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Abstract

We consider multi-agent systems where agents’ pref-
erences are aggregated via sequential majority voting:
each decision is taken by performing a sequence of pair-
wise comparisons where each comparison is a weighted
majority vote among the agents. Incompleteness in the
agents’ preferences is common in many real-life set-
tings due to privacy issues or an ongoing elicitation
process. In addition, there may be uncertainty about
how the preferences are aggregated. For example, the
agenda (a tree whose leaves are labelled with the deci-
sions being compared) may not yet be known or fixed.
We therefore study how to determine collectively op-
timal decisions (also called winners) when preferences
may be incomplete, and when the agenda may be uncer-
tain. We show that it is computationally easy to deter-
mine if a candidate decision always wins, or may win,
whatever the agenda. On the other hand, it is compu-
tationally hard to know whether a candidate decision
wins in at least one agenda for at least one completion
of the agents’ preferences. These results hold even if
the agenda must be balanced so that each candidate de-
cision faces the same number of majority votes. Such
results are useful for reasoning about preference elicita-
tion. They help understand the complexity of tasks such
as determining if a decision can be taken collectively,
as well as knowing if the winner can be manipulated by
appropriately ordering the agenda.

Introduction
A general method for aggregating preferences in multi-agent
systems, in order to take a collective decision, is running
an election among the different options using a voting rule.
Unfortunately, eliciting preferences from agents to be able
to run such an election is a difficult, time-consuming and
costly process. Agents may also be unwilling to reveal all
their preferences for privacy reasons. Fortunately, we can
often determine the outcome before all the preferences have
been revealed (Conitzer & Sandholm 2002b). For example,
it may be that one option has so many votes that it will win
whatever happens with the remaining votes. We can then
stop eliciting preferences.

In addition to uncertainty about the agents’ preferences,
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we may have uncertainty about how the voting rule will be
applied. For instance, in sequential majority voting (some-
times called the “Cup” or “tournament” rule), which has
been extensively studied in Social Choice Theory (Moulin
1991; Laslier 1997), preferences are aggregated by a se-
quence of pairwise comparisons. The order of these compar-
isons (which is often called the “agenda”) may not be fixed
or known. Nevertheless, we may still be able to determine
information about the outcome. For example, it may be that
one option cannot win however the voting rule is applied.
This is useful, for example, if we want to know if the chair
can control the election to make his favored option win.

In this paper we study the computational complexity of
determining the possible and Condorcet winners in sequen-
tial majority voting when preferences may be incomplete
and/or we may not know the agenda. We argue that the
notions of possible and Condorcet winners considered here
are more reasonable than the earlier notions in (Langet al.
2007) as the new notions are based on incomplete profiles
as opposed to incomplete majority graphs which potentially
throw away some information and may suggest candidates
can win when they cannot. The old notions in (Langet al.
2007) are upper or lower approximations of the new notions.

We show that determining if an option always wins, or
may win, in every agenda is polynomial. On the other hand,
determining if an option wins in at least one completion of
the preferences and at least one agenda is NP-complete. All
these results hold even if the agenda is required to be bal-
anced. Because the choice of the agenda may be under
the control of the chair, our results can be interpreted in
terms of difficulty of manipulation by the chair (as in, e.g.,
(Bartholdi, Tovey, & Trick 1989)).

Background
Preferences. We assume that each agent’s preferences are
specified by a total order (TO) (that is, by an asymmetric,
irreflexive and transitive order) over a set of candidates (de-
noted byΩ). The candidates represent the possible options
over which agents will vote. However, an agent may choose
to reveal only partially his total order. More precisely, given
two candidates, sayA,B ∈ Ω, an agent specifies exactly
one of the following:A < B (meaningA is worse thanB),
A > B, or A?B, whereA?B means that the relation be-
tweenA andB has not yet been revealed. We assume that



an agent’s preferences are transitively closed. That is, ifthey
declareA > B, andB > C then they also haveA > C.

Example 1 Given candidatesA, B, andC, an agent may
state preferences such asA > B, B > C, andA > C, or
A > B, B?C and A?C. However, an agent cannot state
preferences such asA > B, B > C, C > A as this is not
transitive and thus not a total order.

