
Computing possible and necessary winners from
incomplete partially-ordered preferences

M. S. Pini∗, F. Rossi∗, K. B. Venable∗, T. Walsh∗∗ 1

1 INTRODUCTION

There are many situations where we wish to represent and reason
with preferences. We consider here how to combine the preferences
of multiple agents despite incompleteness and incomparability in
their preference orderings. An agent’s preference ordering may be
incomplete because, for example, we are in the middle of eliciting
their preferences. It may also contain incomparability since, for ex-
ample, we might have multiple criteria we wish to optimize.

To combine preferences, we use social welfare functions, which
map a profile, that is, a sequence of partial orders (one for each
agent), to a partial order (the result). For example, the Pareto social
welfare function orders A before B iff every agent orders A before
B, else if there is some disagreement between agents declares A and
B to incomparable.

Since agents’ preferences may be incomplete, we consider all the
possible ways they can be completed. In each possible completion,
we may obtain different optimal elements (or winners). This leads
to the idea of possible winners (those outcomes which are winners
in at least one possible completion) and necessary winners (those
outcomes which are winners in all possible completions) [5].

Possible and necessary winners are useful in many scenarios in-
cluding preference elicitation [3]. In fact, elicitation is over when the
set of possible winners coincides with that of the necessary winners
[4]. In addition, as we argue later, preference elicitation can focus just
on the incompleteness concerning those outcomes which are possible
and necessary winners. We can ignore completely all other outcomes.

Whilst computing the sets of possible and necessary winners is in
general a difficult problem, we identify sufficient conditions where
we can obtain the necessary winners and an upper approximation of
the set of possible winners in polynomial time. Such conditions con-
cern either the language for stating preferences, or general properties
of the preference aggregation function.

2 FROM THE COMBINED RESULT TO
WINNERS

We would like to compute efficiently the set of possible and neces-
sary winners, as well as to determine whether a given outcome is a
possible or a necessary winner. In general, even if the social welfare
function is polynomially computable, incompleteness in the profile
may require us to consider an exponential number of completions.
As observed in [5], determining the possible winners is in NP, and
the necessary winners is in coNP.

1 *: Department of Pure and Applied Mathematics, University of Padova,
Italy. Email: {mpini,frossi,kvenable}@math.unipd.it. **: NICTA and
UNSW, Sydney, Australia. Email: tw@cse.unsw.edu.au

We consider therefore a compact representation of all the com-
pletions that is polynomial in size. This necessarily throws away in-
formation by compacting together results into a single combined re-
sult. Given a social welfare function f and a possibly incomplete
profile ip, we consider a complete binary graph, whose nodes are
the outcomes, and whose arcs are labeled by non-empty subsets of
{<, >, =, ./}, where ./ represents incomparability. Label l is on the
arc between outcomes A and B if there exists a completion in which
A and B are related by l in the result. We call this structure the com-
bined result of f and ip and we denote it with cr(f, ip). We first
consider how to compute the possible and necessary winners given
the combined result. We will then consider how to compute the com-
bined result.

Consider the arc between an outcome A and an outcome B in the
combined result. Then, if this arc has the label A < B, A is not a
necessary winner, since there is an outcome B which is better than A

in some result. If this arc only has the label A < B, then A is not a
possible winner since we must have A < B in all results. Moreover,
consider all the arcs between A and every other outcome C. Then,
if no such arc has label A < C, then A is a necessary winner. No-
tice, however, that, even if none of the arcs connecting A have just
a single label A < C, then we cannot be sure that A is a possible
winner: A could be better than some outcomes in every completion,
but there might be no completion where it is better than all of them.
We define the following algorithm to compute the necessary winners
and a superset of the possible winners.

Algorithm 1: Necessary and possible winners
Input: Ω: set of outcomes; f: preference aggregation function;
ip: incomplete profile;
Output: P, N: sets of outcomes;
P ← Ω;
N ← Ω;
foreach O ∈ Ω do

if ∃ O′ ∈ Ω such that (O < O′) ∈ cr(f,ip) then
N ← N −O;

if ∃ O′ ∈ Ω such that (O < O′) ∈ cr(f,ip) and (OrO′) 6∈
cr(f, ip) for r ∈ {=, >, ./} then P ← P −O;

return P , N ;

If NW is the set of necessary winners and PW is the set of possi-
ble winners, Algorithm 1 obtains N = NW and P = PW ∗, which
is a superset of the set of possible winners, in time quadratic in the
number of outcomes. This is optimal as the combined result we are
starting from is itself quadratic in size. PW ∗ can be larger than the
set of possible winners for two reasons. First, since we consider one
arc at a time, we may not recognize completions which violate tran-

sitivity. Second, we start from the combined result where we have
already thrown away some information.

The first reason for approximation (that is, non-transitivity) can
be eliminated. In fact, given an outcome O, we eliminate O < O′

from the label of each arc connecting O in the combined result, and
test whether the new structure, which we call the possibility structure
of outcome O (or poss(O)) is consistent with transitivity. This test
is equivalent to testing the consistency of a set of branching tempo-
ral constraints [2], which is NP-hard. Fortunately, however, there are
many classes of branching temporal constraint problems which are
tractable [2], and these are likely to occur when combining prefer-
ences. For example, one tractable class is defined by restricting the
labels to the set {<, >, =}. That is, we do not permit incompara-
bility (./) in the result. Another tractable case is when we combine
preferences using the Pareto social welfare function.

