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Abstract. Fuzzy constraints are a popular approach to handle preferences and
over-constrained problems in scenarios where one needs to be cautious, such as
in medical or space applications. We consider here fuzzy constraint problems
where some of the preferences may be missing. This models, for example, set-
tings where agents are distributed and have privacy issues, or where there is an
ongoing preference elicitation process. In this setting, we study how to find a
solution which is optimal irrespective of the missing preferences. In the process
of finding such a solution, we may elicit preferences from the user if necessary.
However, our goal is to ask the user as little as possible. We define a combined
solving and preference elicitation scheme with a large number of different in-
stantiations, each corresponding to a concrete algorithm which we compare ex-
perimentally. We compute both the number of elicited preferences and the ”user
effort”, which may be larger, as it contains all the preference values the user has
to compute to be able to respond to the elicitation requests. While the number of
elicited preferences is important when the concern is to communicate as little in-
formation as possible, the user effort measures also the hidden work the user has
to do to be able to communicate the elicited preferences. Our experimental results
show that some of our algorithms are very good at finding a necessarily optimal
solution while asking the user for only a very small fraction of the missing pref-
erences. The user effort is also very small for the best algorithms. Finally, we test
these algorithms on hard constraint problems with possibly missing constraints,
where the aim is to find feasible solutions irrespective of the missing constraints.

1 Introduction

Constraint programming is a powerful paradigm for solving scheduling, planning, and
resource allocation problems. A problem is represented by a set of variables, each with
a domain of values, and a set of constraints. A solution is an assignment of values to
the variables which satisfies all constraints and which optionally maximizes/minimizes
an objective function. Soft constraints are a way to model optimization problems by
allowing for several levels of satisfiability, modelled by the use of preference or cost
values that represent how much we like an instantiation of the variables of a constraint.
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It is usually assumed that the data (variables, domains, (soft) constraints) is completely
known before solving starts. This is often unrealistic. In web applications and multi-agent
systems, the data is frequently only partially known and may be added to at a later date
by, for example, elicitation. Data may also come from different sources at different times.
In multi-agent systems, agents may release data reluctantly due to privacy concerns.

Incomplete soft constraint problems can model such situations by allowing some of
the preferences to be missing. An algorithm has been proposed and tested to solve such
incomplete problems [7]. The goal is to find a solution that is guaranteed to be optimal
irrespective of the missing preferences, eliciting preferences if necessary until such a
solution exists. Two notions of optimal solution are considered: possibly optimal solu-
tions are assignments that are optimal in at least one way of revealing the unspecified
preferences, while necessarily optimal solutions are assignments that are optimal in
all ways that the unspecified preferences can be revealed. The set of possibly optimal
solutions is never empty, while the set of necessarily optimal solutions can be empty.

If there is no necessarily optimal solution, the algorithm proposed in [7] uses branch
and bound to find a ”promising solution” (specifically, a complete assignment in the best
possible completion of the current problem) and elicits the missing preferences related
to this assignment. This process is repeated till there is a necessarily optimal solution.

Although this algorithm behaves reasonably well, it make some specific choices
about solving and preference elicitation that may not be optimal in practice, as we
shall see in this paper. For example, the algorithm only elicits missing preferences after
running branch and bound to exhaustion. As a second example, the algorithm elicits all
missing preferences related to the candidate solution. Many other strategies are possi-
ble. We might elicit preferences at the end of every complete branch, or even at every
node in the search tree. Also, when choosing the value to assign to a variable, we might
ask the user (who knows the missing preferences) for help. Finally, we might not elicit
all the missing preferences related to the current candidate solution. For example, we
might just ask the user for the worst preference among the missing ones.

In this paper we consider a general algorithm scheme which greatly generalizes that
proposed in [7]. It is based on three parameters: what to elicit, when to elicit it, and who
chooses the value to be assigned to the next variable. We test all 16 possible different
instances of the scheme (among which is the algorithm in [7]) on randomly generated
fuzzy constraint problems. We demonstrate that some of the algorithms are very good
at finding necessarily optimal solution without eliciting too many preferences. We also
test the algorithms on problems with hard constraints. Finally, we consider problems
with fuzzy temporal constraints, where problems have more specific structure.

