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Abstract. The stable marriage problem has a wide variety of practical
applications, ranging from matching resident doctors to hospitals, to
matching students to schools, or more generally to any two-sided market.
We consider a useful variation of the stable marriage problem, where
the men and women express their preferences using a preference list
with ties over a subset of the members of the other sex. Matchings are
permitted only with people who appear in these preference lists. In this
setting, we study the problem of finding a stable matching that marries
as many people as possible. Stability is an envy-free notion: no man
and woman who are not married to each other would both prefer each
other to their partners or to being single. This problem is NP-hard.
We tackle this problem using local search, exploiting properties of the
problem to reduce the size of the neighborhood and to make local moves
efficiently. Experimental results show that this approach is able to solve
large problems, quickly returning stable matchings of large and often
optimal size.

1 Introduction

The stable marriage problem [1] is a well-known problem of matching men to
women to achieve a certain type of “stability”. Each person expresses a strict
preference ordering over the members of the opposite sex. The goal is to match
men to women so that there are no two people of opposite sex who would both
rather be matched with each other than with their current partners. Surprisingly
such a stable marriage always exists and one can be found in polynomial time.
Gale and Shapley give a quadratic time algorithm to solve this problem based
on a series of proposals of the men to the women (or vice versa) [2]. The stable
marriage problem has a wide variety of practical applications, ranging from
matching resident doctors to hospitals, sailors to ships, primary school students
to secondary schools, as well as in market trading.

There are many variants of this classical formulation of the stable marriage
problem. Some of the most useful in practice include incomplete preference lists
(SMI), that allows us to model unacceptability for certain members of the other
sex, and preference lists with ties (SMT), that model indifference in the prefer-
ence ordering. With a SMI problem, we have to find a stable marriage in which



the married people accept each other. It is known that all solutions of a SMI
problem have the same size [3] (that is, number of married people). In SMT
problems, instead, solutions are stable marriages where everybody is married.
Both of these variants are polynomial to solve. In real world situations, both ties
and incomplete preference lists may be needed. Unfortunately, when we allow
both, the problem becomes NP-hard [3]. In a SMTI (Stable Marriage with Ties
and Incomplete lists) problem, there may be several stable marriages of different
sizes, and solving the problem means finding a stable marriage of maximum size.

In this paper we investigate the use of a local search approach to tackle
this problem. Our algorithm starts from a randomly chosen marriage and, at
each step, moves to a neighbor marriage which is obtained by removing one
blocking pair, that is, a man-woman pair who are not married to each other
in the current marriage but who prefer to be married with each other rather
than with with their current partners. Stable marriages have no blocking pairs,
so the aim of such a move is to pass to a marriage which is closer to stability.
Among the neighbor marriages, the evaluation function chooses one with the
smallest number of blocking pairs and of singles. Since there may be several
stable marriages with different sizes, we look for the one with maximum size
(that is, the smallest number of singles). Random moves are also used, to avoid
stagnation in local minima. The algorithm stops when a perfect matching (that
is, a stable marriage with no singles) is found, or when a given limit on the
number of steps is reached.

This basic local search approach works well with problems of limited size,
but does not scale. With large sizes, it fails to find good solutions and sometimes
even stable marriages. One of the main reasons is that the neighborhood can be
very large, since a marriage may have a large number of blocking pairs. Many
such blocking pairs can be ignored since they are “dominated” by others, whose
removal will also eliminate all the dominated blocking pairs. By considering
only undominated blocking pairs, we can solve SMTI problems of much larger
size in a small amount of time. The marriages returned by our local search
method are stable and contain very few single people. Experiments on randomly
generated SMTI problems of size 100 show that our algorithm is able to find
stable marriages with at most two singles on average in tens of seconds at worst.

The SMTI problem has been tackled also in [4], where the problem is mod-
eled as a constraint optimization problem and a constraint solver is employed
to solve it. This systematic approach is guaranteed to find always an optimal
solution. However, our experimental results show that our local search algorithm
in practice always finds optimal solutions. Moreover, it scales well to sizes much
larger than those considered in [4]. Instances of size comparable to ours are con-
sidered in [5]. However, the problem solved in that paper is the decision version
of our optimization problem. That is, they ask if there exists a stable marriage
of a certain size. Another approach is to use approximation. Given an SMTI
problem, if its maximum cardinality stable marriage marriages are of size k, an
α/β-approximation algorithm is able to return a stable marriage of size at least
β/α · k. The SMTI problem cannot have and i-approximation algorithm for i



greater than 33/29 unless P=NP [6]. A 3/2-approximation algorithm has been
proposed in [7].

