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Abstract. Real-life problems present several kinds of preferences. We focus on
problems with both positive and negative preferences, that we call bipolar prefer-
ence problems. Although seemingly specular notions, these two kinds of prefer-
ences should be dealt with differently to obtain the desired natural behaviour. We
technically address this by generalizing the soft constraint formalism, which is
able to model problems with one kind of preferences. We show that soft con-
straints model only negative preferences, and we define a new mathematical
structure which allows to handle positive preferences as well. We also address
the issue of the compensation between positive and negative preferences, study-
ing the properties of this operation. Finally, we extend the notion of arc consis-
tency to bipolar problems, and we show how branch and bound (with or without
constraint propagation) can be easily adapted to solve such problems.

1 Introduction

Many real-life problems contain statements which can be expressed as preferences.
Our long-term goal is to define a framework where many kinds of preferences can be
naturally modelled and efficiently dealt with. In this paper, we focus on problems which
present positive and negative preferences, that we call bipolar preference problems.

Positive and negative preferences can be thought as two symmetric concepts, and
thus one can think that they can be dealt with via the same operators. However, this
would not model what one usually expects in real scenarios. In fact, usually combina-
tion of positive preferences should produce a higher (positive) preference, while com-
bination of negative preferences should give us a lower (negative) preference.

When dealing with both kinds of preferences, it is natural to express also indiffer-
ence, which means that we express neither a positive nor a negative preference over
an object. Then, a desired behaviour of indifference is that, when combined with any
preference (either positive or negative), it should not influence the overall preference.

Finally, besides combining preferences of the same type, we also want to be able to
combine positive with negative preferences. We strongly believe that the most natural
and intuitive way to do so is to allow for compensation. Comparing positive against
negative aspects and compensating them w.r.t. their strength is one of the core features

F. Azevedo et al. (Eds.): CSCLP 2006, LNAI 4651, pp. 78–92, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Bipolar Preference Problems: Framework, Properties and Solving Techniques 79

of decision-making processes, and it is, undoubtedly, a tactic universally applied to
solve many real life problems.

Positive and negative preferences might seem as just two different criteria to reason
with, and thus techniques such as those usually adopted by multi-criteria optimization
[13] could appear suitable for dealing with them. However, this interpretation would
hide the fundamental nature of bipolar preferences, that is, positive preferences are
naturally opposite of negative preferences. Moreover, in multi-criteria optimization it
is often reasonable to use a Pareto-like approach, thus associating tuples of values to
each solution, and comparing solutions according to tuple dominance. Instead, in bipo-
lar problems, it would be very unnatural to force such an approach in all contexts,
or to associate to a solution a preference which is neither a positive nor a negative
one.

Soft constraints [5] are a useful formalism to model problems with quantitative pref-
erences. However, they can only model negative preferences, since in this framework
preference combination returns lower preferences. In this paper we adopt the soft con-
straint formalism based on semirings to model negative preferences. We then define a
new algebraic structure to model positive preferences. To model bipolar problems, we
link these two structures and we set the highest negative preference to coincide with the
lowest positive preference to model indifference. We then define a combination opera-
tor between positive and negative preferences to model preference compensation, and
we study its properties.

Non-associativity of preference compensation occurs in many contexts, thus we
think it is too restrictive to focus just on associative environments. For example, non-
associativity of compensation arises when either positive or negative preferences are
aggregated with an idempotent operator (such as min or max), while compensation
is instead non-idempotent (such as sum). Our framework allows for non-associativity,
since we want to give complete freedom to choose the positive and negative algebraic
structures. However, we also describe a technique that, given a negative structure, builds
a corresponding positive structure and an associative compensation operator.

Finally, we consider the problem of finding optimal solutions of bipolar problems,
by suggesting a possible adaptation of constraint propagation and branch and bound to
the generalized scenario.

Summarizing, the main results are:

– a formal definition of an algebraic structure to model bipolar preferences;
– the study of the notion of compensation and of its properties (such as associativity);
– a technique to build a bipolar preference structure with an associative compensation

operator;
– the adaptation of branch and bound to solve bipolar problems;
– the definition of bipolar propagation and its use within a branch and bound solver.

The paper is organized as follows. Section 2 recalls the main notions of semiring-
based soft constraints. Section 3 describes how to model negative preferences using
usual soft constraints, and how to model positive preferences. Section 4 shows how to
model both positive and negative preferences, and Section 5 defines constraint problems
with both positive and negative preferences. Section 6 shows that it is important to
have a bipolar structure for expressing both positive and negative preferences, since
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expressing all the problems’ requirements in a positive (or negative) form might lead to
different optimal solutions. Section 7 shows that very often the compensation operator
is not associative and it describes a technique to build a bipolar preference structure
with an associative compensation operator. Section 8 shows how to adapt branch and
bound to solve bipolar problems, how to define bipolar propagation and its use within
a branch and bound solver. Finally, Section 9 describes the existing related work and
gives some hints for future work.

Earlier versions of parts of this paper have appeared in [6].