Profiles. A weighted profileis a sequence of total orders
describing the preferences forn agents, each of which has
a given weight. A weighted profile isincompleteif one or
more of the preference relations is incomplete. For simplic-
ity, we assume that the sum of the weights of the agents is
odd. An (incomplete)unweighted profile, also calledegal-
itarian profile, is one in which each agent has weight1.
Given a weighted profileP , its corresponding unweighted
profileU(P ) is the profile obtained fromP by replacing ev-
ery ordering, sayO, expressed by an agent with weightki

by ki agents with weight1 all expressingO.

Majority graphs. Given an (incomplete) weighted profile
P , themajority graphM(P ) induced byP is the directed
graph whose set of vertices isΩ, and where an edge fromA
to B (denoted byA >m B) denotes a strict weighted ma-
jority of voters who preferA to B. The assumption to have
an odd sum of weights ensures that there is never a tied re-
sult. This simplification is not essential. We can have an
even sum of weights, but in this case we have to specify how
we deal with tied results. Thus, for simplicity we assume
that the sum of weights is odd. A majority graph is said to
be complete if, for any two vertices, there is a directed edge
between them. Notice that, ifP is incomplete,M(P ) may
be incomplete as well. Also, ifM(P ) is incomplete, the
set of all complete majority graphs extendingM(P ) corre-
sponds to a (possibly proper) superset of the set of complete
majority graphs induced by all possible completions ofP .

Example 2 Consider the incomplete weighted profileP in
Figure 1 (a). There are three agentsa1, a2 and a3 with
weights resp.1, 2, and2 that express the following prefer-
ences:a1 statesA > B > C, a2 statesB > A,A?C,B?C
anda3 statesA > B,A?C,C > B. The majority graph in-
duced byP , calledM(P ), shown in Figure 1 (b), has three
nodesA, B andC and one edge fromA to B, since there
is a weighted majority of agents that preferA to B. There
are no edges betweenA andC and betweenB andC since
there are no weighted majorities that prefer one candidate
to the other.
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Figure 1: An incomplete weighted profile and its majority
graph.

Sequential majority voting. Given a set of candidates,
the sequential majority voting rule is defined by a binary tree
(also called anagenda) with one candidate per leaf. Each
internal node represents the candidate that wins the pairwise
election between the node’s children. The winner of every
pairwise election is computed by the weighted majority rule,
whereA beatsB iff there is a weighted majority of votes
statingA > B. The candidate at the root of the agenda is the
overall winner. Given a complete profile, candidates which
win whatever the agenda are calledCondorcet winners.

Example 3 Assume to have three candidatesA, B andC.
Consider the agendaT shown in Figure 2 (a). According
to this agenda,A must first play againstB, and then the
winner, calledw1, must play againstC. The winner, called
w2, is the overall winner. If we have the majority graphM
shown in Figure 2 (b),w1 = A andw2 = A. Note thatA
is a Condorcet winner, since it is the overall winner in all
possible agendas.
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Figure 2: How sequential majority voting works.

Winners from majority graphs. Four types of potential
winners have been defined (Langet al. 2007) for sequen-
tial majority voting. Given an incomplete majority graphG
induced by an incomplete profileP , consider a candidateA,

• A is aweak Condorcet winner1 for G (i.e.,A ∈ WC(G))
iff there is a completion ofG such thatA wins in every
agenda;

• A is astrong Condorcet winnerfor G (i.e.,A ∈ SC(G))
iff for every completion ofG, A wins in every agenda;

• A is aweak possible winnerfor G (i.e.,A ∈ WP (G)) iff
there exists a completion ofG and an agenda for whichA
wins;

• A is astrong possible winnerfor G (i.e.,A ∈ SP (G)) iff
for every completion ofG there is an agenda for whichA
wins.

When the majority graph is complete, strong and weak
Condorcet winners coincide (that is,SC(G) = WC(G)).
Similarly, strong and weak possible winners coincide in this
case (that is,SP (G) = WP (G)). In (Langet al. 2007), it

1In (Langet al. 2007) a Condorcet winner is called a necessary
winner.



is proved thatWP (G), SP (G), WC(G), andSC(G) can
all be computed in polynomial time.

Profiles, majority graphs, and weights
These notions of possible and Condorcet winner are based
on an incomplete majority graph. It is, however, often more
useful and meaningful to start directly from the incomplete
profile inducing the majority graph. Given an incomplete
profile, there can be more completions of its induced major-
ity graphs than majority graphs induced by completing the
profile. An incomplete majority graph throws away informa-
tion about how individual agents have voted. For example,
we lose information about correlations between votes. Such
correlations may prevent a candidate from being able to win.