2 Background

2.1 Stable marriage problems with ties and incompleteness

A stable marriage (SM) problem [1] consists of matching members of two differ-
ent sets, usually called men and women. When there are n men and n women,
the SM problem is said to have size n. Each person strictly ranks all members
of the opposite sex. The goal is to match the men with the women so that there
are no two people of opposite sex who would both rather marry each other than
their current partners. Such a marriage is called stable. At least one stable mar-
riage exists for every SM problem. In fact, the set of stable marriages forms a
lattice. Gale and Shapley give a polynomial time algorithm to find the stable
marriage at the top (or bottom) of this lattice [2].

In this paper we consider a variant of the SM problem where preference lists
may include ties and may be incomplete. This variant is denoted by SMTI [8].
Ties express indifference in the preference ordering, while incompleteness models
unacceptability for certain partners.

Definition 1 (SMTI marriage). Given a SMTI problem with n men and n
women, a marriage M is a one-to-one matching between men and women such
that partners are acceptable for each other. If a man m and a woman w are
matched in M , we write M(m) = w and M(w) = m. If a person p is not
matched in M we say that he/she is single.

Definition 2 (Marriage size). Given a SMTI problem of size n and a mar-
riage M , its size is the number of men (or women) that are married.

An example of a SMTI problem with four men and women is shown in Table
1. A SMTI problem is described by giving, for each man and woman, the corre-
sponding preference list over members of the other sex. For example, by writing
2 : 2 (3 4) among the men’s preference lists we mean that man m2 strictly prefers
woman w2 to women w3 and w4, that are equally preferred.

men’s preference lists women’s preference lists

1: 2 1 1: 3 1 (2 4)
2: 2 (3 4) 2: 1 4 2
3: (1 2 3 4) 3: (1 2) (4 3)
4: (3 2) 1 4 4: (3 2 4)

Table 1. An example of a SMTI problem of size 4.

Definition 3 (Blocking pairs in SMTIs). Consider a SMTI problem P , a
marriage M for P , a man m and a woman w. A pair (m, w) is a blocking pair



in M if m and w find acceptable each other and m is either single in M or he
strictly prefers w to M(m), and w is either single in M or she strictly prefers
m to M(w).

Definition 4 (Weakly Stable Marriages). Given a SMTI problem P , a mar-
riage M for P is weakly stable if it has no blocking pairs.

As we will consider only weakly stable marriages, we will simply call them
stable marriages. Given a SMTI problem, there may be several stable marriages
of different size. If the size of a marriage coincides with the size of the problem,
it is said to be a perfect matching.

In the above example, the marriage 2 3 1 4 (where the number in position i
indicates the woman married to man mi in that marriage) is stable and its size
is 4, so it is a perfect matching.

Solving a SMTI problem means finding a stable marriage with maximal size.
This problem is NP-hard [3].

2.2 Local search

Local search [9, 10] is one of the fundamental paradigms for solving computation-
ally hard combinatorial problems. Local search methods in many cases represent
the only feasible way for solving large and complex instances. Moreover, they
can naturally be used to solve optimization problems.

Given a problem instance, the basic idea underlying local search is to start
from an initial search position in the space of all solutions (typically a ran-
domly or heuristically generated candidate solution, which may be infeasible,
sub-optimal or incomplete), and to improve iteratively this candidate solution
by means of typically minor modifications. At each search step we move to a
position selected from a local neighborhood, chosen via a heuristic evaluation
function. The evaluation function typically maps the current candidate solution
to a real number and it is such that its global minima correspond to solutions
of the given problem instance. The algorithm moves to the neighbor with the
smallest value of the evaluation function.

This process is iterated until a termination criterion is satisfied. The termina-
tion criterion is usually the fact that a solution is found or that a predetermined
number of steps is reached, although other variants may stop the search after a
predefined amount of time.

Different local search methods vary in the definition of the neighborhood
and of the evaluation function, as well as in the way in which situations are
handled when no improvement is possible. To ensure that the search process does
not stagnate in unsatisfactory candidate solutions, most local search methods
use randomization: at every step, with a certain probability a random move is
performed rather than the usual move to the best neighbor.