2 Semiring-Based Soft Constraints

A soft constraint [5] is a classical constraint[1] where each instantiation of its variables
has an associated value from a (totally or partially ordered) set. This set has two oper-
ations, which makes it similar to a semiring, and is called a c-semiring. A c-semiring
is a tuple (A, +, ×,0,1) s.t. A is a set and 0,1 ∈ A; + is commutative, associative,
idempotent, 0 is its unit element, and 1 is its absorbing element; × is associative, com-
mutative, distributes over +, 1 is its unit element and 0 is its absorbing element. Given
the relation ≤S over A s.t. a ≤S b iff a + b = b, ≤S is a partial order; + and × are
monotone on ≤S; 0 is its minimum and 1 its maximum; 〈A, ≤S〉 is a lattice and, for all
a, b ∈ A, a+b = lub(a, b). Moreover, if × is idempotent, then 〈A, ≤S〉 is a distributive
lattice and × is its glb. Informally, the relation ≤S gives us a way to compare (some of
the) tuples of values and constraints. In fact, when we have a ≤S b, we will say that b
is better than a.

Given a c-semiring S = (A, +, ×,0,1), a finite set D (the domain of the variables),
and an ordered set of variables V , a constraint is a pair 〈def, con〉 where con ⊆ V
and def : D|con| → A. Therefore, a constraint specifies a set of variables (the ones
in con), and assigns to each tuple of values of D of these variables an element of the
semiring set A. Given a subset of variables I ⊆ V , and a soft constraint c = 〈def, con〉,
the projection of c over I , written c ⇓I , is a new soft constraint 〈def ′, con′〉, where
con′ = con∩I and def(t′) =

∑
{t|t↓con′=t′} def(t). The scope, con′, of the projection

constraint contains the variables that con and I have in common, and thus con′ ⊆
con. Moreover, the preference associated to each assignment to the variables in con′,
denoted with t′, is the highest (

∑
is the additive operator of the c-semiring) among the

preferences associated by def to any completion of t′, t, to an assignment to con.
A soft constraint satisfaction problem (SCSP) is just a set of soft constraints over a set

of variables. A classical CSP is just an SCSP where the chosen c-semiring is: SCSP =
({false, true}, ∨, ∧, false, true). On the other hand, fuzzy CSPs can be modelled in
the SCSP framework by choosing the c-semiring: SFCSP = ([0, 1], max, min, 0, 1).
For weighted CSPs, the semiring is SWCSP = (R+, min, +, +∞, 0). Here preferences
are interpreted as costs of which we want to minimize the sum. For probabilistic CSPs,
the semiring is SPCSP = ([0, 1], max,×, 0, 1). Here preferences are interpreted as
probabilities and the aim is to maximize the joint probability.

Given an assignment to all the variables of an SCSP, we can compute its preference
value by combining the preferences associated by each constraint to the subtuples of
the assignments referring to the variables of the constraint. An optimal solution of an
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SCSP is then a complete assignment t such that there is no other complete assignment
t′ with pref(t) <S pref(t′).

3 Negative and Positive Preferences

The structure we use to model negative preferences is exactly a c-semiring, as defined in
Section 2. In fact, in a c-semiring the element which acts as indifference is 1, since ∀a ∈
A, a × 1 = a. This element is the best in the ordering, which is consistent with the fact
that indifference is the best preference when using only negative preferences. Moreover,
in a c-semiring, combination goes down in the ordering, since a × b ≤ a, b. This can
be naturally interpreted as the fact that combining negative preferences worsens the
overall preference. From now on, we use (N, +n, ×n, ⊥n, �n) as c-semiring to model
negative preferences.

When dealing with positive preferences, we want two main properties to hold: com-
bination should bring to better preferences, and indifference should be lower than all the
other positive preferences. These properties can be found in the following structure.

Definition 1. A positive preference structure is a tuple (P, +p, ×p, ⊥p, �p) s.t.

– P is a set and �p, ⊥p∈ P ;
– +p, the additive operator, is commutative, associative, idempotent, with ⊥p as its

unit element (∀a ∈ P, a +p ⊥p= a) and �p as its absorbing element (∀a ∈
P, a +p �p = �p);

– ×p, the multiplicative operator, is associative, commutative and distributes over
+p (a ×p (b +p c) = (a ×p b) +p (a ×p c)), with ⊥p as its unit element and �p as
its absorbing element1.

Notice that the additive operator of this structure has the same properties as the cor-
responding one in c-semirings, and thus it induces a partial order over P in the usual
way: a ≤p b iff a +p b = b. This allows to prove that +p is monotone over ≤p and that
it is the least upper bound in the lattice (P, ≤p). On the other hand, the multiplicative
operator has different properties. More precisely, the best element in the ordering (�p)
is now its absorbing element, while the worst element (⊥p) is its unit element. This
reflects the desired behavior of the combination of positive preferences.