In our experiments, we compute the elicited preferences, that is, the missing values
that the user has to provide to the system because they are requested by the algorithm.
Providing these values usually has a cost, either in terms of computation effort, or in
terms of privacy decrease, or also in terms of communication bandwidth. Thus know-
ing how many preferences are elicited is important if we care about any of these issues.
However, we also compute a measure of the user’s effort, which may be larger than the
number of elicited preferences, as it contains all the preference values the user has to
consider to be able to respond to the elicitation requests. For example, we may ask the
user for the worst preference value among k missing ones: the user will communicate
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only one value, but he will have to consider all k of them. While knowing the number
of elicited preferences is important when the concern is to communicate as little infor-
mation as possible, the user effort measures also the hidden work the user has to do to
be able to communicate the elicited preferences. This user’s effort is therefore also an
important measure.

As a motivating example, recommender systems give suggestions based on partial
knowledge of the user’s preferences. Our approach could improve performance by iden-
tifying some key questions to ask before giving recommendations. Privacy concerns re-
garding the percentage of elicited preferences are motivated by eavesdropping. User’s
effort is instead related to the burden on the user.

Our results show that the choice of preference elicitation strategy is crucial for the
performance of the solver. While the best algorithms need to elicit as little as 10% of
the missing preferences, the worst one needs much more. The user’s effort is also very
small for the best algorithms. The performance of the best algorithms shows that we
only need to ask the user a very small amount of additional information to be able to
solve problems with missing data.

Several other approaches have addressed similar issues. For example, open CSPs
[4,6] and interactive CSPs [9] work with domains that can be partially specified. As a
second example, in dynamic CSPs [2] variables, domains, and constraints may change
over time. However, the incompleteness considered in [5,6] is on domain values as well
as on their preferences. Working under this assumption means that the agent that pro-
vides new values/costs for a variable knows all possible costs, since they are capable of
providing the best value first. If the cost computation is expensive or time consuming,
then computing all such costs (in order to give the most preferred value) is not desir-
able. We assume instead, as in [7], that all values are given at the beginning, and that
only some preferences are missing. Because of this assumption, we don’t need to elicit
preference values in order, as in [6].

2 Background

In this section we give a brief overview of the fundamental notions and concepts on
Soft Constraints and Incomplete Soft Constraints.

Incomplete Soft Constraints problems (ISCSPs) [7] extend Soft Constraint Problems
(SCSPs) [1] to deal with partial information. We will focus on a specific instance of this
framework in which the soft constraints are fuzzy.

Given a set of variables V with finite domain D, an incomplete fuzzy constraint is a
pair 〈idef, con〉 where con ⊆ V is the scope of the constraint and idef : D|con| −→
[0, 1] ∪ {?} is the preference function of the constraint associating to each tuple of
assignments to the variables in con either a preference value ranging between 0 and 1,
or ?. All tuples mapped into ? by idef are called incomplete tuples, meaning that their
preference is unspecified. A fuzzy constraint is an incomplete fuzzy constraint with no
incomplete tuples.

An incomplete fuzzy constraint problem (IFCSP) is a pair 〈C, V, D〉 where C is a set
of incomplete fuzzy constraints over the variables in V with domain D. Given an IFCSP
P , IT (P ) denotes the set of all incomplete tuples in P . When there are no incomplete
tuples, we will denote a fuzzy constraint problem by FSCP.
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Given an IFCSP P , a completion of P is an IFCSP P ′ obtained from P by associ-
ating to each incomplete tuple in every constraint an element in [0, 1]. A completion
is partial if some preference remains unspecified. C(P ) denotes the set of all possible
completions of P and PC(P ) denotes the set of all its partial completions.

