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Abstract. The stable marriage problem has a wide variety of practical
applications, including matching resident doctors to hospitals, and stu-
dents to schools. In the classical stable marriage problem, both men and
women express a strict order over the members of the other sex. Here we
consider a more realistic case, where both men and women can express
their preferences via partial orders, i.e., by allowing ties and incompa-
rability. This may be useful, for example, when preferences are elicited
via compact preference representations like soft constraint or CP-nets
that produce partial orders, as well as when preferences are obtained
via multi-criteria reasoning. We study male optimality and uniqueness
of stable marriages in this setting. Male optimality gives priority to one
gender over the other, while uniqueness means that the solution is op-
timal, since it is as good as possible for all the participating agents.
Uniqueness of solution is also a barrier against manipulation. We give an
algorithm to find stable marriages that are male optimal. Moreover, we
give sufficient conditions on the preferences (that are also necessary in
some special case), that occur often in real-life scenarios, which guarantee
the uniqueness of a stable marriage.

1 Introduction

The stable marriage problem (SM) [9] is a well-known collaboration problem.
Given n men and n women, where each expresses a strict ordering over the
members of the opposite sex, the problem is to match the men to the women so
that there are no two people of opposite sex who would both rather be matched
with each other than their current partners. In [6] Gale and Shapley proved
that it is always possible to find a matching that makes all marriages stable,
and provided a quadratic time algorithm which can be used to find one of two
extreme stable marriages, the so-called male optimal or female optimal solutions.
The Gale-Shapley algorithm has been used in many real-life scenarios, such as
in matching hospitals to resident doctors, medical students to hospitals [10],
sailors to ships, primary school students to secondary schools, as well as in
market trading.

In the classical stable marriage problem, both men and women express a
strict order over the members of the other sex. We consider a potentially more



realistic case, where men and women express their preferences via partial orders,
i.e., given a pair of men (resp., women), the women (resp., the men) can strictly
order the elements of the pair, they may say that these elements are in a tie, or
that they are incomparable. This is useful in practical applications when a person
may not wish (or be able) to choose between alternatives, thus allowing ties in
the preference list (or more generally, allowing each preference list to be a partial
order) [11]. For example, in the context of centralized matching scheme, some
participating hospitals with many applicants have found the task of producing
a strictly ordered preference list difficult, and have expressed a desire to use ties
[12]. Ties also naturally occur when assigning students to schools, since many
students are indistinguishable from the point of view of a given school. Another
situation where partial orders are useful is when preferences are elicited with a
compact preference representation formalism like soft constraints [1] or CP-nets
[2] that give partial orders. Another context where partial orders naturally occur
is when preferences are obtained via multi-criteria reasoning.

We study male optimality and uniqueness of solution in this more general
context. Male optimality can be a useful property since it allows us to give prior-
ity to one gender over the other. For example, in matching residents to hospitals
in the US, priority is given to the residents. We present an algorithm, based
on an extended version of the Gale-Shapely algorithm, to find a male optimal
solution in stable marriage problems with partially ordered preferences (SMPs).
This algorithm is sound but not complete: it may fail to find a male optimal so-
lution even when one exists. We conjecture, however, that the incompleteness is
rare. We also give a sufficient condition on the preference profile that guarantees
to find a male optimal solution, and we show how to find it.

Uniqueness is another interesting concept. For instance, it guarantees that
the solution is optimal since it is as good as possible for all the participating
agents. Uniqueness is also a barrier against manipulation. This is important as
all stable marriage procedures can be manipulated. In [5] sufficient conditions on
the preferences are given, that guarantee uniqueness of stable marriages when
only strictly ordered preferences are allowed. Such conditions identify classes of
preferences that are broad and of particular interest in many real-life scenarios
[4]. In particular, a class of preference orderings that satisfy one of these con-
ditions requires that all the agents of the same sex have identical preferences
over the mates of the opposite sex, i.e., there is a common ordering over the
mates. Another class of preference orderings that satisfy one of these conditions
of uniqueness requires that each agent has a different most preferred mate, i.e.,
there is a subjective ranking over the mates. We show that it is possible to
generalize these sufficient conditions for uniqueness to SMs with partially or-
dered preferences, by considering in some cases uniqueness up to indifference
and incomparability.

All the proofs have been omitted due to lack of space. They can be found
in [8]. A brief overview of some of the theoretical results shown in this paper is
contained in [7].