Theorem 1. Given a positive preference structure (P, +p, ×p, ⊥p, �p), consider the
relation ≤p over P . Then, ×p is monotone over ≤p (that is, for any a, b ∈ P s.t. a ≤p b,
then a ×p d ≤p b ×p d, ∀d ∈ P ), and ∀a, b ∈ P , a ×p b ≥p a +p b ≥p a, b.

Proof. Since a ≤p b iff a+p b = b, then b×p d = (a+p b)×p d = (a×p d)+p (b×p d).
Thus a ×p d ≤p b ×p d. Also, a ×p b = a ×p (b +p ⊥p) = (a ×p b) +p (a ×p ⊥p)
= (a ×p b) +p a. Thus a ×p b ≥p a (the same for b). Finally: a ×p b ≥ a, b. Thus
a ×p b ≥ lub(a, b) = a +p b. Q.E.D.

In a positive preference structure, ⊥p is the element modelling indifference. In fact, it
is the worst one in the ordering and it is the unit element for the combination operator

1 The absorbing nature of �p can be derived from the other properties.
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×p. These are exactly the desired properties for indifference w.r.t. positive preferences.
The role of �p is to model a very high preference, much higher than all the others. In
fact, since it is the absorbing element of the combination operator, when we combine
any positive preference a with �p, we get �p.

An example of a positive preference structure is P1 = (R+, max, +, 0, +∞), where
preferences are positive reals. The smallest preference that can be assigned is 0. It rep-
resents the lack of any positive aspect and can thus be regarded as indifference. Prefer-
ences are aggregated taking the sum and are compared taking the max.

Another example is P2 = ([0, 1], max, max, 0, 1). In this case preferences are reals
between 0 and 1, as in the fuzzy semiring for negative preferences. However, the com-
bination operator is max, which gives, as a resulting preference, the highest one among
all those combined.

As an example of a partially ordered positive preference structure consider the Carte-
sian product of the two structures described above: (R+×[0, 1], (max, max), (+, max),
(0, 0), (+∞, 1)). Positive preferences, here, are ordered pairs where the first element
is a positive preference of type P1 and the second one is a positive preference of type
P2. Consider for example the (incomparable) pairs (8, 0.1) and (3, 0.8). Applying the
aggregation operator (+,max) gives the pair (11, 0.8) which, as expected, is better than
both pairs, since max(8, 3, 11) = 11 and max(0.1, 0.8, 0.8) = 0.8.

4 Bipolar Preference Structures

Once we are given a positive and a negative preference structure, a naive way to com-
bine them would be performing the Cartesian product of the two structures. For exam-
ple, if we have a positive structure P and a negative structure N , taking their Cartesian
product would mean that, given a solution, it will be associated with a pair (p, n), where
p ∈ P is the overall positive preference and n ∈ N is the overall negative preference.
Such a pair is in general neither an element of P nor of N , so it is neither positive
nor negative, unless one or both of p and n are the indifference element. Moreover, the
ordering induced over these pairs is the well known Pareto ordering, which may induce
a lot of incomparability among the solutions. These two features imply that compensa-
tion is not allowed at all. Instead, we believe that it should be allowed, if desired. We
will therefore now describe a bipolar preference structure that allows for it.

Definition 2. A bipolar preference structure is a tuple (N, P, +, ×, ⊥, �, �), where

– (P, +|P , ×|P , �, �) is a positive preference structure;
– (N, +|N , ×|N , ⊥, �) is a c-semiring;
– + : (N ∪ P )2 −→ (N ∪ P ) is s.t. an + ap = ap for any an ∈ N and ap ∈ P ; this

operator induces as partial ordering on N ∪P : ∀a, b ∈ P ∪N , a ≤ b iff a+b = b;
– × : (N ∪P )2 −→ (N ∪P ) is an operator (called the compensation operator) that,

for all a, b, c ∈ N ∪ P , satisfies the following properties:
• commutativity: a × b = b × a;
• monotonicity: if a ≤ b, then a × c ≤ b × c.
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In the following, we will write +n instead of +|N and +p instead of +|P . Similarly for
×n and ×p. Moreover, we will sometimes write ×np when operator × will be applied
to a pair in (N × P ).

Notice that bipolar structures generalize both negative and positive preference struc-
tures via a bipolar structure with a single positive/negative preference element.

Given the way the ordering is induced by + on N ∪ P , easily, we have ⊥≤ � ≤ �.
Thus, there is a unique maximum element (that is, �), a unique minimum element
(that is, ⊥); the element � is smaller than any positive preference and greater than
any negative preference, and it is used to model indifference. The shape of a bipolar
preference structure is shown in the following figure:

p+,P p

N +
n n,

Notice that, although all positive preferences are strictly above negative preferences,
our framework does not prevent from using the same scale, or partially overlapping
scales, to represent positive and negative preferences.

A bipolar preference structure allows us to have different ways to model and reason
about positive and negative preferences. In fact, we can have different lattices (P, ≤p)
and (N, ≤n). This is common in real-life problems, where negative and positive state-
ments are not necessarily expressed using the same granularity. For example, we could
be satisfied with just two levels of negative preferences, while requiring several levels
of positive preferences. Nevertheless, our framework allows to model cases in which
the two structures are isomorphic, as well (see Section 7).

