. Either

there is a dictator (that is, an agent who gets what he wants

by voting sincerely) or a manipulator (that is, an agent who

gets what he wants by lying). In either case, there is an agent

who gets what he wants no matter what the other agents say.

In this paper we extend this result to partially ordered pref-

erences. Even in this more general case, we prove that it is

impossible for a social choice function to have no dictator

and be non-manipulable at the same time. As with total

orders, we conjecture that there will be ways around this

negative result. For example, it may be that certain social

choice functions on partial orders are computationally hard

to manipulate. As another example, it may be that cer-

tain restrictions on the way agents vote (like single-peaked

preferences for total orders) guarantee strategy-proofness.

2. SOCIAL CHOICE ON PARTIAL ORDERS
In some situations, the result of aggregating the prefer-

ences of a number of agents might not need to be an order

over outcomes. It might be enough to know the “most pre-

ferred” outcomes. Social choice functions identify such most

preferred outcomes.

A profile p is a sequence of n orderings p1, . . . , pn over

outcomes, one for each agent i ∈ {1, . . . , n}. A social choice

function on total orders is a mapping from a profile to the

optimal outcome, or winner. With partial orders, (i.e. bi-

nary relation which are reflexive, transitive, antisymmetric
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and not always complete), there can be several outcomes

which are incomparable and optimal. We can therefore con-

sider a generalization in which a social choice function is

a mapping from a profile to a non-empty set of outcomes,

called the optimal outcomes, or the winners.

Let us now consider some properties of such social choice

functions. Our definition of these properties is a generaliza-

tion of the corresponding definition for social choice function

on totally ordered profiles [1]. We say that a social choice

function f is unanimous iff

• for any profile p with a ∈ top(pi) for every agent i,
then a ∈ f(p);

• for any profile p with {a} = top(pi) for every agent i,
then f(p) = {a}.

It is instead monotonic iff, given two profiles p and p′

,

• if a ∈ f(p) and, for any other alternative b, a >pi
b

implies a >p′
i

b, a ./pi
b implies a ./pi

b or a >p′
i

b, for

all agents i, then a ∈ f(p′

);

• if f(p) = A and for all a ∈ A, for all b, a >pi
b implies

a >p′
i

b and a ./pi
b implies a ./p′

i
b or a >p′

i
b, for all

agents i, then f(p′

) = A.

We define three notions of dictators for social choice func-

tions: a strong dictator is an agent i such that, for all

profiles p, f(p) = top(pi); a dictator is an agent i such

that, for all profiles p, f(p) ⊆ top(pi); a weak dictator is

an agent i such that, for all profiles p, f(p) ∩ top(pi) 6= ∅.
Notice that, in any profile p, if a is the unique top of a weak

dictator i, then a ∈ f(p). However, this is not true if a is

not the unique top of i.
We say a social choice function is strongly fair, fair or

weakly fair if it is unanimous, monotonic, and does not

have a strong dictator, dictator or weak dictator, respec-

tively. Since a strong dictator is a dictator, and a dictator

is a weak dictator, weak fairness implies fairness which it-

self implies strong fairness. In [6], we generalize the Muller-

Satterthwaite theorem [5] to social choice functions over par-

tial orders without ties, for weak dictators. That is, weak

dictators are inevitable if we have two or more agents, three

or more outcomes and the social choices function is unani-

mous and monotonic. We rewrite here this theorem formally

since it will be used in the rest of the paper.

Theorem 1 ([6]) If we have at least two agents and at least

three outcomes, and a social choice function on partial order

without ties is unanimous and monotonic, then there is at

least one weak dictator.

3. STRATEGY PROOFNESS
The Gibbard Satterthwaite theorem on totally ordered

preferences [3, 7] proves that either we have a dictator or the

social choice function can be manipulated. That is, agents

can manipulate the result using tactical voting. We may

now wonder if a similar relationship holds between weak

dictators and non-manipulability. To answer this question,

we must generalize the notion of non-manipulability (also

called strategy proofness) to social choice functions on par-

tially ordered preferences, and then consider the Gibbard

Satterthwaite theorem [3, 7] in this more general context.

We will show that weak dictators are inevitable if we have

at least two agents and three outcomes, and the social choice

function is strategy proof and onto. These conditions are

identical to those in the Gibbard Satterthwaite theorem for

total orders. A social choice function is strategy-proof if

it is best for each agent to order outcomes as she really

prefers and not to try to order them tactically, with the

hope of getting a better result. More precisely, the social

choice function must never allow an agent to get a preferred

outcome among the winners by ordering outcomes in a way

that contradicts his or her true preferences [1].