2 Background

2.1 Stable marriage problems

Definition 1 (profile). Given n men and n women, a profile is a sequence of
2n strict total orders (i.e., transitive and complete binary relations), n over the
men and n over the women.

Given a profile, the stable marriage problem (SM) [6] is the problem of finding
a matching between men and women so that there are no two people of opposite
sex who would both rather be married to each other than their current partners.
If there are no such people, the marriage is said to be stable.

Definition 2 (feasible partner). Given an SM P , a feasible partner for a
man m (resp., a woman w) is a woman w (resp., a man m) such that there is
a stable marriage for P where m and w are married.

The set of the stable marriages for an SM forms a lattice w.r.t. the men’s
(or women’s) preferences. This is a graph where vertices correspond bijectively
to the stable marriages and a marriage is above another if every man (resp.,
every woman) is married with a woman (resp., man) is at least as happy with
the first marriage as with the second. The top of this lattice is the stable mar-
riage, called male optimal (resp., female optimal), where men (resp., women)
are mostly satisfied. Conversely, the bottom is the stable marriage where men’s
(resp., women’s) preferences are least satisfied [9].

Definition 3 (male (resp., female) optimal marriage). Given an SM P , a
marriage is male (resp., female) optimal iff every man (resp., woman) is paired
with his (resp., her) highest ranked feasible partner in P .

2.2 Gale-Shapley algorithm

The Gale-Shapley (GS) algorithm [6] is a well-known algorithm to solve the
SM problem. At the start of the algorithm, each person is free and becomes
engaged during the execution of the algorithm. Once a woman is engaged, she
never becomes free again (although to whom she is engaged may change), but
men can alternate between being free and being engaged. The following step is
iterated until all men are engaged: choose a free man m, and let m propose to
the most preferred woman w on his preference list, such that w has not already
rejected m. If w is free, then w and m become engaged. If w is engaged to man
m’, then she rejects the man (m or m’) that she least prefers, and becomes,
or remains, engaged to the other man. The rejected man becomes, or remains,
free. When all men are engaged, the engaged pairs are a male optimal stable
marriage.

This algorithm needs a number of steps that is quadratic in n (that is, the
number of men), and it guarantees that, if the number of men and women
coincide, and all participants express a strict order over all the members of the
other group, everyone gets married, and the returned marriage is stable. Since
the input includes the profiles, the algorithm is linear in the size of the input.



Example 1. Assume n = 3. Let W = {w1, w2, w3} and M = {m1,m2,m3} be
respectively the set of women and men. The following sequence of strict total
orders defines a profile: {m1 : w1 > w2 > w3 (i.e., man m1 prefers woman w1 to
w2 to w3); m2 : w2 > w1 > w3; m3 : w3 > w2 > w1} {w1 : m1 > m2 > m3;
w2 : m3 > m1 > m2; w3 : m2 > m1 > m3}. For this profile, the Gale-Shapley
algorithm returns the male optimal solution {(m1, w1), (m2, w2), (m3, w3)}. On
the other hand, the female optimal solution is {(w1,m1), (w2,m3), (w3, m2)}. 2

The Extended Gale-Shapely algorithm [9] is the GS algorithm [6] where, when-
ever the proposal of a man m to a woman w is accepted, in w’s preference list all
men less desirable than m are deleted, and w is deleted from the preference lists
of all such men. This means that, every time that a woman receives a proposal
from a man, she accepts since only most preferred men can propose to her.

3 Stable marriage problems with partial orders

We assume now that men and women express their preferences via partial orders.
The notions given in Section 2 can be generalized as follows.

Definition 4 (partially ordered profile). Given n men and n women, a pro-
file is a sequence of 2n partial orders (i.e., reflexive, antisymmetric and transitive
binary relations), n over the men and n over the women.

Definition 5 (SMP). A stable marriage problem with partial orders (SMP) is
just a SM where men’s preferences and women’s preference are partially ordered.

Definition 6 (linearization of an SMP). A linearization of an SMP is an
SM that is obtained by giving a strict ordering to all the pairs that are not strictly
ordered such that the resulting ordering is transitive.

Definition 7 (weakly stable marriage in SMP). A marriage in an SMP
is weakly stable if there is no pair (x, y) such that each one strictly prefers the
other to his/her current partner.

Definition 8 (feasible partner in SMP). Given an SMP P , a feasible part-
ner for a man m (resp., woman w) is a woman w (resp., man m) such that
there is a weakly stable marriage for P where m and w are married.

A weakly stable marriage is male optimal if there is no man that can get a
strictly better partner in some other weakly stable marriage.