Notice that the combination of a positive and a negative preference is a preference
which is higher than, or equal to, the negative one and lower than, or equal to, the
positive one.

Theorem 2. Given a bipolar preference structure (N, P, +, ×, ⊥, �, �), for all p ∈ P
and n ∈ N , n ≤ p × n ≤ p.

Proof. For any n ∈ N and p ∈ P , � ≤ p and n ≤ �. By monotonicity of ×, we have:
n × � ≤ n × p and n × p ≤ � × p. Hence: n = n × � ≤ n × p ≤ � × p = p. Q.E.D.

This means that the compensation of positive and negative preferences lies in one of the
chains between the two combined preferences. Notice that all such chains pass through
the indifference element �. Possible choices for combining strictly positive with strictly
negative preferences are thus the average or the median operator, or also the minimum
or the maximum.

Moreover, by monotonicity, we can show that if � × ⊥ = ⊥, then the result of the
compensation between any positive preference and the bottom element is the bottom
element, and if � × ⊥ = �, then the compensation between any negative preference
and the top element is the top element.

Theorem 3. Given a bipolar preference structure (N, P, +, ×, ⊥, �, �), if �×⊥ = ⊥,
then ∀p ∈ P , p × ⊥ = ⊥, while, if � × ⊥ = �, then ∀n ∈ N , n × � = �.
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Proof. Assume � × ⊥ = ⊥. Since for all p ∈ P , p ≤ �, then, by monotonicity of ×,
p × ⊥ ≤ � × ⊥ = ⊥, hence p × ⊥ = ⊥.

Assume � × ⊥ = �. Since for all n ∈ N , ⊥ ≤ n, then, by monotonicity of ×,
� = � × ⊥ ≤ � × n, hence � × n = �. Q.E.D

In the following table we give three examples of bipolar preference structures, one for
each row.

N,P + × ⊥, �, �
R−, R+ +p=+n=+np= max ×p=×n=×np=sum −∞, 0, +∞

[−1, 0], [0, 1] +p=+n=+np=max ×p=max, ×n=min, ×np =sum −1, 0, 1
[0, 1], [1, +∞] +p=+n=+np=max ×p=×n=×np=prod 0, 1, +∞

The structure described in the first row uses real numbers as positive and negative pref-
erences. Compensation is obtained by summing the preferences, while the ordering is
given by the max operator. In the second structure we have positive preferences between
0 and 1 and negative preferences between -1 and 0. Aggregation of positive preferences
is max and of negative preferences is min, while compensation between positive and
negative preferences is sum, and the order is given by max. In the third structure we
use positive preferences between 1 and +∞ and negative preferences between 0 and
1. Compensation is obtained by multiplying the preferences and ordering is again via
max. Notice that if � × ⊥ ∈ {�, ⊥}, then compensation in the first and in the third
structure is associative.

5 Bipolar Preference Problems

A bipolar constraint is just a constraint where each assignment of values to its variables
is associated to one of the elements in a bipolar preference structure. A bipolar CSP
(V, C) is then just a set of variables V and a set of bipolar constraints C over V . There
could be many ways of defining the optimal solutions of a bipolar CSP. Here we propose
one which avoids problems due to the possible non-associativity of the compensation
operator, since compensation never involves more than two preference values.

Definition 3. Given a bipolar preference structure (N, P, +, ×, ⊥, �, �), a solution of
a bipolar CSP (V, C) is a complete assignment to all variables in V , say s, and an
associated preference which is computed as follows: pref(s) = (p1 ×p . . . ×p pk) ×
(n1 ×n . . . ×n nl), where pi ∈ P for i := 1, . . . , k and nj ∈ N for j := 1, . . . , l
and where ∃ 〈defi, coni〉 ∈ C s.t. pi = defi(s ↓con), and ∃〈defj , conj〉 ∈ C s.t.
nj = defj(s ↓con). A solution s is an optimal solution if there is no other solution s′

with pref(s′) > pref(s).

In this definition, the preference of a solution s is obtained by combining all the positive
preferences associated to its projections over the constraints, by using ×p, combining
all the negative preferences associated to its projections over the constraints, by using
×n, and then, combining the two preferences obtained so far (one positive and one
negative) by using the operator ×np.

Such a definition follows the same idea proposed in Chapter IV of [4] for evaluat-
ing the tendency of an act. Such an idea consists of summing up all the values of all
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the pleasures produced by the considered act on one side, and those of all the pains
produced by it on the other, and then balancing these two resulting values in a value
which can be on the side of pleasure or on the side of pain. If this value is on the side
of pleasure, then the tendency of the act is good, otherwise the tendency is bad.

Consider the scenario in which we want to buy a car and we have preferences over
some features. In terms of color, we like red, we are indifferent to white, and we hate
black. Also, we like convertible cars a lot and we don’t care much for big cars (e.g.,
SUVs). In terms of engines, we like diesel. However, we don’t want a diesel convertible.