Example 4 Consider an incomplete profileP with just one
agent and three candidates (A, B, andC), where the agent
declare onlyA > B. The induced majority graphM(P )
has only one arc fromA to B. In this situation,B is a weak
possible winner (that is,B ∈ WP (M(P ))), since there is a
completion of the majority graph (with arcs fromB toC and
fromC to A) and an agenda whereB wins (we first compare
A with C, C wins, and thenC with B, andB wins). How-
ever, there is no way to complete profileP and set up the
agenda soB wins. In fact, the possible completions ofP
are A > B > C, A > C > B, andC > A > B, and
in all these casesB is always beaten at least byA. Hence,
there is no agenda whereB wins. Note that the comple-
tion of the majority graph that allows us to conclude that
B ∈ WP (M(P )) cannot be obtained in any possible com-
pletion of the agent’s preferences ofP , since it violates tran-
sitivity. SinceB cannot win in any completion ofP , it is
rather misleading to considerB as a potential winner.

Hence, unlike (Langet al. 2007), we will define possible
and Condorcet winners starting directly from profiles, rather
than the induced majority graphs.

As in (Conitzer & Sandholm 2002a), we consider
weighted votes. Weighted voting systems are used in a
number of real-world settings like shareholder meetings and
elected assemblies. Weights are useful in multiagent sys-
tems where we have different types of agents. Weights are
also interesting from a computational perspective. Comput-
ing the weak/strong possible/Condorcet winners with un-
weighted votes is always polynomial. If there is a bounded
number of candidates, there are only a polynomial number
of different ways to complete an incomplete profile. Simi-
larly, if there is a bounded number of candidates, there are
only a polynomial number of different ways to complete the
missing links in an incomplete majority graph. There are
also only a polynomial number of different agendas. All the
possibilities can therefore be tested in polynomial time. On
the other hand, adding weights to the votes may introduce
computational complexity. For example, as we will show
later, computing weak possible winners becomes NP-hard
when we add weights. Finally, the weighted case informs
us about the unweighted case in the presence of uncertainty
about the votes. For instance, if constructive coalitionalma-
nipulation with weighted votes is intractable, then it is hard
to compute the probability of winning in the unweighted

case when there is uncertainty about how the votes have
been cast (Conitzer & Sandholm 2002a). Reasoning about
weighted votes is thus closely related to reasoning about un-
weighted votes where we have probabilities on the distribu-
tion of votes.

Possible and Condorcet winners from profiles
We consider the following new notions of possible and Con-
dorcet winner:

Definition 1 Let P be an incomplete weighted profile and
A a candidate.

• A is a weak Condorcet winnerfor P (i.e.,A ∈ WC(P ))
iff there is a completion ofP such thatA is a winner for
all agendas;

• A is a strong Condorcet winnerfor P (i.e.,A ∈ SC(P ))
iff for every completion ofP , and for every agenda,A is
a winner;

• A is a weak possible winnerfor P (i.e.,A ∈ WP (P )) iff
there exists a completion ofP and an agenda for whichA
wins;

• A is a strong possible winnerfor P (i.e.,A ∈ SP (P )) iff
for every completion ofP there is an agenda for whichA
wins.

It is easy to see that, when the profile is complete, strong
and weak Condorcet winners coincide. The same holds also
for strong and weak possible winners.

Example 5 Consider the profileP given in Example 2. We
have thatSC(P ) = SP (P ) = ∅, WC(P ) = {A,C}, and
WP (P ) = {A,B,C}. More precisely,A andC are weak
Condorcet winners, since there are completions ofP where
they win in all the agendas. In fact,A wins in all the agen-
das in the completion ofP wherea1 statesA > B > C,
a2 statesC > B > A and a3 statesA > C > B, while
C wins in all the agendas in the completion ofP wherea1

statesA > B > C, a2 statesC > B > A and a3 states
C > A > B. The outcomeB is not a weak Condorcet win-
ner, since there are no completions where it wins in every
agenda. However,B is a weak possible winner, since there
is a completion ofP and an agenda whereB wins (e.g.a1

statesA > B > C, a2 statesB > C > A and a3 states
C > A > B, andA first competes withC and then the win-
ner competes withB). Notice that in this example the weak
and strong possible and Condorcet winners obtained con-
sidering the completions ofP coincide with those obtained
from considering the completions of the majority graph in-
duced byP . However, as shown in Example 4, this is not
true in general.