Given an assignment s to all the variables of an IFCSP P , pref(P, s) is the prefer-
ence of s in P , defined as pref(P, s) = min<idef,con>∈C|idef(s↓con) �=?idef(s↓con).
It is obtained by taking the minimum among the known preferences associated to the
projections of the assignment, that is, of the appropriated sub-tuples in the constraints.

In the fuzzy context, a complete assignment of values to all the variables is an optimal
solution if its preference is maximal. The optimality notion of FCSPs is generalized to
IFCSPs via the notions of necessarily and possibly optimal solutions, that is, complete
assignments which are maximal in all or some completions. Given an IFCSP P , we
denote by NOS(P ) (resp., POS(P )) the set of necessarily (resp., possibly) optimal
solutions of P . Notice that NOS(P ) ⊆ POS(P ). Moreover, while POS(P ) is never
empty, NOS(P ) may be empty. In particular, NOS(P ) is empty whenever the revealed
preferences do not fix the relationship between one assignment and all others.

In [7] an algorithm is proposed to find a necessarily optimal solution of an IFCSP
based on a characterization of NOS(P ) and POS(P ). This characterization uses the
preferences of the optimal solutions of two special completions of P , namely the 0-
completion of P , denoted by P0, obtained from P by associating preference 0 to each
tuple of IT (P ), and the 1-completion of P , denoted by P1, obtained from P by as-
sociating preference 1 to each tuple of IT (P ). Notice that, by monotonicity of min,
we have that pref0 ≤ pref1. When pref0 = pref1, NOS(P ) = Opt(P0); thus, any
optimal solution of P0 is a necessary optimal solution. Otherwise, NOS(P ) is empty
and POS(P ) is a set of solutions with preference between pref0 and pref1 in P1. The
algorithm proposed in [7] finds a necessarily optimal solution of the given IFCSP by
interleaving the computation of pref0 and pref1 with preference elicitation steps, until
the two values coincide. Moreover, the preference elicitation is guided by the fact that
only solutions in POS(P ) can become necessarily optimal. Thus, the algorithm only
elicits preferences related to optimal solutions of P1.

3 A General Solver Scheme

We now propose a more general schema for solving IFCSPs based on interleaving
branch and bound (BB) search with elicitation. This schema generalizes the concrete
solver presented in [7], but has several other instantiations that we will consider and
compare experimentally in this paper. The scheme uses branch and bound. This consid-
ers the variables in some order, choosing a value for each variable, and pruning branches
based on an upper bound (assuming the goal is to maximize) on the preference value
of any completion of the current partial assignment. To deal with missing preferences,
branch and bound is applied to both the 0-completion and the 1-completion of the prob-
lem. If they have the same solution, this is a necessarily optimal solution and we can
stop. If not, we elicit some of the missing preferences and continue branch and bound
on the new 1-completion.

Preferences can be elicited after each run of branch and bound (as in [7]) or during
a BB run while preserving the correctness of the approach. For example, we can elicit
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preferences at the end of every complete branch (that is, regarding preferences of every
complete assignment considered in the branch and bound algorithm), or at every node in
the search tree (thus considering every partial assignment). Moreover, when choosing
the value for the next variable to be assigned, we can ask the user (who knows the
missing preferences) for help. Finally, rather than eliciting all the missing preferences in
the possibly optimal solution, or the complete or partial assignment under consideration,
we can elicit just one of the missing preferences. For example, with fuzzy constraint
problems, eliciting just the worst preference among the missing ones is sufficient since
only the worst value is important to the computation of the overall preference value.
More precisely, the algorithm schema we propose is based on the following parameters:

1. Who chooses the value of a variable: the algorithm can choose the values in de-
creasing order either w.r.t. their preference values in the 1-completion (Who=dp)
or in the 0-completion (Who=dpi). Otherwise, the user can suggest this choice. To
do this, he can consider all the preferences (revealed or not) for the values of the
current variable (lazy user, Who=lu for short); or he considers also the preference
values in constraints between this variable and the past variables in the search order
(smart user, Who=su for short).