We represent positive preferences via positive integers, negative preferences via neg-
ative integers and we maximize the sum of all kinds of preferences. This can be mod-
elled by a bipolar preference structure where N = [−∞, 0], P = [0, +∞], + =max,
×=sum, ⊥ = −∞, � = 0, � = +∞.

The following figure shows the structure (variables, domains, constraints, and pref-
erences) of such a bipolar CSP, where preferences have been chosen to fit the informal
specification above, and 0 is used to model indifference (also when tuples are not shown).

red     
black  
white   

+10
−10
   0

C

SUV
convertible +20

−3

E

T (convertible,diesel)  −20

diesel
gasoline

+10
0

  

Consider solution s1 =(red,convertible,diesel). We have pref(s1) = (def1(red) ×
def2(convertible) × def3(diesel)) × def4(convertible, diesel) = (10 + 20 + 10) +
(−20) = 20. We can see that the optimal solution is (red, convertible, gasoline) with
global preference of 30.

Consider now a different bipolar preference structure, which differs from the previ-
ous one only for ×p, which is now max. Now solution s1 has preference pref(s1) =
(def1(red)×def2(convertible)×def3(diesel))×def4(convertible, diesel) = max(10,
20, 10) + (−20) = 0. It is easy to see that now an optimal solution has preference 20.
There are two of such solutions: one is the same as the optimal solution above, and the
other one is (white,convertible, gasoline). The two cars have the same features except
for the color. A white convertible is just as good as a red convertible because we de-
cided to aggregate positive preference by taking the maximum elements rather than by
summing them.

6 Positive Versus Negative Preferences

Positive and negative preferences look so similar that, even though we know they need
different combination operators, we could wonder why we need two different structures
to handle them. Why can’t we just have one structure, for example the negative one, and
transform each positive preference into a negative one? For example, if there are only
two colors for cars, (i.e., red and blue), and we only like blue, instead of saying this
using positive preferences (i.e., we like blue with a certain positive preference), we
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could phrase it using negative preferences (i.e., we don’t like red with a certain negative
preference). In other words, instead of associating a positive preference to blue and
indifference to red, we could give a negative preference to red and indifference to blue.

In this section we will show that, by doing this, we could modify the solution or-
dering, thus representing a different optimization problem. Thus sometimes the two
preference structures are needed to model the problems under consideration: using just
one of them would not suffice.

It is easy to show that, by moving from a positive to a negative modelling of the same
information, as we have done in the example above, all solutions get a lower preference
value. In fact, in this transformation, a positive preference is replaced by indifference,
or indifference is replaced by a negative preference. So, in any case, some preference
is replaced by a lower one, and by monotonicity of the aggregation operators (×n, ×p,
and ×), the overall preference of the solutions is lower as well.

However, it is worth noting that this preference lowering might not preserve the
ordering among solutions. That is, solutions that were ordered in a certain way before
the modification, can be ordered in the opposite way after it. This is due to the fact that
aggregation of positive and negative preferences may behave differently. The following
example shows this phenomenon.

Consider the bipolar preference structure (R−, R+, max, ×, −∞, 0, +∞), where ×
is such that ×p=×np= sum and ×n = min. This means that we want to maximize the
sum of positive preferences, maximize the minimal negative preference (thus negative
preferences are handled as fuzzy constraints), that positive preferences are between 0
and +∞, and negative preferences are between 0 and -∞. Compensation is via alge-
braic sum, thus values v and −v are compensated completely (that is, the result of the
compensation is 0), while the compensation of values v and −v′ is v − v′.

Consider now a bipolar CSP over this structure with four variables, say X, Y, Z, W ,
where each variable has a Boolean domain as follows: D(X) = {a, ā}, D(Y ) = {b, b̄},
D(Z) = {c, c̄}, and D(W ) = {d, d̄}. Assume now that the preference of a is 2, of b is
1, of c is 2.4, and of d is 0.5, while the preference of the other elements is indifference
(that is, 0 in this example). This means that we have expressed all our statements in a
positive form.

Consider now two solutions s and s′ as follows: s = (a, b, c̄, d̄) and s′ = (ā, b̄, c, d).
By computing the preference of s, we get (2 + 1) + min(0, 0) = 3, while for s′ we get
min(0, 0) + (2.4 + 0.5) = 2.9. Thus s is better than s′.

Assume now to express the same statements in negative terms assuming that if we
like at level p an assignment t, then we dislike t̄ at the same level p. Hence, the prefer-
ence of ā is −2, of b̄ is −1, of c̄ is −2.4, and of d̄ is −0.5, while the preference of the
other elements is 0. Now the preference of s is (0 + 0) + min(−2.4, −0.5) = −2.4,
while the preference of s′ is min(−2, −1) + (0 + 0) = −2. Thus s′ is better than s.