These four notions are related to interesting issues in vot-
ing theory:

• Weak Condorcet winners are related todestructive con-
trol. A chair may try to build an agenda in which some
candidate loses however the votes are completed. If a
candidate is not in WC(P), then the chair can choose an
agenda such that it must lose. Thus, the complexity of
computing WC(P) is related to the difficulty of destruc-
tive control.



• Strong Condorcet winners are related to thepossibility of
controlling/manipulatingthe election. If SC(P) is non-
empty, then neither the chair nor any of the voters can do
anything to change the result. Thus, the complexity of
computing SC(P) is related to the difficulty of manipula-
tion/control.

• Weak possible winners are related toparticipation incen-
tives. If a candidate is not in WP(P), it has no chance of
winning. If it is easy for a candidate to know whether
they are not in WP(P), he may drop out of the election. It
is therefore desirable that computing WP(P) is difficult.

• Strong possible winners are related toconstructive con-
trol. If a candidate is in SP(P), the chair can make the
candidate win by choosing an appropriate agenda. Thus,
it is desirable that computing SP(P) is difficult.

Comparing the notions of winners
We now compare the notions of winners defined in (Langet
al. 2007) and those defined here. Since in (Langet al. 2007)
weights were not considered, we first consider unweighted
profiles.

Unweighted profiles

Given an incomplete unweighted profileP and the incom-
plete majority graphG induced byP , that is,G = M(P ),
we already observed that the completions ofG are a (possi-
bly proper) superset of the set of complete majority graphs
induced by all possible completions ofP . This observation
leads to the following results.

Theorem 1 Given an incomplete unweighted profileP ,

1. WP (M(P )) ⊇ WP (P );

2. SP (M(P )) ⊆ SP (P );

3. WC(M(P )) = WC(P );

4. SC(M(P )) = SC(P ).

Proof: Let us consider the four items separately.

1. WP (M(P )) ⊇ WP (P ).
If a candidateA belongs toWP (P ), there is a comple-
tion of P , sayP ′, and an agenda, such thatA wins. Thus
A ∈ WP (G′) whereG′ is the complete majority graph
induced byP ′. SinceG′ is one of all the possible com-
pletions ofM(P )), thenA ∈ WP (M(P ).

2. SP (M(P )) ⊆ SP (P ).
If a candidate is a possible winner for every completion
of G, it is also a possible winner for the majority graphs
induced by the completions ofP , since they are a subset
of the set of all the completions ofM(P ).

3. WC(M(P )) = WC(P ).
Similar reasoning to the first item can be used to show
that WC(M(P )) ⊇ WC(P ). We can also prove that
WC(M(P )) ⊆ WC(P ). In fact, if a candidateA be-
longs toWC(M(P )), then there must be one or more
completions of the majority graph where A has only out-
going edges. Among such completions, there is at least
one which derives from a completion of the profile in

which all A?C becomeA > C (for all C). Thus, set-
ting this is sufficient to makeA a weak Condorcet winner
without contradicting transitivity of the profile.

4. SC(M(P )) = SC(P ).
Similar reasoning to the second item can be used to show
that SC(M(P )) ⊆ SC(P ). We can also prove that
SC(M(P )) ⊇ SC(P ). In fact, if a candidate belongs
to SC(P ), then it is a Condorcet winner, i.e., it beats ev-
ery other candidate, for every completion ofP . Thus it
must beat every other candidate in the part without uncer-
tainty. Hence, in the (possibly incomplete) majority graph
M(P ) induced byP , there are outgoing edges from this
candidate to every other candidate, and so this candidate
must belong toSC(M(P )). 2

Notice that there are cases in which the subset relation
WP (M(P )) ⊇ WP (P ) is strict. In fact, a candidate can
be a possible winner for a completion ofM(P ) which is
not induced by any completion ofP , as shown previously in
Example 4.

Weighted profiles
We next consider weighted profiles. Although weighted pro-
files were not considered in (Langet al. 2007), the same no-
tions defined there can be given for majority graphs induced
by weighted profiles. The analogous results to Theorem 1
hold in this more general setting. To prove this, we first show
that, given an incomplete weighted profileP and its corre-
sponding unweighted profileU(P ), SC(P ) = SC(U(P ))
(resp.,WC(P ) = WC(U(P ))). That is, the set of strong
(resp., weak) Condorcet winners forP coincides with the
set of strong (resp., weak) Condorcet winners for the un-
weighted profile corresponding toP . We also show that
M(P ) = M(U(P )). That is, the majority graphs ofP and
U(P ) coincide.

