
Dealing with Incomplete Preferences in Soft Constraint
Problems

Mirco Gelain, Maria Silvia Pini, Francesca Rossi, and K. Brent Venable

Dipartimento di Matematica Pura ed Applicata, Università di Padova, Italy
{mgelain,mpini,frossi,kvenable}@math.unipd.it

Abstract. We consider soft constraint problems where some of the preferences
may be unspecified. This models, for example, situations with several agents pro-
viding the data, or with possible privacy issues. In this context, we study how to
find an optimal solution without having to wait for all the preferences. In particu-
lar, we define an algorithm to find a solution which is necessarily optimal, that is,
optimal no matter what the missing data will be, with the aim to ask the user to
reveal as few preferences as possible. Experimental results show that in many
cases a necessarily optimal solution can be found without eliciting too many
preferences.

1 Introduction

Traditionally, tasks such as scheduling, planning, and resource allocation have been
tackled using several techniques, among which constraint reasoning is one of the
winning ones: the task is represented by a set of variables, their domains, and a set
of constraints, and a solution of the problem is an assignment to all the variables in
their domains such that all constraints are satisfied. Preferences or objective functions
have been used to extend such scenario and allow for the modelling of constraint op-
timization, rather than satisfaction, problems. However, what is common to all these
approaches is that the data (variables, domains, constraints) are completely known be-
fore the solving process starts.

On the contrary, the increasing use of web services and in general of multi-agent
applications demands for the formalization and handling of data that is only partially
known when the solving process works, and that can be added later, for example via
elicitation. In many web applications, data may come from different sources, which
may provide their piece of information at different times. Also, in multi-agent settings,
data provided by some agents may be voluntarily hidden due to privacy reasons, and
only released if needed to find a solution to the problem.

Recently, some lines of work have addressed these issues by allowing for open settings
in CSPs: both open CSPs [5,7] and interactive CSPs [11] work with domains that can be
partially specified, and in dynamic CSPs [4] variables, domains, and constraints may
change over time. It has been shown that these approaches are closely related. In fact,
interactive CSPs can be seen as a special case of both dynamic and open CSPs [10].

Here we consider the same issues but we focus on constraint optimization problems
rather than CSPs, thus looking for an optimal solution rather than any solution. In partic-
ular, we consider problems where constraints are replaced by soft constraints, in which

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 286–300, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Dealing with Incomplete Preferences in Soft Constraint Problems 287

each assignment to the variables of the constraint has an associated preference com-
ing from a preference set [1]. In this setting, for the purpose of this paper we assume
that variables, domains, and constraint topology are given at the beginning, while the
preferences can be partially specified and possibly added during the solving process.

Constraint optimization has also been considered in the context of open CSPs, in a
cost-minimization setting in [6] and in a fuzzy setting in [7]. However, the incomplete-
ness considered in [7,6] is on domain values as well as on their preferences or costs.
We assume instead that all values are given at the beginning, and that some preferences
are missing. Because of the setting of [9], the assumption that new values and costs are
provided monotonically is needed, while it is not necessary here. Working under this
assumption means that the agent that provides new values/costs for a variable knows all
possible costs, since it is capable of providing the best value first. If the cost computa-
tion is expensive or time consuming, then computing all such costs (in order to give the
most preferred value) is not desirable. This is not needed in our setting, where single
preferences are elicited.

There are several application domains where such setting is useful. One regards the
fact that quantitative preferences, and needed in soft constraints, may be difficult and
tedius to provide for a user. Another one concerns multi-agent settings, where agents
agree on the structures of the problem by they may provide their preferences on different
parts of the problem at different times. Finally, some preferences can be initially hidden
because of privacy reasons.

Formally, we take the soft constraint formalism when preferences are totally ordered
and we allow for some preferences to be left unspecified. Although some of the prefer-
ences can be missing, it could still be feasible to find an optimal solution. If not, then
we ask the user and we start again from the new problem with some added preferences.

More precisely, we consider two notions of optimal solution: possibly optimal solu-
tions are assignments to all the variables that are optimal in at least one way in which
currently unspecified preferences can be revealed, while necessarily optimal solutions
are assignments to all the variables that are optimal in all ways in which currently un-
specified preferences can be revealed. This notation comes from multi-agent preference
aggregation [12], where, in the context of voting theory, some preferences are missing
but still one would like to declare a winner.

Given an incomplete soft constraint problem (ISCSP), its set of possibly optimal
solutions is never empty, while the set of necessarily optimal solutions can be empty.
Of course what we would like to find is a necessarily optimal solution, to be on the safe
side: such solutions are optimal regardless of how the missing preferences would be
specified. However, since such a set may be empty, in this case there are two choices:
either to be satisfied with a possibly optimal solution, or to ask users to provide some of
the missing preferences and try to find, if any, a necessarily optimal solution of the new
ISCSP. In this paper we follow this second approach, and we repeat the process until
the current ISCSP has at least one necessarily optimal solution.