7 Associativity of Preference Compensation

In general, the compensation operator × may be not associative. Here we list some
sufficient conditions for the non-associativity of the × operator.
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Theorem 4. Given a bipolar preference structure (P, N, +, ×, ⊥, �, �), operator × is
not associative if at least one of the following two conditions is satisfied:

– � × ⊥ = c ∈ (N ∪ P ) − {�, ⊥};
– ∃p ∈ P − {�, �} and n ∈ N − {⊥, �} s.t. p × n = � and at least one of the

following conditions holds:
• ×p or ×n is idempotent;
• ∃p′ ∈ P − {p, �} s.t. p′ × n = � or ∃n′ ∈ N − {n, ⊥} s.t. p × n′ = �;
• � × ⊥ = ⊥ and ∃n′ ∈ N − {⊥} s.t. n × n′ = ⊥;
• � × ⊥ = � and ∃p′ ∈ P − {�} s.t. p × p′ = �;
• ∃a, c ∈ N ∪ P s.t. a × p = c iff c × n �= a (or ∃a, c ∈ N ∪ P s.t. a × n = c iff

c × p �= a).

Proof. If c ∈ P−{�}, then �×(�×⊥) = �×c = �, while (�×�)×⊥ = �×⊥ = c.
If c ∈ N − {⊥}, then ⊥ × (⊥ × �) = ⊥ × c = ⊥, while (⊥ × ⊥) × � = ⊥ × � = c.

Assume that ∃p ∈ P − {�, �} and n ∈ N − {⊥, �} s.t. p × n = �. If ×p is
idempotent, then p × (p × n) = p × � = p, while (p × p) × n = p × n = �. Similarly
if ×n is idempotent.

If ∃p′ ∈ P −{p, �} s.t. p′ ×n = �, then (p×n)× p′ = p′, while p× (n× p′) = p.
Analogously, if ∃n′ ∈ N − {n, ⊥} s.t. p × n′ = �.

If � × ⊥ = ⊥, then, by Theorem 3, p × ⊥ = ⊥. If ∃n′ ∈ N − {⊥} s.t. n × n′ = ⊥,
then (p × n) × n′ =� × n′ = n′, while p × (n × n′) = p × ⊥ = ⊥ �= n′.

If � × ⊥ = �, then, by Theorem 3, n × � = �. If ∃p′ ∈ P − {�} s.t. p × p′ = �,
then (n × p) × p′ =� × p′ = p′, while n × (p × p′) =n × � = � �= p′.

If c×n �= a, then (a×p)×n = c×n �= a, but a×(p×n) = a×� = a. Analogously
if c × p �= a. Q.E.D.

Notice that sufficient conditions refer to various aspects of a bipolar preference struc-
ture: properties of operators, shape of P and N orderings, the relation between × and
the other operators. Since some of these conditions often occur in practice, it is not
reasonable to require always associativity of ×.

It is however useful to be able to build bipolar preference structures where compen-
sation is associative. It is obvious that, if we are free to choose any positive and any
negative preference structure when building the bipolar framework, we will never be
able to assure associativity of the compensation operator. Thus, to assure this, we must
pose some restrictions on the way a bipolar preference structure is built.

We describe now a procedure to build positive preferences as inverses of negative
preferences, that assures that the resulting bipolar preference structure has an associa-
tive compensation operator. To do that, ×n must be non-idempotent. The methodology
is called localization and represents a standard systematic technique for adding multi-
plicative inverses to a (semi)ring [8].

Given a (semi)ring with carrier set N (representing, in our context, a negative pref-
erence structure), and a subset S ⊆ N , we can construct another structure with carrier
set P (representing, for us, a positive preference structure), and a mapping from N to
P which makes all elements in the image of S invertible in P . The localization of N by
S is also denoted by S−1N .
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We can select any subset S of N . However, it is usual to select a subset S of N
which is closed under ×n, such that 1 ∈ S (1 is the unit for ×n, which represents
indifference), and 0 �∈ S.

Given N and S, let us consider the quotient field of N w.r.t. S. This is denoted
by Quot(N, S), and will represent the carrier set of our bipolar structure. One can
construct Quot(N, S) by just taking the set of equivalence classes of pairs (n, d), where
n and d are elements of N and S respectively, and the equivalence relation is: (n, d) ≡
(m, b) ⇐⇒ n ×n b = m ×n d. We can think of the class of (n, d) as the fraction n

d .
The embedding of N in Quot(N, S) is given by the mapping f(n) = (n,1), thus

the (semi)ring N is a subring of S−1N via the identification f(a) = a
1 .

The next step is to define the + and × operator in Quot(N, S), as function of the
operators +n and ×n of N . We define (n, d)+(m, b) = ((n×n b)+n (m×n d), d×n b)
and (n, d)× (m, b) = (m×n n, d×n b). By using the fraction representation we obtain
the usual form where the addition and the multiplication of the formal fractions are
defined according to the natural rules: a

s + b
t = (a×nt)+n(b×ns)

s×nt and a
s × b

t = a×nb
s×nt .