2. What is elicited: we can elicit the preferences of all the incomplete tuples of the
current assignment (What=all) or only the worst preference in the current assign-
ment, if it is worse than the known ones (What=worst);

3. When elicitation takes place: we can elicit preferences at the end of the branch
and bound search (When=tree), or during the search, when we have a complete
assignment to all variables (When=branch) or whenever a new value is assigned to
a variable (When=node).

By choosing a value for each of the three above parameters in a consistent way, we
obtain in total 16 different algorithms, as summarized in Figure 1, where the circled
instance is the concrete solver used in [7].

Figures 2 and 3 show the pseudo-code of the general scheme for solving IFCSPs.
There are three algorithms: ISCSP-SCHEME, BBE and BB. ISCSP-SCHEME takes
as input an IFCSP P and the values for the three parameters: Who, What and When.

Fig. 1. Instances of the general scheme



Elicitation Strategies for Fuzzy Constraint Problems 407

IFCSP-SCHEME(P ,Who,What,When)
Q ← P0

smax, prefmax ← BB(P0,−)
Q′,s1,pref1 ← BBE(P, 0, Who, What,When, smax, prefmax)
If (s1 �= nil)

smax ← s1, prefmax ← pref1, Q ← Q′

Return Q, smax, prefmax

Fig. 2. Algorithm IFCSP-SCHEME

BBE (P ,nInstV ar, Who, What, When, sol, lb)
sol′ ← sol, pref ′ ← lb

currentV ar ← nextV ariable(P1)
While (nextV alue(currentV ar, Who))

If (When = node)
P, pref ← Elicit@Node(What,P, currentV ar, lb)

ub ← UpperBound(P1, currentV ar)
If (ub > lb)

If (nInstvar = number of variables in P )
If (When = branch)

P, pref ← Elicit@branch(What,P, lb)
If (pref > lb)

sol ← getSolution(P1)
lb ← pref(P1, sol)

else
BBE(P,nInstV ar + 1, Who,What,When, sol, lb)

If (When=tree and nInstV ar = 0)
If(sol = nil)

sol ← sol′, pref ← pref ′

else
P, pref ← Elicit@tree(What,P, sol, lb)
If(pref > pref ′)

BBE(P, 0, Who,What,When, sol, pref)
else BBE(P, 0, Who, What,When, sol′, pref ′)

Fig. 3. Algorithm BBE

It returns a partial completion of P that has some necessarily optimal solutions, one
of these necessarily optimal solutions, and its preference value. It starts by computing
via branch and bound (algorithm BB) an optimal solution of P0, say smax, and its
preference prefmax. Next, procedure BBE is called. If BBE succeeds, it returns a
partial completion of P , say Q, one of its necessarily optimal solutions, say s1, and
its associated preference pref1. Otherwise, it returns a solution equal to nil. In the
first case the output of IFCSP-SCHEME coincides with that of BBE, otherwise IFCSP-
SCHEME returns P0, one of its optimal solutions, and its preference.

Procedure BBE takes as input the same values as IFCSP-SCHEME and, in addition,
a solution sol and a preference lb representing the current lower bound on the optimal
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preference value. Function nextV ariable, applied to the 1-completion of the IFCSP,
returns the next variable to be assigned. The algorithm then assigns a value to this
variable. If the Boolean function nextV alue returns true (if there is a value in the
domain), we select a value for currentV ar according to the value of parameter Who.

Function UpperBound computes an upper bound on the preference of any comple-
tion of the current partial assignment: the minimum over the preferences of the con-
straints involving only variables that have already been instantiated.

If When=tree, elicitation is handled by procedure Elicit@tree, and takes place only
at the end of the search over the 1-completion. The user is not involved in the value
assignment steps within the search. At the end of the search, if a solution is found, the
user is asked either to reveal all the preferences of the incomplete tuples in the solution
(if What=all), or only the worst one among them (if What=worst). If such a preference
is better than the best found so far, BBE is called recursively with the new best solution
and preference.