To achieve this, we employ an approach based on branch and bound which first
checks whether the given problem has a necessarily optimal solution (by just solving
the completion of the problem where all unspecified preferences are replaced by the
worst preference). If not, then finds the most promising among the possibly optimal

288 M. Gelain et al.

solutions (where the promise is measured by its preference level), and asks the user
to reveal the missing preferences related to such a solution. This second step is then
repeated until the current problem has a necessarily optimal solution.

We implemented our algorithm and we tested it against classes of randomly gen-
erated binary fuzzy ISCSPs, where, beside the usual parameters (number of variables,
domain size, density, and tightness), we added a new parameters measuring the percent-
age of unspecified preferences in each constraint and domain. The experimental results
show that in many cases a necessarily optimal solution can be found by eliciting a small
amount of preferences.

2 Soft Constraints

A soft constraint [1] is just a classical constraint [3] where each instantiation of its
variables has an associated value from a (totally or partially ordered) set. This set has
two operations, which makes it similar to a semiring, and is called a c-semiring. More
precisely, a c-semiring is a tuple 〈A, +,×,0,1〉 such that: A is a set, called the carrier
of the c-semiring, and 0,1 ∈ A; + is commutative, associative, idempotent, 0 is its unit
element, and 1 is its absorbing element; × is associative, commutative, distributes over
+, 1 is its unit element and 0 is its absorbing element.

Consider the relation ≤S over A such that a ≤S b iff a+ b = b. Then: ≤S is a partial
order; + and × are monotone on ≤S; 0 is its minimum and 1 its maximum; 〈A,≤S〉
is a lattice and, for all a, b ∈ A, a + b = lub(a, b). Moreover, if × is idempotent, then
〈A,≤S〉 is a distributive lattice and × is its glb.

Informally, the relation ≤S gives us a way to compare (some of the) tuples of values
and constraints. In fact, when we have a ≤S b, we will say that b is better than a. Thus,
0 is the worst value and 1 is the best one.

Given a c-semiring S = 〈A, +,×,0,1〉, a finite set D (the domain of the variables),
and an ordered set of variables V , a constraint is a pair 〈def, con〉 where con ⊆ V and
def : D|con| → A. Therefore, a constraint specifies a set of variables (the ones in con),
and assigns to each tuple of values of D of these variables an element of the semiring
set A. A soft constraint satisfaction problem (SCSP) is just a set of soft constraints over
a set of variables.

Many known classes of satisfaction or oprimization problem can be cast in this for-
malism. A classical CSP is just an SCSP where the chosen c-semiring is: SCSP =
〈{false, true}, ∨,∧, false, true〉. On the other hand, fuzzy CSPs [13,9] can be mod-
eled in the SCSP framework by choosing the c-semiring: SFCSP = 〈[0, 1], max, min,
0, 1〉. For weighted CSPs, the semiring is SWCSP = 〈
+, min, +, +∞, 0〉. Here pref-
erences are interpreted as costs from 0 to +∞, which are combined with the sum and
compared with min. Thus the optimization criterion is to minimize the sum of costs.
For probabilistic CSPs [8], the semiring is SPCSP = 〈[0, 1], max,×, 0, 1〉. Here pref-
erences are interpreted as probabilities ranging from 0 to 1, which are combined using
the product and compared using max. Thus the aim is to maximize the joint probability.

Given an assignment t to all the variables of an SCSP, we can compute its pref-
erence value pref(t) by combining the preferences associated by each constraint to
the subtuples of the assignments referring to the variables of the constraint. More

Dealing with Incomplete Preferences in Soft Constraint Problems 289

precisely, pref(P, s) = Π〈idef,con〉∈Cdef(s↓con), where Π refers to the × operation
of the semiring and s↓con is the projection of tuple s on the variables in con.

For example, in fuzzy CSPs, the preference of a complete assignment is the minimum
preference given by the constraints. In weighted constraints, it is instead the sum of the
costs given by the constraints.

An optimal solution of an SCSP is then a complete assignment t such that there is no
other complete assignment t′′ with pref(t) <S pref(t′′). The set of optimal solutions
of an SCSP P will be written as Opt(P).

3 Incomplete Soft Constraint Problems (ISCSPs)

Informally, an incomplete SCSP, written ISCSP, is an SCSP where the preferences of
some tuples in the constraints, and/or of some values in the domains, are not speci-
fied. In detail, given a set of variables V with finite domain D, and c-semiring S =
〈A, +,×, 0, 1〉 with a totally ordered carrier, we extend the SCSP framework to incom-
pleteness by the following definitions.

Definition 1 (incomplete soft constraint). Given a set of variables V with finite do-
main D, and a c-semiring 〈A, +,×, 0, 1〉, an incomplete soft constraint is a pair 〈idef,
con〉 where con ⊆ V is the scope of the constraint and idef : D|con| −→ A ∪ {?} is
the preference function of the constraint. All tuples mapped into ? by idef are called
incomplete tuples.

In an incomplete soft constraint, the preference function can either specify the prefer-
ence value of a tuple by assigning a specific element from the carrier of the c-semiring,
or leave such preference unspecified. Formally, in the latter case the associated value is
?. A soft constraint is a special case of an incomplete soft constraint where all the tuples
have a specified preference.