Theorem 2 Given an incomplete weighted profileP ,

1. M(P ) = M(U(P ));
2. SC(P ) = SC(U(P ));
3. WC(P ) = WC(U(P )).

Proof:

1. M(P ) = M(U(P )).
The statement can be easily proven sinceU(P ) is a profile
obtained fromP by replacing each agent with weightki

and with preference orderingO by ki agents with weight
1 all with preference orderingO.

2. SC(P ) = SC(U(P )).
(⊇) This follows from the completions ofU(P ) being a
superset of the completions ofP .
(⊆) Assume thatA 6∈ SC(U(P )). ThenA does not have
m − 1 outgoing edges (wherem = |Ω|) in M(U(P ))
(Langet al. 2007). Hence, sinceM(P ) = M(U(P )), A
does not havem − 1 outgoing edges inM(P ). Hence,
there is a candidateB s.t. B >m A or B?mA in M(P ).
If B >m A in M(P ), then for every completion ofP
we haveB > A, and thusA cannot win in every agenda.
If B?mA in M(P ), then there exists a completion ofP
where we replace everyA?B with B > A, whereA may



not win. HenceA does not win in every completion and
agenda.

3. WC(P ) = WC(U(P )).
(⊆) This follows from the completions ofU(P ) being a
superset of the completions ofP .
(⊇) Assume thatA ∈ WC(U(P )).Then A has no
ingoing edges inM(U(P )) (Lang et al. 2007). Hence,
sinceM(U(P )) = M(P ), A has no ingoing edges in
M(U(P )). Thus, if we replace, for everyB, A?B in P
with A > B, we obtain a completion ofP whereA wins
in every agenda. HenceA ∈ WC(P ). 2

We can now compare the notions of winners in the
weighted case.

Theorem 3 Given an incomplete weighted profileP ,

1. WP (M(P )) ⊇ WP (P ), that is, the set of the weak pos-
sible winners for the majority graph induced byP con-
tains or is equal to the set of the weak possible winners
for P ;

2. SP (M(P )) ⊆ SP (P ), that is, the set of the strong pos-
sible winners for the majority graph induced byP is con-
tained or is equal to the set of the strong possible winners
for P ;

3. SC(M(P )) = SC(P ), that is, the set of the strong Con-
dorcet winners for the majority graph induced byP is
equal to the set of the strong Condorcet winners forP ;

4. WC(M(P )) = WC(P ), that is, the set of the weak Con-
dorcet winners for the majority graph induced byP is
equal to the set of the weak Condorcet winners forP .

Proof: Let U(P ) be the unweighted profile obtained from
P .

• 1st and 2nd item:
Since the completions ofP are a subset of the comple-
tions of U(P ), WP (P ) ⊆ WP (U(P )) andSP (P ) ⊇
SP (U(P )). Now, sinceM(P ) = M(U(P )) by Theo-
rem 2, and sinceSP (G) andWP (G) depend only on the
majority graphG under consideration,WP (M(P )) ⊇
WP (P ) andSP (M(P )) ⊆ SP (P ).

• 3rd and 4th item:
To prove thatSC(P ) = SC(M(P )), we may notice
thatSC(P ) = SC(U(P )) by Theorem 2,SC(U(P )) =
SC(M(U(P ))) by Theorem 1, andSC(M(U(P )) =
SC(M(P )) by Theorem 2 and by the fact thatSC(G)
depends only on the majority graphG considered. The
same reasoning allows us to conclude thatWC(P ) =
WC(M(P )). 2

Note that Theorems 1 and 3 show that the same relation-
ships hold with or without weights. It is perhaps interesting
to observe that a stronger relationship cannot be shown to
hold in the more specific case of unweighted votes.

Complexity of determining winners
We now turn our attention to the complexity of determining
possible and Condorcet winners from profiles. We start by
showing that computing the weak or strong Condorcet win-
ners is polynomial in the number of agents and candidates.

Theorem 4 Given an incomplete weighted profileP , the
setsWC(P ) andSC(P ) are polynomial to compute.