Formally, a social choice function is strategy proof if,

for every agent i, for every pair of profiles p and p′

, which

differ only for the agent i’s ranking, that is, pi, we have that

• ∀a ∈ f(p)− f(p′

), ∀b ∈ f(p′

), if a ./pi
b, then a ./p′

i
b

or a <p′
i

b; if a <pi
b, then a <p′

i
b;

• ∀a ∈ f(p) − f(p′

), ∃b ∈ f(p′

) such that, if a >pi
b,

then a ./p′
i

b or a <p′
i

b; if a ./pi
b, then a <p′

i
b.

In other words, a social choice function is strategy proof

if an agent can remove an element a from the set of winners

only by worsening its rank with respect to at least one the

new winners b, and not improving it with respect to any

other new winner. This means that it is not possible for

an agent to make a disappear from the set of winners by

improving its ranking in her preference ordering. In fact,

this would be tactical voting.

In general, even in the totally ordered case, most vot-

ing procedures involving three or more alternatives are not

strategy proof [1]. This is true also in the partially ordered

case. Let us consider the following two social choice func-

tions: f1 is such that f1(p) =
S

i
top(pi), that is, this func-

tion returns the union of the sets of optimal elements of each

agent and f2 is the Pareto function, which returns the opti-

mal elements of the ordering returned by the Pareto social

welfare function (where a > b if all agents say a > b, other-

wise a ./ b).
Let us now consider two profiles p and p′

on three alterna-

tives a, b and c such that p = (p1 = (c > a ∧ c ./ b ∧ a ./ b),
p2 = (c ./ a ∧ c ./ b ∧ a ./ b), p3 = p1) and p′

= (p′

1 = p1,

p′

2 =(c > a > b) , p′

3 = p3). Then, for both such social

choice functions, the set of winners in profile p is {a, b, c},
while in profile p′

is {b, c}. Thus a has disappeared by pass-

ing from p to p′

but its ranking has improved with respect

to b in agent 2. Thus both social choice functions are not

strategy-proof.

In order to prove the generalization of the Gibbard Sat-

terthwaite theorem to the partial order case we first prove

the following result, which relates strategy proofness to una-

nimity and monotonicity.

Theorem 2 If a social choice function is strategy proof and

onto, then it is unanimous and monotonic.

Proof. The proof is composed by two parts. Part 1

shows that if a social choice function f is strategy proof

then it is monotonic, while part 2 shows that if f is onto

and monotonic then it is unanimous.

Part 1. Consider two profiles p and p′

, which differ only for

the ranking of agent i.
Assume that a ∈ f(p) and that for any other alternative

b, a >pi
b implies a >p′

i
b and a ./pi

b implies a ./pi
b or

a >p′
i

b. We want to show that a ∈ f(p′

). For the sake of
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contradiction, assume that a 6∈ f(p′

). Since f is strategy

proof, then ∃c ∈ f(p′

) such that one of the following holds:

(i) if a >pi
c, then a ./p′

i
c or a <p′

i
c, (ii) if a ./pi

c, then

a <p′
i

c. If the first holds then there is an element c which is

worse than a in pi and that becomes strictly better than or

incomparable to a in p′

i. This contradicts the fact that for

any other alternative b, a >pi
b implies a >p′

i
b. If the sec-

ond holds then there is an element c which is incomparable

with a in pi and becomes strictly better then a in p′

i. This

contradicts the fact that for any other alternative b, a ./pi
b

implies a ./p′
i

b or a >p′
i

b.

Assume now that ∀a ∈ f(p), for any other alternative b,
a >pi

b implies a >p′
i

b and a ./pi
b implies a ./pi

b or

a >p′
i

b. We want to show that f(p) = f(p′

). For the sake

of contradiction, we can assume that ∃a such that a ∈ f(p)

and a 6∈ f(p′

) or that ∃a such that a ∈ f(p′

) and a 6∈ f(p). If

∃a such that a ∈ f(p) and a 6∈ f(p′

) then, since f is strategy

proof, the same reasoning above leads to the same contra-

dictions. If instead ∃a such that a ∈ f(p′

) and a 6∈ f(p),

then since f is strategy proof, then ∃c ∈ f(p) such that one

of the following holds: (i) if a >p′
i

c, then a ./pi
c or a <pi

c,

(ii) if a ./p′
i

c, then a <pi
c. In the first case there is an ele-

ment a which is stricly smaller than or incomparable to c in

pi that becomes strictly greater than c in p′

i. This is in con-

tradiction either with the fact that for any other alternative

b, c ./pi
b implies c ./p′

i
b or c >p′

i
b or with the fact that

c >pi
b implies c >p′

i
b. If the second case holds then there

is an element a that is smaller than c in pi and that becomes

incomparable with c in p′

i. This contradicts the assumption

that for any other alternative b, c >pi
b implies c >p′

i
b.