Definition 2 (incomplete soft constraint problem (ISCSP)). An incomplete soft con-
straint problem is a pair 〈C, V, D〉 where C is a set of incomplete soft constraints over
the variables in V with domain D. Given an ISCSP P , we will denote with IT (P) the
set of all incomplete tuples in P .

Definition 3 (completion). Given an ISCSP P , a completion of P is an SCSP P ′ ob-
tained from P by associating to each incomplete tuple in every constraint an element
of the carrier of the c-semiring. A completion is partial if some preference remains un-
specified. We will denote with C(P) the set of all possible completions of P and with
PC(P) the set of all its partial completions.

Example 1. A travel agency is planning Alice and Bob’s honeymoon. The candidate
destinations are the Maldive islands and the Caribbean, and they can decide to go by
ship or by plane. To go to Maldives, they have a high preference to go by plane and a
low preference to go by ship. For the Caribbean, they have a high preference to go by
ship, and they don’t give any preference on going there by plane.

Assume we use the fuzzy c-semiring 〈[0, 1], max, min, 0, 1〉. Then we can model
this problem by using two variables T (standing for Transport) and D (standing for

290 M. Gelain et al.

Destination) with domains D(T) = {p, sh} (p stands for plane and sh for ship) and
D(D) = {m, c} (m stands for Maldives, c for Caribbean), and an incomplete soft
constraint 〈idef, con〉 with con = {T, D} and with preference function as shown in
Figure 1. The only incomplete tuple in this soft constraint is (p, c).

Also, assume that for the considered season the Maldives are slightly preferrable to
the Caribbean. Moreover, Alice and Bob have a high preference to plane as a way of
transport, while they don’t give any preference to ship. Moreover, as far as accommo-
dations, which can be in a standard room, a suite, or a bungalow, assume that a suite
in the Maldives is too expensive while a standard room in the Caribbean is not special
enough for a honeymoon. To model this new information we use a variable A (stand-
ing for Accommodation) with domain D(A) = {r, su, b} (r stands for room, su for
suite and b for bungalow), and three constraints: two unary incomplete soft constraints,
〈idef1, {T }〉, 〈idef2, {D}〉 and a binary incomplete soft constraint 〈idef3, {A, D}〉.
The definition of such constraints is shown in Figure 1. The set of incomplete tuples of
the entire problem is IT (P) = {(sh), (p, c), (su, c), (su, m), (r, m), (b, c)}.

idef2(c) = 0.7
idef2(m) = 0.9

idef1(p)=0.8
idef1(sh) = ?

D

idef3(r, c) = 0.3
idef3(su, c) = ?
idef3(b, c) = ?
idef3(r, m) = ?

idef3(b, m) = 0.2
idef3(su, m) = ?

idef(p,m) = 0.7

idef(sh,c) = 0.8

idef(sh,m) = 0.1

idef(p, c) = ?

T

A

Fig. 1. An ISCSP

Definition 4 (preference of an assignment, and incomplete tuples). Given an ISCSP
P = 〈C, V, D〉 and an assignment s to all its variables we denote with pref(P, s) the
preference of s in P . In detail, pref(P, s) = Π<idef,con>∈C|idef(s↓con) �=?idef(s↓con).
Moreover, we denote by it(s) the set of all the projections of s over constraints of P
which have an unspecified preference.

The preference of an assignment s in an incomplete problem is thus obtained by com-
bining the known preferences associated to the projections of the assignment, that is, of
the appropriated subtuples in the constraints. The projections which have unspecified
preferences, that is, those in it(s), are simply ignored.

Example 2. Consider the two assignments s1 = (p, m, b) and s2 = (p, m, su), we
have that pref(P, s1) = min(0.8, 0.7, 0.9, 0.2) = 0.2, while pref(P, s2) = min(
0.8, 0.7, 0.9) = 0.7. However, while the preference of s1 is fixed, since none of its
projections is incomplete, the preference of s2 may become lower that 0.7 depending
on the preference of the incomplete tuple (su, m).

Dealing with Incomplete Preferences in Soft Constraint Problems 291

As shown by the example, the presence of incompleteness generates a partition of the
set of assignments into two sets: those which have a certain preference which is in-
dependent of how incompleteness is resolved, and those whose preference is only an
upperbound, in the sense that it can be lowered in some completions.

Given an ISCSP P , we will denote the first set of assignments as Fixed(P) and the
second with Unfixed(P). In Example 2, Fixed(P) = {s1}, while all other assign-
ments belong to Unfixed(P).

In SCSPs we have that an assignment is an optimal solution if its global preference
is undominated. This notion can be generalized to the incomplete setting. In particular,
when some preferences are unknown, we will speak of necessarily and possibly optimal
solutions, that is, assignments which are undominated in all (resp., some) completions.

Definition 5 (necessarily and possibly optimal solution). Given an ISCSP P =
〈 C, V, D〉, an assignment s ∈ D|V | is a necessarily (resp, possibly) optimal solution
iff ∀Q ∈ C(P) (resp., ∃Q ∈ C(P) such that) ∀s′ ∈ D|V |, pref(Q, s′) �> pref(Q, s).