3 Local search on SMTIs

We adapt the classical local search schema to SMTI problems as follows. Given
a SMTI problem P , we start from a randomly generated marriage M for P . At



each search step, we move to a new marriage in the neighborhood of the current
one. For each marriage M , the neighborhood N(M) is the set of all marriages
obtained by removing one blocking pair from M . Consider a blocking pair bp =
(m, w) in M and assume m′ = M(w) and w′ = M(m). Then, removing bp from
M means obtaining a marriage M ′ in which m is married with w and both m′

and w′ become single, leaving the other pairs in the marriage M unchanged.
Notice that, if M is stable, its neighborhood is empty. Notice also that this
notion of neighborhood is not symmetric.

To select the neighbor to move to, we use an evaluation function f :Mn → Z,
where Mn is the set of all possible marriages of size n, and f(M) = nbp(M) +
ns(M). For each marriage M , nbp(M) is the number of blocking pairs in M ,
while ns(M) is the number of singles in M which are not in any blocking pair.
The algorithm moves to a marriage M ′ ∈ N(M) such that f(M ′) ≤ f(M ′′)
∀M ′′ ∈ N(M).

During the search, the algorithm maintains the best marriage found so far,
defined as follows: if no stable marriage has been found, then the best marriage
is the one with the smallest value of the evaluation function; otherwise, it is the
stable marriage with less singles.

To avoid stagnation in a local minimum of the evaluation function, at each
search step we perform a random walk with probability p (where p is a parameter
of the algorithm). In the random walk, we move to a randomly selected marriage
in the neighborhood (we tried also to move to a generic random marriage, but
this gave worse behavior). If a stable marriage is reached, its neighborhood is
empty and a random restart is performed.

The algorithm terminates if a perfect marriage (that is, a stable marriage
with no singles) is found, or when a maximal number of search steps is reached.
Upon termination, the algorithm returns the best marriage found during the
search.

The pseudo-code of our algorithm, called LTI, is shown in Algorithm 1. In
the pseudo-code, Mbest is the best marriage found so far, and fbest its evalua-
tion (number of blocking pairs plus number of singles). Function best neighbor
returns one of the best marriages in the neighborhood of the current marriage,
according to the evaluation function.

In addition to this simple local search algorithm which directly applies stan-
dard local search approaches to SMTI problems, we have also designed a more
sophisticated algorithm which has been tailored to exploit the specific features
of SMTI problems. The main difference is in the definition of the neighborhood,
which refers to the notion of undominated blocking pairs.

Definition 5 (Dominance in blocking pairs). Let (m, w) and (m, w′) be two
blocking pairs. Then (m, w) dominates (from the men’s point of view) (m, w′)
if m prefers w to w′. There is an equivalent concept from the women’s point of
view.

Definition 6 (Undominated blocking pair). A men- (resp., women-) un-
dominated blocking pair is a blocking pair such that there is no other blocking



pair that dominates it from the men’s (resp., women’s) point of view. When the
point of view (men or women) is clear or not important, we will omit it.

Algorithm 1: LTI

input : a SMTI problem P , an integer max steps, a probability p

output: a marriage

M ← random marriage1

steps← 02

Mbest ←M3

fbest ← f(M)4

repeat5

if f(M) = 0 then6

return M7

if rand() ≤ p then8

M ← RandomWalk(M)9

else10

PAIRS ← blocking pairs in M11

if PAIRS is empty then12

perform a random restart13

else14

M ← best neighbor(M, PAIRS)15

if M is the first stable marriage found so far then16

fbest ← f(M), Mbest ←M17

if Mbest is not stable and fbest > f(M) then18

fbest ← f(M), Mbest ←M19

if both Mbest and M are stable and fbest > f(M) then20

fbest ← f(M), Mbest ←M21

steps← steps + 122

until steps > max steps ;23

return Mbest24

For example, consider the SMTI problem in Table 1, the marriage 1 2 3 4, and
two blocking pairs (m1, w2) and (m4, w2). Using the definitions above, (m1, w2)
dominates (m4, w2) from the women’s point of view. If we remove (m4, w2) from
the marriage, (m1, w2) will remain. On the other hand, removing (m1, w2) also
eliminates (m4, w2). Thus removing undominated blocking pairs may reduce the
number of blocking pairs more than eliminating dominated pairs.