Definition 9 (male optimal weakly stable marriage). Given an SMP P ,
a weakly stable marriage of P is male optimal iff there is no man that prefers to
be married with another feasible partner of P .

In SMs there is always exactly one male optimal stable marriage. In SMPs,
however, we can have zero or more male optimal weakly stable marriages. More-
over, given an SMP P , all the stable marriages of the linearizations of P are
weakly stable marriages. However, not all these marriages are male optimal.



Example 2. In a setting with 2 men and 2 women, consider the profile P : {m1 :
w1 ./ w2 (./ means incomparable); m2 : w2 > w1; } {w1 : m1 ./ m2; w2 :
m1 ./ m2; }. Then consider the following linearization of P , say Q: {m1 : w2 >
w1; m2 : w2 > w1; } {w1 : m2 > m1; w2 : m1 > m2; }. If we apply the extended
GS algorithm to Q, we obtain the weakly stable marriage µ1 where m1 marries
w2 and m2 marries w1. However, w1 is not the most preferred woman for m2

amongst all weakly stable marriages. In fact, if we consider the linearization Q′,
obtained from Q, by changing m1’s preferences as follows: m1 : w1 > w2, and
if we apply the extended GS algorithm, we obtain the weakly stable marriage
µ2, where m1 is married with w1 and m2 is married with w2, i.e., m2 is married
with a woman that m2 prefers more than w1. Notice that µ2 is male optimal,
while µ1 is not. Also, µ1 and µ2 are the only weakly stable marriages for this
example. 2

4 Finding male optimal weakly stable marriages

We now present an algorithm, called MaleWeaklyStable 1, that takes as input an
SMP P and, either returns a male optimal weakly stable marriage for P , or the
string ‘I don’t know’. This algorithm is sound but not complete: if the algorithm
returns a marriage, then it is weakly stable and male optimal; however, it may
fail to return a male optimal marriage even if there is one.

We assume that the women express strict total orders over the men. If they
don’t, we simply pick any linearization.

The algorithm exploits the extended GS algorithm [9], and at every step
orders the free men by increasing number of their current top choices (i.e., the
alternatives that are undominated). List L contains the current ordered sequence
of free men.

More precisely, our algorithm works as follows. It takes in input an SMP P ,
and it computes the list L of free men. At the beginning all the men are un-
married, and thus L contains them all. Then, we continue to check the following
cases on the man m which is the first element of L, until they do not occur any
longer:

– If the set of top choices of m contains exactly one unmarried woman, say
w, m proposes to w and, since we are using the extended GS algorithm, the
proposal is accepted. Then, all men that are strictly worse than m in w’s
preferences are removed from w’s preference list, and w is removed from the
preference lists of these men. Then, m is removed from L and L is ordered
again, since the top choices of some men may now be smaller.

– If m has a single top choice, say w, that is already married, m proposes to
w, w accepts the proposal, and she breaks the engagement with her current
partner, say m′. Then, m is removed from L, m′ becomes free and is put
back in L, and L is ordered again.

When we exit from this cycle, we check if L is empty or not:



– if L is empty, the algorithm returns the current marriage. Notice that the
current marriage, say (mi, wi), for i = 1, . . . , n, is weakly stable, since it is
the solution of a linearization of P where, for every mi with ties or incom-
parability in current set of top choices, we have set wi strictly better than
all the other women in the top choice. Also, the returned marriage is male
optimal since we have applied the extended GS algorithm.

– If L is not empty, it means that the next free man in L has several current
top choices and more than one is unmarried.
• If there is a way to assign to the men currently in L different unmar-

ried women from their current top choices then these men make these
proposals, that are certainly accepted by the women, since every woman
receives a proposal from a different man. Therefore, we add to the cur-
rent marriage these new pairs and we return the resulting marriage. Such
a marriage is weakly stable and male optimal by construction.

• If it is not possible to make the above assignment, the algorithm removes
unfeasible women from the current top choices of the men until it is
possible to make the assignment or until all unfeasible women have been
removed. More precisely, if there is a set S of men in L with the same
Top T and the cardinality of T is smaller than the cardinality of S, we
check if there is a man m∗ such that, for every w ∈ T , m∗ is worse than
mi for every mi in S −m∗. If this is the case, for every woman w in T ,
we remove w from the preferences of m∗ in p and we apply again the
algorithm MaleWeaklyStable to the profile obtained so far.
This could make now possible to make the assignment. If so, the al-
gorithm adds to the current marriage these new pairs and returns the
resulting marriage; otherwise, it performs the same reasoning for an-
other pair of men that have some woman in common in their current top
choices until all such pairs of men have been considered and no marriage
has been returned. At this point the algorithm stops returning the string
‘I don’t know’.