Given an ISCSP P , we will denote with NOS(P) (resp., POS(P)) the set of nec-
essarily (resp., possibly) optimal solutions of P . Notice that, while POS(P) is never
empty, in general NOS(P) may be empty. In particular, NOS(P) is empty whenever
the available preferences do not allow to determine the relation between an assignment
and all the others.

Example 3. In the ISCSP P of Figure 1, we can easily see that NOS(P) = ∅ since,
given any assignment, it is possible to construct a completion of P in which it is not an
optimal solution. On the other hand, POS(P) contains all assignments not including
tuple (sh, m).

4 Characterizing POS(P) and NOS(P)

In this section we characterize the set of necessarily and possibly optimal solutions of
an ISCSP given the preferences of the optimal solutions of two of the completions of P .
In particular, given an ISCSP P defined on a totally ordered c-semiring 〈A, +,×,0,1〉,
we consider:

– the SCSP P0 ∈ C(P), called the 0-completion of P , obtained from P by associat-
ing preference 0 to each tuple of IT (P).

– the SCSP P1 ∈ C(P), called the 1-completion of P , obtained from P by associat-
ing preference 1 to each tuple of IT (P).

Let us indicate respectively with pref0 and pref1 the preference of an optimal so-
lution of P0 and P1. Due to the monotonicity of ×, and since 0 ≤ 1, we have that
pref0 ≤ pref1.

In the following theorem we will show that, if pref0 > 0, there is a necessarily
optimal solution of P iff pref0 = pref1, and in this case NOS(P) coincides with the
set of optimal solutions of P0.

Theorem 1. Given an ISCSP P and the two completions P0, P1 ∈ C(P) as defined
above, if pref0 > 0 we have that NOS(P) �= ∅ iff pref1 = pref0. Moreover, if
NOS(P) �= ∅, then NOS(P) = Opt(P0).

292 M. Gelain et al.

Proof. Since we know that pref0 ≤ pref1, if pref0 �= pref1 then pref1 > pref0.
We prove that, if pref1 > pref0, then NOS(P) = ∅. Let us consider any assignment
s of P . Due to the monotonicity of ×, for all P ′ ∈ C(P), we have pref(P ′, s) ≤
pref(P1, s) ≤ pref1.

– If pref(P1, s) < pref1, then s is not in NOS(P) since P1 is a completion of P
where s is not optimal.

– If instead pref(P1, s) = pref1, then, since pref1 > pref0, we have s ∈ Unfixed
(P). Thus we can consider completion P ′

1 obtained from P1 by associating prefer-
ence 0 to the incomplete tuples of s. In P ′

1 the preference of s is 0 and the preference
of an optimal solution of P ′

1 is, due to the monotonicity of ×, at least that of s in
P0, that is pref0 > 0. Thus s �∈ NOS(P).

Next we consider when pref0 = pref1. Clearly NOS(P) ⊆ Opt(P0), since any as-
signment which is not optimal in P0 is not in NOS(P). We will show that NOS(P) �=
∅ by showing that any s ∈ Opt(P0) is in NOS(P). Let us assume, on the contrary,
that there is s ∈ Opt(P0) such that s �∈ NOS(P). Thus there is a completion P ′

of P with an assignment s′ with pref(P ′, s′) > pref(P ′, s). By construction of P0,
any assignment s ∈ Opt(P0) must be in Fixed(P). In fact, if it had some incom-
plete tuple, its preference in P0 would be 0, since 0 is the absorbing element of ×.
Since s ∈ Fixed(P), pref(P ′, s) = pref(P0, s) = pref0. By construction of P1

and monotonicity of ×, we have pref(P1, s
′) ≥ pref(P ′, s′). Thus the contradiction

pref1 ≥ pref(P1, s
′) ≥ pref(P ′, s′) > pref(P ′, s) = pref0. This allows us to

conclude that s ∈ NOS(P) = Opt(P0). �

In the theorem above we have assumed that pref0 > 0. The case in which pref0 = 0
needs to be treated separately. We consider it in the following theorem.

Theorem 2. Given ISCSP P = 〈C, V, D〉 and the two completions P0, P1 ∈ C(P)
as defined above, assume pref0 = 0. Then, if pref1 = 0, NOS(P) = D|V |. Also, if
pref1 > 0, NOS(P) = {s ∈ Opt(P1)|∀s′ ∈ D|V | with pref(P1, s

′) > 0 we have
it(s) ⊆ it(s′)}.

The formal proof is omitted for lack of space. Intuitively, if some assignment s′ has
an incomplete tuple which is not part of another assignment s, then we can make s′

dominate s in a completion by setting all the incomplete tuples of s′ to 1 and all the
remaining incomplete tuples of s to 0. In such a completion s is not optimal. Thus s is
not a necessarily optimal solution. However, if the tuples of s are a subset of the incom-
plete tuples of all other assignments then it is not possible to lower s without lowering
all other tuples even further. This means that s is a necessarily optimal solution.

We now turn our attention to possible optimal solutions. Given a c-semiring 〈A, +,
×, 0,1〉, it has been shown in [2] that idempotency and strict monotonicity of the ×
operator are incompatible, that is, at most one of these two properties can hold. In the
following two theorems we show that the presence of one or the other of such two
properties plays a key role in the characterization of POS(P) where P is an ISCSP.