Proof: By Theorem 3,WC(P ) = WC(M(P )) and
SC(P ) = SC(M(P )). Moreover, by Theorem 2 we
know that M(P ) = M(U(P )), where U(P ) is the
corresponding unweighted profile obtained fromP .
Thus, we have thatWC(P ) = WC(M(U(P ))) and
SC(P ) = SC(M(U(P ))). In (Lang et al. 2007) the
authors show that, given any majority graphG obtained
from an unweighted profile, it is polynomial to compute
WC(G) andSC(G). Hence, it is polynomial to compute
WC(M(U(P ))) andSC(M(U(P ))). 2

Since, as noted above, WC(P) is related to destructive
control and SC(P) is related to the possibility of control or
manipulation, this means that:

• It is easy for a chair to control destructively the election.
That is, given a candidateA, it is easy for the chair to
know whether, no matter how votes will be completed,
there is an agenda whereA does not win.

• It is also easy for a chair or a voter to know whether con-
trol/manipulation is possible.

We next show that computing weak possible winners is
intractable in general.

Theorem 5 Given an incomplete weighted profileP with 3
or more candidates, deciding if a candidate is in WP(P) is
NP-complete.

Proof: Clearly the problem is in NP as a polynomial wit-
ness is a completion and an agenda in which the candidate
wins. To show it is NP-complete, we give a reduction from
the number partitioning problem. The reduction is based
around constructing a Condorcet cycle and is similar to those
used in (Conitzer & Sandholm 2002a) to show that manipu-
lation is computationally hard even with a small number of
candidates when votes are weighted. The reduction is, how-
ever, different to that in Theorem 8 in (Conitzer & Sandholm
2002a) as the reduction there concerns the randomized Cup
rule and requires 7 or more candidate.

We have a bag of integers,ki with sum2k and we wish
to decide if they can be partitioned into two bags, each with
sumk. We want to show that a candidateB is a weak possi-
ble winner if and only if such a partition exists. We construct
an incomplete profile over three candidates (A, B, andC) as
follows. We have1 vote forB > C > A of weight1, 1 vote
B > A > C of weight2k − 1, and 1 voteC > B > A of
weight2k − 1. At this point, the total weight of votes with
B > A exceeds that ofA > B by 4k − 1, the total weight
of votes withB > C exceeds that ofC > B by 1, and the
total weight of votes withC > A exceeds that ofA > C by
1.

We also have, for eachki, a partially specified vote of
weight2ki in which we know just thatA > B. As the total
weight of these partially specified votes is4k, we are sure
A beatsB in the final result by 1 vote. The only agenda
in which B can win is the one in whichA playsC and the
winner then playsB. In addition, forB to win, the partially
specified votes need to be completed so thatB beatsC, and



C beatsA in the final result. We show that this is possible
iff there is a partition of sizek. Suppose there is such a
partition. Then let the votes in one bag beA > B > C and
the votes in the other beC > A > B. Then,A beatsB,
B beatsC andC beatsA, all by 1 vote in the final result.
On the other hand, suppose there is a way to cast the votes
to give the resultA beatsB, B beatsC and C beatsA.
All the uncast votes rankA aboveB. In addition, at least
half the weight of votes must rankB aboveC, and at least
half the weight of votes must rankC aboveA. SinceA is
aboveB, C cannot be both aboveA and belowB. Thus
precisely half the weight of votes ranksC aboveA and
half ranksB aboveC. Hence we have a partition of equal
weight. We therefore conclude thatB can win iff there is a
partition of sizek. That is, deciding ifB is a weak possible
winner is NP-complete. We can extend the reduction to
more than 3 candidates by placing any additional candidate
at the bottom of every voters’ preference ordering (it does
not matter how). 2

Note that computing weak possible winners from an in-
complete majority graph is polynomial (Langet al. 2007).
Thus, adding weights to the votes and computing weak pos-
sible winners from the incomplete profile instead of the ma-
jority graph makes the problem intractable. On the other
hand, adding weights to the votes did not make weak and
strong Condorcet winners harder to compute.

We recall thatWP (P ) is related to participation incen-
tives. Thus Theorem 5 tells us that it is difficult for a candi-
date to know whether they have chance to win. This makes
it less probable that they drop out.

Also, WP (P ) ⊆ WP (M(P )) (see Theorem 3). Thus,
while WP (P ) is difficult to compute, it is easy to compute
a superset of it, that is,WP (M(P )).

The complexity of determining strong possible winners
from an incomplete profile (that is, the setSP (P )) remains
an open problem. However, we know that computing strong
possible winners from incomplete majority graphs (that is,
SP (M(P ))) without weights is easy (Langet al. 2007).
This gives us an easy way to compute a subset ofSP (P ): if
SP (M(P )) is not empty, we can easily compute it and find
at least some of the candidates inSP (P ).