If When=branch, BB is performed only once. The user may be asked to choose the
next value for the current variable being instantiated. Preference elicitation, which is
handled by function Elicit@branch, takes place during search, whenever all variables
have been instantiated and the user can be asked either to reveal the preferences of all the
incomplete tuples in the assignment (What=all), or the worst preference among those
of the incomplete tuples of the assignment (What=worst). In both cases the information
gathered is sufficient to test such a preference value against the current lower bound.

If When=node, preferences are elicited every time a new value is assigned to a vari-
able and it is handled by procedure Elicit@node. The tuples to be considered for elic-
itation are those involving the value which has just been assigned and belonging to
constraints between the current variable and already instantiated variables. If What=all,
the user is asked to provide the preferences of all the incomplete tuples involving the
new assignment. Otherwise if What=worst, the user provides only the preference of the
worst tuple.

Theorem 1. Given an IFCSP P and a consistent set of values for parameters When,
What and Who, Algorithm IFCSP-SCHEME always terminates, and returns an IFCSP
Q ∈ PC(P ), an assignment s ∈ NOS(Q), and its preference in Q.

Proof. Let us first notice that, as far as correctness and termination concern, the value
of parameter Who is irrelevant.

We consider two separate cases, i.e., When=tree and and When=branch or node.

Case 1: When =tree.
Clearly IFCSP-SCHEME terminates if and only if BBE terminates. If we consider the
pseudocode of procedure BBE shown in Algorithm 3, we see that if When = tree, BBE
terminates when sol = nil. This happens only when the search fails to find a solution
of the current problem with a preference strictly greater than the current lower bound.
Let us denote with Qi and Qi+1 respectively the IFCSPs given in input to the i-th and
i+1-th recursive call of BBE. First we notice that only procedure Elicit@tree modifies
the IFCSP in input by possibly adding new elicited preferences. Moreover, whatever the
value of parameter What is, the returned IFCSP is either the same as the one in input or it
is a (possibly partial) completion of the one in input. Thus we have Qi+1 ∈ PC(Qi) and
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Qi ∈ PC(P ). Since the search is always performed on the 1-completion of the current
IFCSP, we can conclude that for every solution s, pref(Qi+1, s) ≤ pref(Qi, s). Let us
now denote with lbi and lbi+1 the lower bounds given in input respectively to the i-th
and i+1-th recursive call of BBE. It is easy to see that lbi+1 ≥ lbi. Thus, since at every
iteration we have that the preferences of solutions can only get lower, and the bound
can only get higher, and since we have a finite number of solutions, we can conclude
that BBE always terminates.

The reasoning that follows relies on the fact that value pref returned by function
Elicit@tree is the final preference after elicitation of assignment sol given in input.
This is true since either What = all and thus all preferences have been elicited and the
overall preference of sol can be computed or only the worst preference has been elicited
but in a fuzzy context where the overall preference coincide with the worst one. If called
with When = tree IFCSP-SCHEME exits when the last branch and bound search has
ended returning sol = nil. In such a case sol and pref are updated to contain the best
solution and associated preference found so far, i.e., sol′ and pref ′. Then, the algorithm
returns the current IFCSP, say Q, and sol and pref . Following the same reasoning as
above done for Qi we can conclude that Q ∈ PC(P ).

At the end of every while loop execution, assignment sol either contains an opti-
mal solution sol of the 1-completion of the current IFCSP or sol = nil. sol = nil iff
there is no assignment with preference higher than lb in the 1-completion of the current
IFCSP. In this situation, sol′ and pref ′ are an optimal solution and preference of the
1-completion of the current IFCSP. However, since the preference of sol′, pref ′ is inde-
pendent of unknown preferences and since due to monotonicity the optimal preference
value of the 1-completion is always greater than or equal to that of the 0-completion
we have that sol′ and pref ′ are an optimal solution and preference of the 0-completion
of the current IFCSP as well.