In particular, if × is idempotent, then the possibly optimal solutions are the assign-
ments with preference in P between pref0 and pref1. If, instead, × is strictly mono-
tonic, then the possibly optimal solutions have preference in P between pref0 and

Dealing with Incomplete Preferences in Soft Constraint Problems 293

pref1 and dominate all the assignments which have as set of incomplete tuples a subset
of their incomplete tuples.

Theorem 3. Given an ISCSP P defined on a c-semiring with idempotent × and the two
completions P0, P1 ∈ C(P) as defined above, if pref0 > 0 we have that: POS(P) =
{s ∈ D|V ||pref0 ≤ pref(P, s) ≤ pref1}.

The formal proof is omitted for lack of space. Informally, given a solution s such that
pref0 ≤ pref(P, s) ≤ pref1, it can be shown that it is an optimal solution of the
completion of P obtained by associating preference pref(P, s) to all the incomplete
tuples of s, and 0 to all other incomplete tuples of P . On the other hand, by construction
of P0 and due to the monotonicity of ×, any assignment which is not optimal in P0

cannot be optimal in any other completion. Also, by construction of P1, there is no
assignment s with pref(P, s) > pref1.

Theorem 4. Given an ISCSP P defined on a c-semiring with a strictly monotonic ×
and the two completions P0, P1 ∈ C(P) as defined above, if pref0 > 0 we have that:
an assignment s ∈ POS(P) iff pref0 ≤ pref(P, s) ≤ pref1 and pref(P, s) =
max{ pref(P, s′)| it(s′) ⊆ it(s)}.

The intuition behind the statement of this theorem is that, if assignment s is such that
pref0 ≤ pref(P, s) ≤ pref1 and pref(P, s) = max{pref(P, s′)|it(s′) ⊆ it(s)},
then it is optimal in the completion obtained associating preference 1 to all the tuples
in it(s) and 0 to all the tuples in IT (P) \ it(s). On the contrary, if pref(P, s) <
max{pref(P, s′)|it(s′) ⊆ it(s)}, there must be another assignment s′′ such that pref
(P, s′′) = max{pref(P, s′)|it(s′) ⊆ it(s)}. It can then be shown that, in all comple-
tions of P , s is dominated by s′′.

In constrast to NOS(P), when pref0 = 0 we can immediately conclude that POS
(P) = D|V |, independently of the nature of ×, since all assignments are optimal in P0.

Corollary 1. Given an ISCSP P = 〈C, V, D〉, if pref0 = 0, then POS(P) = D|V |.

The results given in this section can be summarized as follows:

– when pref0 = 0
• not enough information to compute NOS(P) (by Theorem 2);
• POS(P) = D|V | (by Corollary 1);

– when pref0 = pref1 = 0
• NOS(P) = D|V | (by Theorem 2);
• POS(P) = D|V | (by Corollary 1) ;

– when 0 = pref0 < pref1

• NOS(P) = {s ∈ Opt(P1)|∀s′ ∈ D|V | with pref(P1, s
′) > 0 we have

it(s) ⊆ it(s′)} (by Theorem 2);
• POS(P) = D|V | (by Corollary 1);

– when 0 < pref0 = pref1

• NOS(P) = Opt(P0) (by Theorem 1);
• if × is idempotent: POS(P) = {s ∈ D|V ||pref0 ≤ pref(P, s) ≤ pref1} (by

Theorem 3);

294 M. Gelain et al.

• if × is strictly monotonic: POS(P) = {s ∈ D|V ||pref0 ≤ pref(P, s) ≤
pref1, pref(P, s) = max{ pref(P, s′)|it(s′) ⊆ it(s)}} (by Theorem 4);

– when 0 < pref0 < pref1

• NOS(P) = ∅ (by Theorem 1);
• POS(P) as for the case when 0 < pref0 = pref1.

5 A Solver for ISCSPs

We want to find a necessarily optimal solution of the given problem, if it exists. In most
cases, however, the available information will only allow to determine the set of pos-
sibly optimal solutions. In such cases, preference elicitation is needed to discriminate
among such assignments in order to determine a necessarily optimal one of the new
problem with the elicited preferences. In this section we describe an algorithm, called
Find-NOS, to achieve this task.

Algorithm 1. Find-NOS

Input: an ISCSP P
Output: an ISCSP Q, an assignment s, a preference p
P0 ← P [?/0]
s0, pref0← BB(P0,−)
s1← s0

pref1← pref0

smax ← s0

prefmax← pref0

repeat
P1 ← P [?/1]
if pref1 > prefmax then

smax ← s1

prefmax ← pref1

s1, pref1← BB(P1, prefmax)
if s1 �= nil then

S ← it(s1)
P ← Elicit(P,S)
pref1 ← pref(P, s1)

until s1 = nil ;
return P , smax, prefmax

Algorithm Find-NOS takes in input an ISCSP P over a totally ordered c-semiring
and returns an ISCSP Q which is a partial completion of P , and an assignment s ∈
NOS(Q) together with its preference p. Given an ISCSP P , Find-NOS first checks if
NOS(P) is not empty, and, if so, it returns P , s ∈ NOS(P), and its preference. If
instead NOS(P) = ∅, it starts eliciting the preferences of some incomplete tuples.