It can be shown that the structure (P, +p, ×p,
1
1 , 1

0 ), where P = {1
a s.t. a ∈ (S ∪

{0})}, +p and ×p are the operators + and × restricted over 1
S × 1

S , 1
1 is the bottom

element in the induced order (notice that the element coincide with 1), and 1
0 is the top

element of the structure2, is a positive preference structure. Moreover, Quot(N, S) =
P ∪N , and it is the carrier of a bipolar preference structure 〈P, N, +, ×,0, 1

1 , 1
0〉 where

× is an associative compensation operator by construction.
Notice that the first example of the table in Section 4, as well as the third example

restricted to rational numbers, can be obtained via the localization procedure.

8 Solving Bipolar Preference Problems

Bipolar problems are NP-complete, since they generalize both classical and soft con-
straints, which are already known to be difficult problems [5]. In this section we will
consider how to adapt some usual techniques for soft constraints to bipolar problems.

8.1 Branch and Bound

Preference problems based on c-semirings can be solved via a branch and bound tech-
nique (BB), possibly augmented via soft constraint propagation, which may lower the
preferences and thus allow for the computation of better bounds [5].

In bipolar CSPs, we have both positive and negative preferences. However, if the
compensation operator is associative, standard BB can be applied. Thus bipolar prefer-
ences can be handled without additional effort.

However, if compensation is not associative, the upper bound computation has to
be slightly changed to avoid performing compensation before all the positive and the
negative preferences have been collected. More precisely, each node of the search tree
is associated to a positive and a negative preference, say p and n, which are obtained
by aggregating all preferences of the same type obtained in the instantiated part of
the problem. Next, all the best preferences (which may be positive or negative) in the

2 This element is introduced ad hoc because 0 is not an unit and cannot be used to build its
inverse.
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uninstantiated part of the problem are considered. By aggregating those of the same
type, we get a positive and a negative preference, say p′ and n′, which can be combined
with the ones associated to the current node. This produces the upper bound ub =
(p ×p p′) × (n ×n n′), where p′ = p1 ×p . . . ×p pw, n′ = n1 ×n . . . ×n ns, with
w + s = r, where r is the number of uninstantiated variables/constraints. Notice that
ub is computed via r − 1 aggregation steps and one compensation step.

On the other hand, when compensation is associative, we don’t need to postpone
compensation until all constraints have been considered. Thus, ub can be computed as
ub = a1 × . . . × ap+r, where ai ∈ N ∪ P is the best preference found in a constraint
of either the instantiated part of the problem (first p elements) or the uninstantiated part
of the problem (last r elements). Thus ub can be computed via at most p + r − 1 steps
among which there can be many compensation steps.

8.2 Bipolar Propagation

When looking for an optimal solution, BB can be helped by some form of partial or full
constraint propagation. To see whether this can be done when solving bipolar problems
as well, we must first understand what constraint propagation means in such problems.
For sake of semplicity, we will focus here on arc-consistency.

Given any bipolar constraint, let us first define its negative version neg(c), which
is obtained by just replacing the positive preferences with indifference. Similarly, the
positive version pos(c) is obtained by replacing negative preferences with indifference.

A binary bipolar constraint c is then said negatively arc-consistent (NAC) iff neg(c)
is soft arc-consistent. If the binary constraint connects variables X and Y , let us call it
cXY , and let us call cX the soft domain of X and cY the soft domain of Y . Then, being
soft arc consistent means that neg(cX) = (neg(cX) ×n neg(cY ) ×n neg(cXY )) ⇓X

and neg(cY ) = (neg(cX)×nneg(cY )×nneg(cXY )) ⇓Y . If this is not so, we can make
a binary bipolar constraint NAC by modifying the soft domains of its two variables such
that the two equations above hold. The modifications required can only decrease some
preference values. Thus some negative preferences can become more negative than be-
fore. If operator ×n is idempotent, then such modifications generate a new constraint
which is equivalent to the given one.

Let us now consider the positive version of a constraint. Let us also define an op-
eration ⇑X , which, taken any constraint cS over variables S such that X ∈ S, com-
putes a new constraint over X as follows: for every value a in the domain of X , its
preference is computed by taking the greatest lower bound of all preferences given by
cS to tuples containing X = a. Then we say that a binary bipolar constraint is posi-
tively arc-consistent (PAC) iff cX = (pos(cX)×p pos(cY )×p pos(cXY ))⇑X and cY =
(pos(cX) ×p pos(cY ) ×p pos(cXY ))⇑Y . If this is not so, we can make a binary bipo-
lar constraint PAC by modifying the soft domains of its two variables such that the two
equations above hold. The modifications required can only involve the increase of some
preference values. Thus some positive preferences can become more positive than be-
fore. If operator ×p is idempotent, such modifications generate a new constraint which
is equivalent to the given one.

Finally, we say that a binary bipolar constraint is Bipolar Arc-Consistent (BAC) iff
it is NAC and PAC. A bipolar constraint problem is BAC iff all its constraints are BAC.
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If a bipolar constraint problem is not BAC, we can consider its negative and positive
versions and achieve PAC and NAC on them. If both ×n and ×p are idempotent, this
can be seen as the application of functions which are monotone, inflationary, and idem-
potent on a suitable partial order. Thus usual algorithms based on chaotic iterations [1]
can be used, with the assurance of terminating and having a unique equivalent result
which is independent of the order in which constraints are considered. However, this
can generate two versions of the problem (of which one is NAC and the other one is
PAC) which could be impossible to reconcile into a single bipolar problem.