By Theorems 1 and 2 of [7] we can conclude that NOS(Q) is not empty. If pref =
0, then NOS(Q) contains all the assignments and thus also sol. The algorithm cor-
rectly returns the same IFCSP given in input, assignment sol and its preference pref .
If instead 0 < pref , again the algorithm is correct, since by Theorem 1 of [7] we know
that NOS(Q) = Opt(Q0), and we have shown that sol ∈ Opt(Q0).

Case 2: When=branch or node.
In order to prove that the algorithm terminates, it is sufficient to show that BBE ter-
minates. Since the domains are finite, the labeling phase produces a number of finite
choices at every level of the search tree. Moreover, since the number of variables is
limited, then, we have also a finite number of levels in the tree. Hence, BBE considers
at most all the possible assignments, that are a finite number. At the end of the exe-
cution of IFCSP-SCHEME, sol, with preference pref is one of the optimal solutions
of the current P1Thus, for every assignment s′, pref(P1, s

′) ≤ pref(P1, sol). More-
over, for every completion Q′ ∈ C(P ) and for every assignment s′, pref(Q′, s′) ≤
pref(P1, s

′). Hence, for every assignment s′ and for every Q′ ∈ C(P ), we have that
pref(Q′, s′) ≤ pref(P1, sol). In order to prove that sol ∈ NOS(P ), now it is suffi-
cient to prove that for every Q′ ∈ C(P ), pref(P1, sol) = pref(Q′, sol). This is true,
since sol has a preference that is independent from the missing preferences of P , both
when eliciting all the missing preferences, and when eliciting only the worst one either
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at branch or node level. In fact, in both cases, the preference of sol is the same in every
completion. Q.E.D.

If When=tree, then we elicit after each BB run, and it is proven in [7] that IFCSP-
SCHEME never elicits preferences involved in solutions which are not possibly op-
timal. This is a desirable property, since only possibly optimal solutions can become
necessarily optimal. However, the experiments will show that solvers satisfying such a
desirable property are often out-performed in practice.

4 Problem Generator and Experimental Design

To test the performance of these different algorithms, we created IFCSPs using a gen-
erator which is a simple extension of the standard random model for hard constraints to
soft and incomplete constraints. The generator has the following parameters:

– n: number of variables;
– m: cardinality of the variable domains;
– d: density, that is, the percentage of binary constraints present in the problem w.r.t.

the total number of possible binary constraints that can be defined on n variables;
– t: tightness, that is, the percentage of tuples with preference 0 in each constraint

and in each domain w.r.t. the total number of tuples (m2 for the constraints, since
we have only binary constraints, and m in the domains);

– i: incompleteness, that is, the percentage of incomplete tuples (that is, tuples with
preference ?) in each constraint and in each domain.

Given values for these parameters, we generate IFCSPs as follows. We first generate n
variables and then d% of the n(n − 1)/2 possible constraints. Then, for every domain
and for every constraint, we generate a random preference value in (0, 1] for each of the
tuples (that are m for the domains, and m2 for the constraints); we randomly set t% of
these preferences to 0; and we randomly set i% of the preferences as incomplete.

Our experiments measure the percentage of elicited preferences (over all the missing
preferences) as the generation parameters vary. Since some of the algorithm instances
require the user to suggest the value for the next variable, we also show the user’s effort
in the various solvers, formally defined as the number of missing preferences the user
has to consider to give the required help.

Besides the 16 instances of the scheme described above, we also considered a ”base-
line” algorithm that elicits preferences of randomly chosen tuples every time branch
and bound ends. All algorithms are named by means of the three parameters. For ex-
ample, algorithm DPI.WORST.BRANCH has parameters Who=dpi, What=worst, and
When=branch. For the baseline algorithm, we use the name DPI.RANDOM.TREE.