In detail, Find-NOS first computes the 0-completion of P , written as P [?/0], called
P0, and applies Branch and Bound (BB) to it. This allows to find an optimal solution
of P0, say s0, and its preference pref0.

In our notation, the application of the BB procedure has two parameters: the problem
to which it is applied, and the starting bound. When BB is applied without a starting

Dealing with Incomplete Preferences in Soft Constraint Problems 295

bound, we will write BB(P,−). When the BB has finished, it returns a solution and
its preference. If no solution is found, we assume that the returned items are both nil.

Variables s1 and pref1 (resp., smax and prefmax) represent the optimal solution
and the corresponding preference of the 1-completion of the current problem (written
P [?/1]) (resp., the best solution and the corresponding preference found so far). At the
beginning, such variables are initialized to s0 and pref0.

The main loop of the algorithm, achieved through the repeat command, computes
the 1-completion, denoted by P1, of the current problem. In the first iteration the condi-
tion of the first if is not satisfied since pref1 = prefmax = pref0. The execution thus
proceeds by applying BB to P1 with bound prefmax = pref0 ≥ 0. This allows us
to find an optimal solution of P1 and its corresponding preference, assigned to s1 and
pref1. If BB fails to find a solution, s1 is nil. Thus the second if is not executed and
the algorithm exits the loop and returns P , smax = s0, and prefmax = pref0.

If instead BB applied to P1 with bound prefmax does not fail, then we have that
pref0 < pref1. Now the algorithm elicits the preference of some incomplete tuples,
via procedure Elicit.

This procedure takes an ISCSP and a set of tuples of variable assignments, and asks
the user to provide the preference for such tuples, returning the updated ISCSP. The
algorithm calls procedure Elicit over the current problem P and the set of incomplete
tuples of s1 in P . After elicitation, the new preference of s1 is computed and assigned
to pref1.

Since s1 �= nil, a new iteration begins, and BB is applied with initial bound given by
the best preference between pref1 and prefmax. Moreover, if pref1 > prefmax, then
smax and prefmax are updated to always contain the best solution and its preference.
Iteration continues until the elicited preferences are enough to make BB fail to find a
solution with a better preference w.r.t. the previous application of BB. At that point,
the algorithm returns the current problem and the best solution found so far, together
with its preference.

Theorem 5. Given an ISCSP P in input, algorithm Find-NOS always terminates and
returns an ISCSP Q such that Q ∈ PC(P), an assignment s ∈ NOS(Q), and its
preference in Q.

Proof. At each iteration, either prefmax increases or, if it stays the same, a new solution
will be found since after elicitation the preference of s1 has not increased. Thus, either
prefmax is so high that BB doesn’t find any solution, or all the optimal solutions have
been considered. In both cases the algorithm exits the loop.

At the end of its execution, the algorithm returns the current partial completion of
given problem and a solution smax with the best preference seen so far prefmax. The
repeat command is exited when s1 = nil, that is, when BB(P [?/1], prefmax) fails. In
this situation, prefmax is the preference of an optimal solution of the 0-completion of
the current problem P . Since BB fails on P [?/1] with such a bound, by monotonicity
of the × operator, prefmax is also the preference of an optimal solution of P [?/1].
By Theorems 1 and 2, we can conclude that NOS(P) is not empty. If prefmax = 0,
then NOS(P) contains all the assignments and thus also s0. The algorithm correctly
returns the same ISCSP given in input, assignment s0 and its preference pref0 = 0. If

296 M. Gelain et al.

instead 0 < prefmax, again the algorithm is correct, since by Theorem 1 we know that
NOS(P) = Opt(P [?/0]), and since smax ∈ Opt(P [?/0]). �

Notice also that the algorithm performs preference elicitation only on solutions which
are possibly optimal in the current partial completion of the given problem (and thus
also in the given problem). In fact, by Theorems 3 and 4, any optimal solution of the
1-completion of the current partial completion Q is a possibly optimal solution of Q.
Thus no useless work is done to elicit preferences related to solutions which cannot be
necessarily optimal for any partial completion of the given problem. This also means
that our algorithm works independently of the properties of the × operator.

6 Experimental Setting and Results

We have implemented Algorithm Find-NOS in Java and we have tested it on randomly
generated ISCSPs with binary constraints and based on the Fuzzy c-semiring. To gen-
erate such problems, we use the following parameters:

– n: number of variables;
– m: cardinality of the domain of each variable;
– d: density of the constraints, that is, the percentage of binary constraints present in

the problem w.r.t. the total number of possible binary constraints that can be defined
on n variables;

– t: tightness, that is, the percentage of tuples with preference 0 in each constraint
w.r.t. the total number of tuples (m2 since we have only binary constraints), and in
each domain;

– i: incompleteness, that is, the percentage of incomplete tuples (formally, tuples with
preference ?) in each constraint and in each domain.