Fair possible and Condorcet winners
All the notions of winners defined so far consider agendas
of any shape. Agendas that are unbalanced may not be con-
sidered ”fair”. Such agendas may allow weak candidates,
that can beat only a small number of candidates, to end up
winning the election. We therefore consider, as in (Langet
al. 2007), agendas that are balanced binary trees.

Given a complete profileP , a candidateA is said to be
a fair possible winnerfor P iff there is a balanced agenda
in which A wins. A balanced agenda is a binary tree in
which the difference between the maximum and the min-
imum depth among the leaves is less than or equal to 1.
Testing whether a candidate is a fair possible winner over
weighted majority graphs is NP-hard (Langet al. 2007).

Example 6 Figure 3 shows two balanced agendas.
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Figure 3: Two balanced agendas.

We now apply this notion of fairness to our definition of
winners based on incomplete profiles. Thus, given an in-
complete weighted profileP , we definefair strong Con-
dorcet(FSC(P)),fair weak Condorcet(FWC(P)),fair strong
possible(FSP(P)), andfair weak possible(FWP(P)) winners
in an analogous way to Definition 1 but limited to fair agen-
das. For example, a candidate is in FSC(P) iff they win in
all completions of profile P and in allbalancedagendas.

We now show that it is easy to compute fair weak Con-
dorcet or fair strong Condorcet winners based on the obser-
vation that fairness does not change these sets.

Theorem 6 Given an incomplete weighted profileP ,

• FSC(P ) = SC(P ) andFWC(P ) = WC(P );
• FWC(P ) andFSC(P ) are polynomial to compute.

Proof: We first show thatFSC(P ) = SC(P ) (resp.,
FWC(P ) = SW (P )).
(⊇) If A ∈ SC(P ) (resp.,WC(P )), for every comple-
tion (resp., for some completion) ofP , A wins in every
agenda. ThusA wins also in balanced agendas. Hence,
A ∈ FSC(P ) (resp.,A ∈ FWC(P )).
(⊆) If A ∈ FSC(P ) (resp.,FWC(P )), for every com-
pletion (resp., for some completion) ofP , A wins in every
balanced agenda. In every balanced agenda,A must win
against at least a candidate (the one inA’s first match). If
A wins in every balanced agenda, it therefore means that
A must win against every candidate. ThusA wins in every
agenda. Thus,A ∈ SC(P ) (resp.,A ∈ WC(P )).

SinceFSC(P ) = SC(P ) andFWC(P ) = SW (P ),
and since, by Theorem 4,SC(P ) and WC(P ) are poly-
nomial to compute, alsoFSC(P ) and FWC(P ) are
polynomial to compute. 2

Thus, the test for destructive control (related to WC) and
for the possibility of control/manipulation (related to SC) are
easy even when we consider only fair agendas.

Let us now consider fair weak possible winners. Since
every balanced agenda is also an agenda, we have that
FWP (P ) ⊆ WP (P ). We already know from Theorem 5
that determining WP(P) is difficult. We will now show that
this remains so for FWP(P).

Theorem 7 Given an incomplete weighted profileP with 3
or more candidates, deciding if a candidate is in FWP(P) is
NP-complete.



Proof: We use the same construction as in the proof of
Theorem 5. Given the profile constructed there, the only
possible fair agendas in which B wins are those in which A
plays C, and (at some later point) B then plays the winner.
All the additional candidates will be defeated by A, B and
C so can be placed anywhere in the fair agenda. 2

Since the notion of weak possible winner is related to the
concept of losers (losers are those not in WP), this means
that it is difficult to know whether a candidate is a loser (or
alternatively still has a chance to win). This difficulty re-
mains so even if we consider only balanced agendas.

The computational complexity of determining fair strong
possible winners remains an open question, just as is the
complexity of computing strong possible winners. We only
know that, since every balanced agenda is also an agenda,
FSP (P ) ⊆ SP (P ).

Related work
There has been much research on the computational com-
plexity of determining winners of various kinds for several
voting rules, and of the relationship with the complexity of
problems found in preference elicitation and manipulation.
Our results follow this same line of work while focusing on
sequential majority voting.

The most related work is (Langet al. 2007) Like our pa-
per, this considers the computational complexity of deter-
mining winners for sequential majority voting. However,
they start from an incomplete majority graph which throws
away information about individual votes, whilst we start
from an incomplete profile.