For every choice of parameter values, 100 problem instances are generated. The
results shown are the average over the 100 instances. Also, when it is not specified
otherwise, we set n = 10 and m = 5. However, we have similar results (although
not shown in this paper for lack of space) for n = 5, 8, 11, 14, 17, and 20. All our
experiments have been performed on an AMD Athlon 64x2 2800+, with 1 Gb RAM,
Linux operating system, and using JVM 6.0.1.
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5 Results

In this section we summarize and discuss our experimental comparison of the different
algorithms. We first focus on incomplete fuzzy CSPs. We then consider two special
cases: incomplete CSPs where all constraints are hard, and incomplete fuzzy temporal
problems. In all the experimental results, the association between an algorithm name
and a line symbol is shown below.

5.1 Incomplete Fuzzy CSPs

Figure 4 shows the percentage of elicited preferences when we vary the incompleteness,
the density, and the tightness respectively. For reasons of space, we show only the results
for specific values of the parameters. However, the trends observed here hold in general.
It is easy to see that the best algorithms are those that elicit at the branch level. In
particular, algorithm SU.WORST.BRANCH elicits a very small percentage of missing
preferences (less than 5%), no matter the amount of incompleteness in the problem,

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90  95  100

el
ic

ite
d 

pr
ef

er
en

ce
s

incompleteness

(a) d=50%, t=10%

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  15  20  25  30  35  40  45  50  55  60  65  70  75  80

el
ic

ite
d 

pr
ef

er
en

ce
s

density

(b) t=35%, i=30%

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80

el
ic

ite
d 

pr
ef

er
en

ce
s

tightness

(c) d=50%, i=30%

Fig. 4. Percentage of elicited preferences in incomplete fuzzy CSPs
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and also independently of the density and the tightness. This algorithm outperforms all
others, but relies on help from the user. The best algorithm that does not need such
help is DPI.WORST.BRANCH. This never elicits more than about 10% of the missing
preferences. Notice that the baseline algorithm is always the worst one, and needs nearly
all the missing preferences before it finds a necessarily optimal solution. Notice also that
the algorithms with What=worst are almost always better than those with What=all, and
that When=branch is almost always better than When=node or When=tree.

Figure 5 (a) shows the user’s effort as incompleteness varies. As could be pre-
dicted, the effort grows slightly with the incompleteness level, and it is equal to the
percentage of elicited preferences only when What=all and Who=dp or dpi. For exam-
ple, when What=worst, even if Who=dp or dpi, the user has to consider more prefer-
ences than those elicited, since to identify the worst preference value the user needs
to check all of them (that is, those involved in a partial or complete assignment).
DPI.WORST.BRANCH requires the user to look at 60% of the missing preferences
at most, even when incompleteness is 100%.

Figure 5 (b) shows the user’s effort as density varies. Also in this case, as expected,
the effort grows slightly with the density level. In this case DPI.WORST.BRANCH
requires the user to look at most 40% of the missing preferences, even when the density
is 80%.
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(a) d=50%, t=10% (b) d=50%, t=10%

Fig. 7. Incomplete fuzzy CSPs: best algorithms

All these algorithms have a useful anytime property, since they can be stopped even
before their termination obtaining a possibly optimal solution with preference value
equal to the best solution considered up to that point. Figure 6 shows how fast the var-
ious algorithms reach optimality. The y axis represents the solution quality during exe-
cution, normalized to allow for comparison among different problems. The algorithms
that perform best in terms of elicited preferences, such as DPI.WORST.BRANCH, are
also those that approach optimality fastest. We can therefore stop such algorithms early
and still obtain a solution of good quality in all completions.

Figure 7 (a) shows the percentage of elicited preferences over all the preferences
(white bars) and the user’s effort (black bars), as well as the percentage of preferences
present at the beginning (grey bars) for DPI.WORST.BRANCH. Even with high levels
of incompleteness, this algorithm elicits only a very small fraction of the preferences,
while asking the user to consider at most half of the missing preferences.