For example, if the generator is given in input n = 10, m = 5, d = 50, t = 10, and
i = 30, it will generate a binary ISCSP with 10 variables, each with 5 elements in the
domain, 22 constraints on a total of 45 = n(n − 1)/2, 2 tuples with preference 0 and 7
incomplete tuples over a total of 25 in each constraint, and 1 missing preference in each
domain.

Notice that we use a model B generator: density and tightness are interpreted as
percentages, and not as probabilities. Also, when we simulate the Elicit procedure, we
randomly generate values in (0, 1].

We have generated classes of ISCSPs by varying one parameter at a time, and fixing
the other ones. The varying parameters are the number of variables, the density, and the
incompleteness. When the number of variables varies (from n = 5 to n = 20, with step
3), we set m = 5, d = 50, t = 10, and i = 30. When we vary the density (from d = 10
to d = 80 with step 5), we set n = 10, m = 5, t = 10, and i = 30. Finally, when we
vary the incompleteness (from i = 10 to i = 80 with step 5), we set n = 10, m = 5,
d = 50, and t = 10.

In all the experiments, we have measured the number of tuples elicited by Algorithm
Find-NOS. We also show the percentage of elicited tuples over the total number of
incomplete tuples of the problem in input. For each fixed value of all the parameters,
we show the average of the results obtained for 50 different problem instances, each

Dealing with Incomplete Preferences in Soft Constraint Problems 297

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 5 8 11 14 17 20

n.
 e

lic
ite

d
pr

ef
er

en
ce

s

n. of variables

(a)

 0

 20

 40

 60

 80

 100

 5 8 11 14 17 20

el
ic

ite
d

pr
ef

er
en

ce
s

(%
)

n. of variables

(b)

Fig. 2. Number and percentage of elicited preferences, as a function of the number of variables.
Fixed parameters: m = 5, d = 50, t = 10, i = 30.

given in input to Find-NOS 10 times. This setting is necessary since we have two kinds
of randomness: the usual one in the generation phase and a specific one when eliciting
preferences.

Figure 2 shows the absolute number and the percentage of elicited preferences when
the number of variables varies. As expected, when the number of variables increases, the
absolute number of elicited preferences increases as well, since there is a growth of the
total number of incomplete tuples. However, if we consider the percentage of elicited
tuples, we see that it is not affected by the increase in the number of variables. In par-
ticular, the percentage of elicited preferences remains stable around 22%, meaning that,
regardless of the number of variables, the agent is asked to reveal only 22 preferences
over 100 incomplete tuples. A necessarily optimal solution can be thus found leaving
88% of the missing preferences unrevealed.

Similar results are obtained when density varies (see Figure 3). We can see that the
absolute number of elicited preferences grows when density increases. The maximum
number of elicited preferences reached is however lower that the maximum reached
when varying the variables (see Figure 2(a)). The reason for this is that the largest prob-
lems considered when varying the number of variables have more incomplete tuples
than the largest obtained when varying the density. In fact, a problem with n = 20,
given the fixed parameters, has around 685 incomplete tuples, 165 of which (about
22%) are elicited. On the other hand, a problem with d = 80, given the fixed param-
eters, has around 262 incomplete tuples, 55 (about 22%) of which are elicited. This is
coherent with the fact that the results on the percentage of elicited preferences when
varying the density and the number of variables are very similar.

 0

 10

 20

 30

 40

 50

 60

 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

n.
 e

lic
ite

d
pr

ef
er

en
ce

s

density

(a)

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

el
ic

ite
d

pr
ef

er
en

ce
s

(%
)

density

(b)

Fig. 3. Number and percentage of elicited preferences, as a function of the density. Fixed param-
eters: n = 10, m = 5, t = 10, i = 30.

298 M. Gelain et al.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 15 20 25 30 35 40 45 50 55 60 65 70

n.
 e

lic
ite

d
pr

ef
er

en
ce

s

incompleteness

(a)

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40 45 50 55 60 65 70

el
ic

ite
d

pr
ef

er
en

ce
s

(%
)

incompleteness

(b)

Fig. 4. Number and percentage of elicited preferences, as a function of the incompleteness

 0

 2

 4

 6

 8

 10

 12

 10 15 20 25 30 35 40 45 50 55 60 65 70

ex
ec

ut
io

ns
 o

f B
B

 o
n

P
[?

/1
]

incompleteness

(a)

 0

 200

 400

 600

 800

 1000

 1200

 10 15 20 25 30 35 40 45 50 55 60 65 70

tim
e

(m
se

c)

incompleteness

(b)

Fig. 5. CPU time and BB runs as a function of the incompleteness. Fixed parameters: n = 10,
m = 5, t = 10, i = 30.

The last set of experiments vary the percentage of incompleteness (see Figure 4). As
for density and number of variables, the absolute number of elicited preferences grows
when the percentage of incompleteness increases. The maximum number of elicited
preferences reached is close to that reached when varying the variables. However, the
number of incomplete tuples of the problems with i = 70 is around 460 and thus smaller
than that of problems with n = 20. Thus the percentage of elicited preferences is larger
in problems with i = 70. This is confirmed by the corresponding result for the per-
centage of elicited preferences, which is shown to be around 35%. Additionally, the
percentage of elicited preferences follows a slightly increasing trend as the percentage
of incompleteness in the problem grows. However, it maintains itself below 35%, which
means that in the worst case, where 70% of the tuples are incomplete, we are able to
find a necessary optimal solution leaving 46% of the total number of tuples unspecified.