We call LTIU the algorithm LTI where the neighborhood is defined as the set
of marriages obtained from the current one by removing any dominated blocking
pair. More precisely, at each step we consider the undominated blocking pairs
from the men’s point of view which are also undominated from women’s point
of view. Notice that, in this step, the role of men and women matters, and will
yield a different result if swapped.



Then, to ensure gender neutrality in our algorithm3, in the next step we swap
genders and do the same.

Due to their ability to restart, our algorithms have the PAC (probabilistically
approximate complete property) [11]. That is, as their runtime goes to infinity,
the probability that the algorithm returns an optimal solution goes to one. If
the algorithm starts at a stable marriage, the algorithms will perform a random
restart, which will end up in an optimal solution with probability greater than
zero. On the other hand, if the algorithm starts from a non-stable marriage, we
perform one or more steps in which we remove a blocking pair. This sequences
of blocking pair removal have been shown to converge to a stable marriage with
non-zero probability in the context of SMs with incomplete preference lists [12].
The proof of this result can be adapted to our context, as we have ties in the
preference lists. Since a stable marriage can be reached with non-zero probability,
and as we have argued above that from any stable marriage random restarting
will reach an optimal solution with non-zero probability, the PAC property holds.

4 Experimental setting

Problems are generated using the same method as in [4]. The generator takes
three parameters: the problem’s size n, the probability of incompleteness p1 and
the probability of ties p2. Given a triple (n, p1, p2), a SMTI problem with n men
and n women is generated, as follows:

1. For each man and woman, we generate a random preference list of size n,
i.e., a permutation of n persons;

2. We then iterate over each man’s preference list: for a man mi and for each
women wj in his preference list, with probability p1 we delete wj from mi’s
preference list and delete mi from wj ’s preference list. In this way we get a
possibly incomplete preference list.

3. If any man or woman has an empty preference list, we discard the problem
and go to step 1.

4. We iterate over each person’s (men and women’s) preference list as follows:
for a man mi and for each woman in his preference list, in position j ≥ 2,
with probability p2 we set the preference for that woman as the preference
for the woman in position j − 1 (thus putting the two women in a tie).

Note that this method generates SMTI problems in which the acceptance is
symmetric. In fact, if a woman w is not acceptable for a man m, m is removed
from w’s preference list. This does not introduce any loss of generality because,
even if such a removal is not performed, m and w cannot be matched together
in any stable marriage.

Notice also that this generator will not construct a SMTI problem in which
a man (resp., woman) has in his preference list only women (resp., men) who

3 Gender neutrality is usually considered a desirable feature in a stable marriage pro-
cedure.



do not find him (resp, her) acceptable. Such a man (resp., woman) will remain
single in every stable matching. Therefore a simple preprocessing step can remove
such men and women, giving a smaller problem of the form constructed by our
generator.

We generated random SMTI problems of size 100, by letting p2 vary in [0, 1.0]
with step 0.1, and p1 vary in [0.1, 0.8] with step 0.1 (above 0.8 the preference lists
start to be empty). For each parameter combination, we generated 100 problem
instances. Moreover, the probability of the random walk is set to p=20% and
the search step limit is s=50000.

4.1 Experimental results

We run our experiments on 2 x Quad-Core AMD Opteron 2.3GHz CPU with
2GB of RAM. In practice we used only one core because our algorithm is not
designed for multi threading.

We first analyzed the behavior of the base algorithm, LTI. Unfortunately
this algorithm fails to find a stable marriage in most of our test problems (see
Figure 1). In fact, LTI always finds a stable marriage for problems where there
are many ties (that is, p2 high) and/or a lot of incompleteness (that is, p1 high).
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Fig. 1. Average number of stable marriages found by LTI.

On the other hand, algorithm LTIU finds a stable marriage in 100% of the
runs. Since stability is essential in our context, from now on we will only show
the experimental results for algorithm LTIU.

We start by showing the average size of the marriages returned by LTIU.
In Figure 2 we can see that LTIU finds a perfect marriage (that is, a stable
marriage with no singles) almost always. Even in settings with a large amount of
incompleteness (that is, p1 = 0.7 - 0.8) the algorithm finds very large marriages,
with only 2 singles on average.
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Fig. 2. Average size of marriages with LTIU.