Figure 7 (b) shows results for LU.WORST.BRANCH, where the user is involved
in the choice of the value for the next variable. Compared to DPI.WORST.BRANCH,
this algorithm is better both in terms of elicited preferences and user’s effort (while
SU.WORST.BRANCH is better only for the elicited preferences). We conjecture that
the help the user gives in choosing the next value guides the search towards better
solutions, thus resulting in an overall decrease of the number of elicited preferences.

Although we are mainly interested in the amount of elicitation, we also computed the
time to run the 16 algorithms. Ignoring the time taken to ask the user for missing pref-
erences, the best algorithms need about 200 ms to find the necessarily optimal solution
for problems with 10 variables and 5 elements in the domains, no matter the amount of
incompleteness. Most of the algorithms need less than 500 ms.

5.2 Incomplete Hard CSPs

We also tested these algorithms on hard CSPs. In this case, preferences are only 0 and
1, and necessarily optimal solutions are complete assignments which are feasible in
all completions. The problem generator is adapted accordingly. The parameter What
now has a specific meaning: What=worst means asking if there is a 0 in the missing
preferences. If there is no 0, we can infer that all the missing preferences are 1s.
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(b) t=10%, i=30%
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(c) d=50%, i=30%

Fig. 8. Elicited preferences in incomplete CSPs
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Fig. 9. Incomplete CSPs: user’s effort

Figure 8 shows the percentage of elicited preferences for hard CSPs in terms of
amount of incompleteness, density, and tightness. Notice that the scale on the y axis
varies to include only the highest values. The best algorithms are those with What=worst,
where the inference explained above about missing preferences can be performed. It is
easy to see a phase transition at about 35% tightness, which is when problems pass from
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(a) d=50%, t=10%

Fig. 10. Incomplete CSPs: best algorithm
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Fig. 11. Percentage of elicited preferences in incomplete fuzzy temporal CSPs

being solvable to having no solutions. However, the percentage of elicited preferences
is below 20% for all algorithms even at the peak.

Figure 9 (a) shows the user’s effort in terms of amount of incompleteness and Fig-
ure 9 (b) shows the user’s effort in terms of density for the case of hard CSPs. Overall,
the best algorithm is again DPI.WORST.BRANCH. Figure 10 gives the elicited prefer-
ences and user effort for this algorithm.

5.3 Incomplete Temporal Fuzzy CSPs

We also performed some experiments on fuzzy simple temporal problems [8]. These
problems have constraints of the form a ≤ x − y ≤ b modelling allowed time intervals
for durations and distances of events, and fuzzy preferences associated to each element
of an interval. We have generated classes of such problems following the approach in
[8], adapted to consider incompleteness. While the class of problems generated in [8] is
tractable, the presence of incompleteness makes them intractable in general. Figure 11
shows that in this specialized domain it is also possible to find a necessarily optimal
solution by asking about 10% of the missing preferences, for example via algorithm
DPI.WORST.BRANCH.
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6 Future Work

In the problems considered in this papers, we have no information about the missing
preferences. We are currently considering settings in which each missing preference is
associated to a range of possible values, that may be smaller than the whole range of
preference values. For such problems, we intend to define several notions of optimality,
among which necessarily and possibly optimal solutions are just two examples, and
to develop specific elicitation strategies for each of them. We are also studying soft
constraint problems when no preference is missing, but some of them are unstable, and
have associated a range of possible alternative values.

To model fuzzy CSPs, we have not used traditional fuzzy set theory [3], but soft
CSPs [1], since we intend to apply our work also to non-fuzzy CSPs. In fact, we plan
to consider incomplete weighted constraint problems as well as different heuristics for
choosing the next variable during the search. All algorithms with What=all are not tied
to fuzzy CSPs and are reasonably efficient. Moreover, we intend to build solvers based
on local search and variable elimination methods. Finally, we want to add elicitation
costs and to use them also to guide the search, as done in [10] for hard CSPs.
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