Conitzer and Sandholm also consider sequential major-
ity voting (Conitzer & Sandholm 2002a), but they assume
a complete profile and a fixed agenda. They show that, if
the agenda is fixed and balanced, determining the candidates
that win in at least one completion of the profile is polyno-
mial, but randomizing the agenda makes deciding the prob-
ability that a candidate wins (and thus manipulation) NP-
hard. They also prove that constructive manipulation is in-
tractable for the Borda, Copeland, Maximin and STV rules
using weighted votes even with a small number of candi-
dates. However, all of these rules are polynomial to manip-
ulate destructively except STV.

Conitzer and Sandholm also prove that deciding if prefer-
ence elicitation is over (that is, determining if the remaining
votes can be cast so a given candidate does not win) is NP-
hard for the STV rule (Conitzer & Sandholm 2002b). For
other common voting rules like plurality and Borda, they
show that it is polynomial to decide if preference elicitation
is over.

The notions of possible and necessary winners are not
new. They were introduced by Konczak and Lang in (Kon-
czak & Lang 2005) in the context of positional scoring vot-
ing rules with incomplete profiles. A possible winner in
(Konczak & Lang 2005) is a candidate that can win in at
least a completion of profile, while a necessary winner is
a candidate that wins in every completion of the profile.
We have adapted these notions to the context of sequential
majority voting with complete profiles, where the unknown

part is the agenda. Hence, we have defined possible win-
ners as those candidates that may win in at least an agenda
and necessary winners (called here Condorcet winners) as
those candidates that win in every agenda. We have also
considered the presence of incomplete profiles and in this
case we have defined new notions of winners: weak (resp.,
strong) possible and necessary winners, that are those candi-
dates that are possible and necessary winners in some (resp.,
in all) completions of the profile. We have also analyzed
the complexity of determining weak and strong possible and
necessary winners from incomplete profiles for sequential
majority rule, and we have shown that determining weak
possible winners is NP-hard, whilst determining the other
kinds of winners is polynomial. Konczak and Lang proved
that it is polynomial to compute both possible and necessary
winners for positional scoring voting rules like the Borda
and plurality rule, as well as for a non-positional rule like
Condorcet (Konczak & Lang 2005).

Pini et al. prove that computing the possible and neces-
sary winners for the STV rule is NP-hard (Piniet al. 2007).
They show it is NP-hard even to approximate these sets
within some constant factor in size. They also give a pref-
erence elicitation procedure which focuses just on the set of
possible winners.

Finally, Brandtet al. consider different notions of winners
starting from incomplete majority graphs (Brandt, Fischer,
& Harrenstein 2007). We plan to investigate these kinds of
winners in our framework.

Conclusions
We have considered multi-agent settings where agents’
preferences may be incomplete and are aggregated using
weighted sequential majority voting. For this setting, we
have shown that it is easy to determine weak and strong
Condorcet winners, i.e., to determine the candidates that win
whatever the agenda, while it is hard to know whether a can-
didate is a weak possible winner, i.e., if the candidate winsin
at least one agenda for at least one completion of the agents’
preferences. This is hard even if we require that the agenda
be a balanced tree. These results show that, for weighted
sequential majority voting, it is

• computationally easy to test if destructive control is pos-
sible, even if we consider only fair agendas;

• computationally easy to test if there is a guaranteed win-
ner, even for fair agendas;

• computationally difficult to test if a candidate is a loser,
even for fair agendas.

Our results are thus useful to understand the complexity of
both manipulation and preference elicitation.

The computational complexity of testing whether con-
structive control is possible (that is, of finding strong pos-
sible winners) with fair or unfair agendas remains open and
needs to be studied further. Another interesting directionfor
future work is deciding which candidates are most likely to
win, which is related to probabilistic approaches to voting
theory. We also plan to study other forms of uncertainty in
the application of the voting rule, such as uncertain weights



in a scoring rule, or a chair who can choose between differ-
ent voting rules. We intend to analyze the presence of ties
in agents’ preferences. Adding ties requires adding a tie-
breaking rule to be able to declare a winner in each pairwise
comparison. We believe similar results can be derived for
such weak (as opposed to total) orders. The analysis will
have to be more complex to deal with the extra cases. How-
ever, the set of completions of the majority graph remains a
superset of the set of completions of the profile. Thus all the
results based on this fact still hold.
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