3 TRACTABLE COMPUTATION OF POSSIBLE
AND NECESSARY WINNERS

Unfortunately, a naive computation of the combined result requires
applying the social welfare function to an exponential number of
completions. We identify here some properties often held by pref-
erence aggregation functions which allow us to compute an upper
approximation to the combined result in polynomial time. This upper
approximation can then be used to compute possible and necessary
winners again in polynomial time. Let us denote the set of labels of
an arc between A and B in the combined result as rel(A,B).

The first property we consider is independence to irrelevant alter-
natives (IIA). A social welfare function is said to be IIA if, for any
pair of outcomes A and B, the ordering between A and B in the
result depends only on the relation between A and B given by the
agents. Many preference aggregation functions are IIA, and this is a
desirable property related to the notion of fairness in voting theory
[1].

Given a function which is IIA, to compute the set rel(A, B), we
just need to ask each agent its preference over the pair A and B,
and then use f to compute all possible results between A and B.
However, if agents have incompleteness between A and B, f has
to consider all the possible completions, which is exponential in the
number of such agents.

Assume now that f is also monotonic. We say that an outcome
B improves with respect to another outcome A if the relationship
between A and B does not move left along the following sequence:
>,≥, (./ or =),≤,<. A social welfare function f is monotonic if,
given any two profiles p and p′ and any two outcomes A and B, if
passing from p to p′ B improves with respect to A in one agent i and
pj = p′

j for all j 6= i, then in passing from f(p) to f(p′) B improves
with respect to A.

To compute rel(A,B) assuming IIA and monotonicity, we just
need to consider the agents’ preferences over the pair A and B. How-
ever, because of monotonicity, we don’t need to consider all possible
completions for all agents with incompleteness between A and B,
but just two completions: A < B and B > A. Function f will re-
turn a result for each of these two completions, say AxB and AyB,
where x, y ∈ {<, >, =, ./}. Since f is monotonic, the results of
all the other completions will necessarily be between x and y in the
ordering >,≥, (./ or =),≤, <.

By taking all such relations, we obtain a superset of rel(A,B),
that we call rel∗(A,B). In fact, monotonicity of f assures that, if we
consider profile A < B and we get a certain result, then considering
profiles where A is in a better position w.r.t. B (i.e., A > B, A = B,

or A ./ B), will give an equal or better situation for A in the result.
Notice that we have obtained the set rel∗(A, B) in time polyno-

mial in the number of agents as we only needed to consider two com-
pletions. Under the IIA and monotonicity assumptions, we can thus
obtain in polynomial time a labeled graph similar to the combined
result, but with possibly more labels on the arcs. Then, we can apply
the same reasoning as in the previous section to this labeled graph. In
fact, we can show that the additional labels do not change the neces-
sary and possible winners computed by the algorithm. So, under the
IIA and monotonicity assumptions, we can obtain NW and PW ∗ in
polynomial time.

4 PREFERENCE ELICITATION

One use of necessary and possible winners is in eliciting preferences.
At each stage in preference elicitation, there is a set of possible and
necessary winners. When NW = PW , preference elicitation can
be stopped since we have enough information to declare the winners,
no matter how the remaining incompleteness is resolved [4]. At the
beginning, NW is empty and PW contains all outcomes. As pref-
erences are declared, NW grows and PW shrinks. At each step, an
outcome in PW can either pass to NW or become a loser.

In those steps where PW is still larger than NW , we can use
these two sets to guide preference elicitation and avoid useless work.
In fact, to determine if an outcome A ∈ PW − NW is a loser or
a necessary winner, it is enough to ask agents to declare their pref-
erences over all pairs involving A and another outcome, say B, in
PW . Any outcome outside PW is a loser, and thus is dominated by
at least one possible winner.

If the preference aggregation function is IIA, then all those pairs
(A,B) with a defined preference for all agents can be avoided, since
they will not help in determining the status of outcome A. Moreover,
IIA allows us to consider just one profile when computing the rela-
tions between A and B in the result, and assures that the result is
a precise relation, that is, either <, or >, or =, or ./. In the worst
case, we need to consider all such pairs. To determine all the win-
ners, we thus need to know the relations between A and B for all
A ∈ PW −NW and B ∈ PW .

During preference elicitation, we can also use the consistency test
defined in the previous section to test the consistency of the prefer-
ences of each agent. In particular, if the agent declares outcomes to
be ordered or incomparable, testing the consistency of the agents’
preferences is tractable. If the consistency test is successful, we can
exploit the information deduced by the consistency enforcement to
avoid asking for preferences which are implied by previously elicited
ones. If instead we detect inconsistency, then we can help the agent to
make their preferences consistent by providing one or more triangles
where consistency fails.

REFERENCES
[1] K. J. Arrow, A. K. Sen, and K. Suzumara, Handbook of Social Choice

and Welfare., North-Holland, Elsevier, 2002.
[2] M. Broxvall and P. Jonsson, ‘Point algebras for temporal reasoning:

Algorithms and complexity’, Artificial Intelligence, 149(2), 179–220,
(2003).

[3] L. Chen and P. Pu, ‘Survey of preference elicitation methods’, Technical
Report IC/200467, Swiss Federal Institute of Technology in Lausanne
(EPFL), (2004).

[4] V. Conitzer and T. Sandholm, ‘Vote elicitation: Complexity and strategy-
proofness’, in Proc. AAAI/IAAI 2002, pp. 392–397, (2002).

[5] K. Konczak and J. Lang, ‘Voting procedures with incomplete prefer-
ences’, in Proc. IJCAI-05 Multidisciplinary Workshop on Advances in
Preference Handling, (2005).