Consider two profiles q such that f(q) � {a} and a profile

q′ such that for every agents i and for every alternative b,
a >qi

b implies a >q′
i

b. We want prove that f(q′

) � {a},
that is the first part of the definition of the monotonicity

for social choice functions. Since we can move from q =

(q1, ...qn) to q′ = (q′1, ...q
′

n), passing from q = (q1, q2..., qn)

to (q′1, q2..., qn), and (q′1q
′

2, ..., qn) to (q′1, q
′

2, ..., qn) and so on,

and we have shown above that at each step a remains in the

set of winners, a ∈ f(q′

). The same reasoning holds for pro-

files q such that f(q) = A and q′

such that for every agent i,
for ∀a ∈ A, for every other alternative b, such that a >qi

b
implies a >q′

i
b. In this case we conclude that f(q′

) = A.

This is the second part of the definition of monotonicity for

social choice function. We have thus shown that f is mono-

tonic.

Part 2. Since f is onto, then for every subset S of alterna-

tives there is a profile p such that f(p) = S. If S = {a},
where is a is an alternative, since f is onto, there is a pro-

file p such that f(p) = {a}. If we consider the profile p′

,

obtained from profile p bringing a to the very top of every

agent, then for strict monotonicity on profiles p and p′

, that

we have just proved, f(p′

) = a. Therefore, whenever a is

the unique top of every agent’s ranking in a profile p̄, then

f(p̄) = {a}. Because a is arbitrary then f satisfies Pareto

efficiency in the case of unique top for every agent.

If S ⊃ {a}, since f is onto, then there is a profile p1 such

that f(p1) = S ⊃ {a}. If we consider a profile p′

1 where a is

at the top (not unique) for every agent, then, for monotonic-

ity on profiles p1 and p′

1, f(p′

1) must contain a. Therefore,

whenever a is one of the tops of every agent’s ranking in a

profile p̄, then f(p̄) � {a}. Because a is arbitrary, then f
satisfies Pareto efficiency in the case of not unique top for

every agent. Q.E.D.

We now use this result, together with the extension of the

Muller-Satterwaithe result (Theorem 1), to prove the main

theorem stating that it is not possible for a social choice

function to be at the same time strategy proof and onto,

and have no weak dictators.

Theorem 3 If there are at least two agents and at least

three outcomes and the social choice function is strategy-

proof and ontothen there is at least one weak dictator.

Proof. By Theorem 2, if f is onto and strategy proof

then it is monotonic and unanimous. Moreover, Theorem 1

states that if f is monotonic and unanimous then there is

at least one weak dictator. Q.E.D.

4. RELATED WORK
Efforts have been made to weaken the conditions of the

Gibbard Satterthwaite theorem. For example, in [2], the

domain of the social choice function has been generalized to

preferences over sets of outcomes and an impossibility result

proved. The Gibbard Satterthwaite theorem has been shown

to be robust to several other restrictions of the domain of

the social choice function. Here we have shown that this

theorem is robust also to including incomparability in the

preference ordering.

5. REFERENCES
[1] K. J. Arrow and A. K. Sen and K. Suzumara.

Handbook of Social Choice and Welfare.

North-Holland, Elsevier, 2002.

[2] S. Barbera. Strategy-Proofness and Pivotal Voters: A

Direct Proof of the Gibbard-Satterthwaite Theorem.

International Economic Review, Vol.24, No.2, pages

413–417, 1983.

[3] A. Gibbard. Manipulation of voting schemes: A

general result. Econometrica, 41, 1973.

[4] K. Konczak and J. Lang. Voting procedures with

incomplete preferences. IJCAI 05 Workshop on

Advances in Preference Handling, 2005.

[5] E. Muller and M. A. Satterthwaite. The equivalence of

strong positive association and strategy-proofness.

Economic Theory, 14, 1977.

[6] M. S. Pini, F. Rossi, K. B. Venable, T. Walsh.

Aggregating partially ordered preferences:

impossibility and possibility results. Proc. TARK X,

ACM Digital Library, June 2005.

[7] M. A. Satterthwaite. Strategy-proofness and Arrow’s

conditions: Existence and correspondence theorems

for voting procedures and social welfare functions.

Journal of Economic Theory, 10:187–217, 1975.

    687