Example 3. Consider the profile {m1 : w1 ./ w2 > w3; m2 : w1 ./ w2 > w3; m3 :
w1 ./ w2 > w3; } {w1 : m1 > m2 > m3; w2 : m1 > m2 > m3; w3 : m1 >
m2 > m3; }. The algorithm first computes the ordered list L = [m1, m2,m3].
The elements of L are men with more than one top choice and all these top
choices are unmarried, but there is no way to assign them with different women
from their top choices, since they are three men and the union of their top
choices contains only two women. However, in every linearization, m3 will not
be matched with w1 or w2, due to w1 and w2’s preferences. In fact, m1 and
m2 will choose between {w1, w2}, while m3 will always propose to his next best
choice, i.e., w3. Hence, the considered profile is one of the profiles where only two
of the three men with multiple top choices are feasible with w1 and w2, i.e. m1

and m2, and there is a way to assign to these men different unmarried women
in their top choices. In such a case there are two male optimal weakly stable
solutions, i.e., {(m1, w1)(m2, w2)(m3, w3)} and {(m1, w2)(m2, w1)(m3, w3)}. Our
algorithm returns the first one. 2



Algorithm 1: MaleWeaklyStable
Input: p: a profile;
Output: µ: a weakly stable marriage or the string ‘I don’t know’;
µ← ∅;
L← list of the men of p;
L← ComputeOrderedList(L);
while Top((first(L)) contains exactly one unmarried woman) or (first(L) has a
single top choice already married) do

m← first(L);
if Top(m) contains exactly one unmarried woman then

w ← UnmarriedTop(m);
Add the pair (m,w) to µ;
foreach strict successor m∗ of m on w’s preferences do

delete m∗ from w’s preferences and w from m’s preferences ;

L← L \ {m};
L← ComputeOrderedList(L);

if m has a single top choice already married then
w ← Top(m);
m′ ← µ(w);
Remove the pair (m′, w) from µ;
Add the pair (m,w) to µ;
foreach strict successor m∗ of m on w’s preferences do

delete m∗ from w’s preferences and w from m’s preferences;

L← L ∪ {m′} \ {m};
L← ComputeOrderedList(L);

if (L = ∅) or (AllDiffUnmarried(L)=true) then
Add to µ AllDiffUnmarriedMatching(L);
return µ

else
if there is a set S of men in L with the same Top T and |T | < |S| then

if there is a man m∗ ∈ S s.t., ∀w ∈ T , m∗ ≺w mi, ∀mi ∈ S −m∗ then
∀w ∈ T , remove w from the preferences of m∗ in p;
MaleWeaklyStable(p);

Example 4. Consider the profile obtained from the profile shown in Example 3
by changing the preferences of w1 as follows: m1 > m3 > m2. We now show
that there is no male optimal solution. It is easy to see that in any weakly
stable marriage m1 is married with w1 or w2. In the weakly stable marriage
where m1 is married with w1, m2 must be married with w2 and m3 must be
married with w3, while in the weakly stable marriage where m1 is married with
w2, m2 must be married with w3 and m3 must be married with w1. Therefore,
in any weakly stable marriage, exactly one of these conditions holds: either m2

prefers to be married with w2, or m3 prefers to be married with w2. There-
fore, there is no male optimal solution. Our algorithm works as follows. Since
AllDiffUnmarried(L)=false and since we cannot remove any unfeasible woman



from the top choices of m1, m2, and m3, the algorithm returns the string ‘I don’t
know’. 2

The MaleWeaklyStable algorithm has a time complexity which is O(n
5
2 ). In

fact, the first part has the same complexity of the extended GS algorithm, which
is O(n2). The second part requires performing an all-different check between the
current set of free men and the union of their top choices. Since there are at
most n free men and n top choices for each man, we can build a bipartite graph
where nodes are men and women, and each arc connects a man with one of his
unmarried top choices. Performing the all-different check means finding a subset
of the arcs which forms a matching in this graph and involves all men. This can
be done in O(m

√
n) where m is the number of edges, which is O(n2).