We also consider the number of steps needed by our algorithm. From Figure
3(a), we can see that the number of steps is less than 2000 most of the time,
except for problems with a large amount of incompleteness (i.e. p1 = 0.8). As
expected, with p1 greater than 0.6, the algorithm requires more steps. In some
cases, it reaches the step limit of 50000. Moreover, as the percentage of ties
rises, stability becomes easier to achieve and thus the number of steps tends to
decrease slightly. We note that complete indifference (i.e. p2=1) is a special case.
In fact, in this situation, the number of steps increases for almost every value of
p1. This is because the algorithm makes most of its progress via random restarts.
In these problems every person in a preference list is equally preferred to all the
others. This means that the only blocking pairs are those involving singles who
both find acceptable each other. In this situation, after a few steps all singles
that can be married are matched, stability is reached, and the neighborhood
becomes empty. The algorithm therefore performs another random restart. It is
therefore very difficult to reach a perfect matching and the algorithm often runs
until the step limit.

The algorithm takes, on average, less than 40 seconds to give a result even
for problems with a lot of incompleteness (see Figure 3(b)). As expected, with
p2 = 1 the time increases for the same reason discussed above concerning the
number of steps.

Re-considering Figure 2 and the fact that all the marriages the algorithm
finds are stable, we notice that most of the marriages are perfect.

From Figure 4 we see that the average percentage of matchings that are
perfect is almost always 100% and this percentage only decreases when the
incompleteness is large.

We compared our local search approach to the complete method from [4]. In
their experiments, they measured the maximum size of the stable marriages in
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Fig. 3. Average number of steps and execution time for LTIU.
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Fig. 4. Percentage of perfect matchings.

problems of size 10, fixing p1 to 0.5 and varying p2 in [0,1]. We did the same
experiments (generating new instances), and obtained stable marriages of a very
similar size to those reported in [4]. This means that although our algorithm
is incomplete in principle, it always finds an optimal solution in our randomly
generated instances, and for small sizes it behaves as a complete algorithm in
terms of size of the returned marriage. However, we can also tackle problems
of much larger sizes (at least 100), still obtaining optimal solutions most of the
times.

We also considered the runtime behavior of our algorithm. In Figure 5 we
show the average normalized number of blocking pairs and, in Figure 6, the av-
erage normalized number singles of the best marriage as the execution proceeds.
Although the step limit is 50000, we only plot results for the first steps be-

cause the rest is a long plateau that is not very interesting. We shows the results
only for p2 = 0.5. However, for greater (resp., lower) number of ties the curves
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Fig. 5. Average normalized number of blocking pairs (p2=0.5).
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Fig. 6. Average normalized number of singles (p2=0.5).

are shifted slightly down (resp., up). From Figure 5 we can see that the average
number of blocking pairs decreases very fast, reaching 5 blocking pairs after only
100 steps. Then, after 300-400 steps, we reach 0 blocking pairs (i.e. a stable mar-
riage) almost all the times for all values of p1. Considering Figure 6, we can see
that the algorithm starts with more singles for greater values of p1. This happens
because, with more incompleteness, it is more unprobable for a person to be ac-
ceptable. However, after 200 steps, the average number of singles becomes very
small no matter the incompleteness in the problem. Looking at both Figures 5
and 6, we observe that, although we set a step limit s = 50000, the algorithm
reaches a very good solution after just 300-400 steps. In fact, after this number



of steps, the best marriage found by the algorithm usually has no blocking pairs
nor singles, i.e. it is a perfect matching. This appears largely independent of the
amount of incompleteness and the number of ties in the problems. Hence, for
SMTI problems of size 100 we could set the step limit to just 400 steps and still
be reasonably sure that the algorithm will return a stable marriage with a large
size, no matter the amount of incompleteness and ties.

5 Conclusions

We have presented a local search approach for solving stable marriage problems
with ties and indifference. Experimental results show that our algorithm is both
fast and effective at finding large stable marriages .Moreover, the runtime behav-
ior of the algorithms is not greatly influenced by the amount of incompleteness
or ties in the problem. The algorithm was usually able to obtain a very good
solution after a very small amount of time.

Future directions include an assessment of the trade-off between the cost of
finding the undominated blocking pairs and that of treating larger neighbor-
hoods. We also plan to apply a local search approach to other versions of the
SMTI problem and to study other variant of our algorithm, for example including
tabu search or other greedy heuristics.
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