In Figure 6 we show the information about how many missing preferences we need
to ask the user in a different way: each bar has a lower part showing the amount of
information we have already (the one available at the beginning), while the higher part
shows how much more information we need to ask the user for in order to find a nec-
essarily optimal solution. It is possible to see that, when we have already some initial
information, usually we need to ask the user for more even if the initial information
amount is large. This is because some of the preferences available initially may be not
useful for the computation of an optimal solution. On the other hand, if we start with no
initial preferences (rightmost bar), we need to ask the user only for about 40 % of the
preferences.

The focus of this work is on how many elicitation steps need to be done before
finding a necessarily optimal solution. In fact, our Branch and Bound procedure could

Dealing with Incomplete Preferences in Soft Constraint Problems 299

Fig. 6. Amount of preferences initially available and elicited as a function of the incompleteness.
Fixed parameters: n = 10, m = 5, t = 10, i = 30.

certainly be improved in terms of efficiency. However, we show in Figure 5 the CPU
time needed to solve some incomplete problems (when incompleteness varies) and also
the number of runs of the Branch and Bound on the 1-completion.

7 Ongoing and Future Work

We are currently working on several variants of the algorithm described in this paper,
where elicitation occurs not at the end of an entire BB search tree, but at the end of every
complete branch or at every node. In this case, the algorithm runs BB only once before
finding a necessarily optimal solution. Moreover, we are also considering variants of
the Elicit function that asks for just one of the missing preferences: for example, in the
context of fuzzy constraints, it just asks for the worst one, since it is the most useful one
due to the drowning effect.

Future work will consider partially ordered preferences and also other ways to ex-
press preferences, such as qualitative ones a la CP nets, as well as other kinds of missing
data, such as those considered in dynamic, interactive, and open CSPs. Moreover, other
solving approaches can be considered, such as those based on local search and variable
elimination.

We also would like to consider the specification of intervals, rather than a fixed pref-
erence or nothing. This would not change much our setting. We consider the [0,1] inter-
val where no preference is specified, and thus the 0-completion and the 1-completion.
With generic intervals, we can consider the ”lower bound completion” and the “upper
bound completion”.

References

1. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint solving and optimization.
Journal of the ACM 44(2), 201–236 (1997)

2. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.: Semiring-based
CSPs and valued CSPs: Frameworks, properties, and comparison. Constraints 4(3) (1999)

300 M. Gelain et al.

3. Dechter, R.: Constraint processing. Morgan Kaufmann, San Francisco (2003)
4. Dechter, R., Dechter, A.: Belief maintenance in dynamic constraint networks. In: AAAI, pp.

37–42 (1988)
5. Faltings, B., Macho-Gonzalez, S.: Open constraint satisfaction. In: Van Hentenryck, P. (ed.)

CP 2002. LNCS, vol. 2470, pp. 356–370. Springer, Heidelberg (2002)
6. Faltings, B., Macho-Gonzalez, S.: Open constraint optimization. In: Rossi, F. (ed.) CP 2003.

LNCS, vol. 2833, pp. 303–317. Springer, Heidelberg (2003)
7. Faltings, B., Macho-Gonzalez, S.: Open constraint programming. Artif. Intell. 161(1-2),

181–208 (2005)
8. Fargier, H., Lang, J.: Uncertainty in constraint satisfaction problems: a probalistic approach.

In: Moral, S., Kruse, R., Clarke, E. (eds.) ECSQARU 1993. LNCS, vol. 747, pp. 97–104.
Springer, Heidelberg (1993)

9. Fargier, H., Schiex, T., Verfaille, G.: Valued Constraint Satisfaction Problems: Hard and Easy
Problems. In: IJCAI-95, pp. 631–637. Morgan Kaufmann, San Francisco (1995)

10. González, S.M., Ansótegui, C., Meseguer, P.: On the relation among open, interactive and
dynamic CSP. In: The Fifth Workshop on Modelling and Solving Problems with Constraints
(IJCAI’05) (2005)

11. Lamma, E., Mello, P., Milano, M., Cucchiara, R., Gavanelli, M., Piccardi, M.: Constraint
propagation and value acquisition: Why we should do it interactively. In: IJCAI, pp. 468–
477 (1999)

12. Lang, J., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Winner determination in sequential
majority voting. In: IJCAI, pp. 1372–1377 (2007)

13. Ruttkay, Z.: Fuzzy constraint satisfaction. In: Proceedings 1st IEEE Conference on Evolu-
tionary Computing, Orlando, pp. 542–547 (1994)

	Introduction
	Soft Constraints
	Incomplete Soft Constraint Problems (ISCSPs)
	Characterizing POS(P) and NOS(P)
	A Solver for ISCSPs
	Experimental Setting and Results
	Ongoing and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