The MaleWeaklyStable Algorithm is sound, but not complete, i.e., if it returns
a marriage, then such a marriage is male optimal and weakly stable, but if it
returns the string ’I don’t know’, we don’t know if there is a weakly stable
marriage that is male optimal. A case where our algorithm returns the string
’I don’t know’ is when L is not empty and there is a free man with more than
one top choice and all his top choices are already married. We conjecture that
in this case there is a male optimal weakly stable marriage a few times, since
it seems there are some very specific circumstances for our algorithm to mot
return a male optimal weakly stable marriage (i.e., it has to pass through all the
conditions we test) when one exists.

As we noticed above, there are SMPs with no male optimal weakly stable
marriages. We now want to identify a class of SMPs where it is always possible
to find a linearization which has a male optimal stable marriage.

Definition 10 (male-alldifference property). An SMP P satisfies the male-
alldifference property iff men’s preferences satisfy the following conditions:

– all the men with a single top choice have top choices that are different;
– it is possible to assign to all men with multiple top choices an alternative in

their top choices that is different from the one of all the other men of P .

Theorem 1. If an SMP is male-alldifferent, then there is a weakly stable mar-
riage that is male optimal and we can find it in polynomial time.

The MaleWeaklyStable Algorithm exploits this same sufficient condition, plus
some other sufficient condition. Notice that if an SMP satisfies the male-alldifference
property, then, not only is there at least one weakly stable marriage that is male
optimal, but there is an unique stable marriage up to ties and incomparability.

5 On the uniqueness of weakly stable marriage in SMPs

For strict total orders, [5] gives sufficient conditions on preference for the unique-
ness of the stable marriage. We now extend these results to partial orders. Notice
that, if there is an unique stable marriage, then it is clearly male optimal. A class



of preference profiles in [5] giving an unique stable marriage, when the prefer-
ences are strict total orders, is defined as follows. The set of the men and the set
of the women are ordered sets, the preferences require that no man or woman
prefers the mate of the opposite sex with the same rank order below his/her
own order. Given such a preference ordering, by a recursive argument starting
at the highest ranked mates, any other stable marriage would be blocked by the
identity marriage, i.e., the marriage in which we match mates of the same rank.

Theorem 2. [5] Consider two ordered sets M = (mi) and W = (wi). If the
profile satisfies the following conditions:

∀wi ∈W : mi >wi
mj , ∀j > i (1)

∀mi ∈M : wi >mi
wj , ∀j > i (2)

then there is a unique stable marriage µ∗(wi) = mi, ∀i ∈ {1, 2, . . . , N
2 }.

Notice that the condition above is also necessary when the economies are
small, i.e., N = 4 and N = 6.

There are two particular classes of preference profiles that generate a unique
stable marriage, and that are commonly assumed in economic applications [5].
The first assumes that all the women have identical preferences over the men,
and that all the men have identical preferences over the women. In such a case
there is a common (objective) ranking over the other sex.

Definition 11 (vertical heterogeneity). [5] Consider two ordered sets M =
(mi) and W = (wi). A profile satisfies the vertical heterogeneity property iff it
satisfies the following conditions:

– ∀wi ∈W : mk >wi
mj , ∀k < j

– ∀mi ∈M : wk >mi
wj , ∀k < j

Example 5. An example of a profile that satisfies vertical heterogeneity forN = 6
is the following. {m1 : w1 > w2 > w3; m2 : w1 > w2 > w3; m3 : w1 > w2 >
w3; } {w1 : m2 > m3 > m1; w2 : m2 > m3 > m1; w3 : m2 > m3 > m1.} 2

Corollary 1. [5] Consider two ordered sets M = (mi) and W = (wi) and a
profile P . If P satisfies the vertical heterogeneity property, then there is a unique
stable marriage µ∗(wi) = mi.

When agents have different preferences over the other sex, but each agent
has a different most preferred mate and in addition is the most preferred by
the mate, then the preference profile satisfies horizontal heterogeneity. In this
situation there is a subjective ranking over the other sex.

Definition 12 (horizontal heterogeneity). [5] Consider two ordered sets
M = (mi) and W = (wi). A profile satisfies the horizontal heterogeneity property
iff it satisfies the following conditions:

– ∀wi ∈W : mi >wi
mj , ∀j



– ∀mi ∈M : wi >mi
wj , ∀j

Example 6. The following profile over 3 men and 3 women satisfies horizontal
heterogeneity. {m1 : w1 > . . . ; m2 : w2 > . . . ; m3 : w3 > . . . } {w1 : m1 >
. . . ; w2 : m2 > . . . ; w3 : m3 > . . . .} 2

Corollary 2. [5] Consider two ordered sets M = (mi) and W = (wi) and a
profile P . If P satisfies the horizontal heterogeneity property, then there is a
unique stable marriage µ∗(wi) = mi.