The problem can be solved by achieving only partial forms of PAC and NAC in a
bipolar problem. The basic idea is to consider the given bipolar problem, apply the
NAC and PAC algorithms to its negative and positive versions, and then modify the
preferences of the original problem only when the two new versions can be reconciled,
that is, when at least one of the two new preferences is the indifference element. In fact,
this means that, in one of the two consistency algorithms, no change has been made.
If this holds, the other preference is used to modify the original one. This algorithm
achieves a partial form of BAC, that we call p-BAC, and assures equivalence.

b ... +0.1 
a ...  −0.2

ba ...  +0.6
bb ...  +0.7 

a ...  0
b ...  0 
a ...  +0.5

aa ...   0
ab ...   0 

b ... +0.1 +0.6

PAC

NAC

x y
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−0.4

x y BAC

x y
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ab ...  −0.2 
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a ...  −0.2

x y
aa ...  −0.5
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a ... +0.5
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b ...  −0.4+0.6
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(b)

(c)

(d)

Fig. 1. How to make a bipolar constraint p-BAC

In Figure 1 it is shown how to make a bipolar constraint partially Bipolar Arc-
Consistent. Part (a) shows a bipolar constraint, named cX , over variable X , a bipolar
constraint, named cY , over variable Y , and a bipolar constraint, named cXY , linking
X and Y . Preferences are modelled by the bipolar preference structure (N = [−1, 0],
P = [0, 1], + = max, ×, ⊥= −1, � = 0, � = 1), where × is such that ×p = max,
×n = min and ×np = sum. Since preferences are given independently in cX , cY and
cXY , it is possible to give a low positive preference for a value of X (e.g., X = b) in
cX , a negative preference for a value of Y (e.g., X = b) in CY , but an high positive
preference for the combination of such values in cXY . In Part (b) we present the positive
version of cXY , that becomes PAC, by increasing the positive preference associated to
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X = b from +0.1 to +0.6. Part (c) presents the negative version of cXY , that becomes
NAC, by decreasing the negative preference associated to X = a from −0.2 to −0.4.
In Part (d) we show how to achieve p-BAC of cXY . For obtaining p-BAC we must rec-
oncile the modified preferences obtained in Part (b) and in Part (c) when it is possible.
Since in this example it is always possible to reconcile such preferences, we obtain a
bipolar constraint which is not only p-BAC, but also BAC.

In this approach we require idempotency of ×p and ×n. However, we could apply
arc-consistency also when such operators are not idempotent, by following the extended
version of arc-consistency presented in [10,7,18].

Notice that our algorithm will possibly decrease some negative preferences and in-
crease some positive preferences. Therefore, if we use constraint propagation to im-
prove the bounds in a BB algorithm, it will actually sometimes produce worse bounds,
due to the increase of the positive preferences. We will thus use only the propagation of
negative preferences (that is, NAC) within a BB algorithm. Since the upper bound is just
a combination of several preferences, and since preference combination is monotonic,
lower preferences give a lower, and thus better, upper bound.

9 Related and Future Work

Bipolarity is an important topic in several fields, such as psychology [9,16,19,20] and
multi-criteria decision making [15] and it has recently attracted interest in the AI com-
munity, especially in argumentation [17] and qualitative reasoning [2,3,11,12]. These
works consider how two alternatives should be compared, given for each a set of posi-
tive arguments and a set of negative ones, but they don’t analyze the question of com-
binatorial choice.

Two works in qualitative reasoning which are directly related to our approach are
those described in [2,3]. In such papers a bipolar preference model based on a fuzzy-
possibilistic approach is described where fuzzy preferences are considered and negative
preferences are interpreted as violations of constraints. In this case precedence is given
to negative preference optimization, and positive preferences are only used to distin-
guish among the optimals found in the first phase, thus not allowing for compensation.

Another related work is [14], which considers only totally ordered unipolar and bipo-
lar preference scales, but not partially ordered bipolar scales like us. When the prefer-
ences are totally ordered, operators ×n and ×p described here correspond respectively
to the t−norm and t−conorm used in [14]. Moreover, in [14] it is defined an operator,
the uninorm, which can be seen as a restricted form of compensation and it is forced
to always be associative.

We plan to develop a solver for bipolar CSPs, which should be flexible enough to
accommodate for both associative and non-associative compensation operators. The
outlined algorithms for BB, NAC, PAC, and p-BAC will also be implemented and tested
over classes of bipolar problems.

We also intend to consider the presence of uncertainty in bipolar problems, possibly
using possibility theory and to develop solving techniques for such scenarios. Another
line of future research is the generalization of other preference formalisms, such as
multicriteria methods and CP-nets, to deal with bipolar preferences and to study the
relation between bipolarization and tradeoffs.
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