We now check if the results given above for strictly ordered preferences can
be generalized to the case of partially ordered preferences. Theorem 2 holds also
when the men’s preferences and/or women’s preferences are partially ordered.

Theorem 3. In SMPs, if there is an ordering of men and women such that the
preference profile satisfies the conditions described in Theorem 2, then there is a
unique weakly stable marriage µ(wi) = mi, ∀i ∈ {1, 2, . . . , n}.

Notice that the condition above is also necessary when the economies are
small. For example, this holds when N = 6 (that is, three men and three women).

We now check if the vertical heterogeneity result (Corollary 1) holds also
when the preferences are partially ordered. We recall that vertical heterogeneity
assumes that all the agents of the same sex have the same strict preference
ordering over the mates of the opposite sex. It is possible to see that, even if
there is only one incomparable element in the ordering given by the men (or the
women), then vertical heterogeneity does not hold and there may be more than
one weakly stable marriage, as shown in the following example.

Example 7. Consider the following profile: {m1 : w1 > w2 ./ w3; m2 : w1 >
w2 ./ w3; m3 : w1 > w2 ./ w3; } {w1 : m1 > m2 > m3; w2 : m1 > m2 > m3;
w3 : m1 > m2 > m3}. In this profile all the agents of the same sex have the

same preference ordering over the mates of the opposite sex, however, there
are two weakly stable marriages, i.e., µ1 = {(m1, w1), (m2, w2), (m3, w3)} and
µ2 = {(m1, w1), (m2, w3), (m3, w2)}. Notice however that these two weakly stable
marriages differ only for incomparable or tied partners. 2

It is possible to show that if all the agents of the same sex have the same
preference ordering over the mates of the opposite sex and there is at least one
incomparable or tied pair, then there is a unique weakly stable marriage up to
ties and incomparability.

Let us consider now Corollary 2 regarding the horizontal heterogeneity prop-
erty. From Theorem 3, it follows immediately that Corollary 2 holds also when
partially ordered preferences are allowed.

Corollary 3. In SMPs, if there is an ordering of men and women such that
the preference profile satisfies horizontal heterogeneity, there is a unique weakly
stable marriage µ(wi) = mi, ∀i ∈ {1, 2, . . . , n}.



For partially ordered preferences, we can also guarantee uniqueness of weakly
stable marriages by relaxing the horizontal heterogeneity property as follows.

Theorem 4. In an SMP, let us denote with mk is the first man with more
than one top choice, if he exists. If there is an ordering of men and women in
increasing number of their top choices such that the preference profile satisfies
the following conditions:

– ∀mi ∈M with mi < mk, wi >mi
wj, ∀j;

– ∀mi ∈M with mi ≥ mk,
• (wi >mi (or ./mi) wj), ∀j < i, and
• (wi >mi

wj), ∀j > i;
– ∀wi ∈W , with wi < wk, mi >wi

mj , ∀j;
– ∀wi ∈W , with wi ≥ wk,
• (mi >wi (or ./wi) mj), ∀j < i, and
• (mi >wi

mj), ∀j > i,

there is a unique weakly stable marriage µ(wi) = mi, ∀i ∈ {1, 2, . . . , n}.

In words, the conditions above require that every man mi (resp., woman wi)
with a single alternative, i.e., wi (resp., mi) has as unique top choice wi (resp.,
mi), and every mi (resp., wi) with more than one top choice has exactly one
alternative that must be chosen in every weakly stable marriage, that is, wi

(resp., mi).

6 Related work

In this paper, as in [11, 12], we permit non-strictly ordered preferences (i.e., pref-
erences may contain ties and incomparable pairs) and we focus on weakly stable
marriages. However, while in [11, 12], an algorithm is given that finds a weakly
stable marriage by solving a specific linearization obtained by breaking arbitrar-
ily the ties, we present an algorithm that looks for weakly stable marriages that
are male optimal, i.e., we look for those linearizations that favor one gender over
the other one. Moreover, since there is no guarantee that a male optimal weakly
stable marriage exists, we give a sufficient condition on the preference profile
that guarantees to find a weakly stable marriage that is male optimal, and we
show how to find such a marriage. Other work focuses on providing sufficient
conditions when a certain property is not assured for all marriages. For exam-
ple, in [3] a sufficient condition is given for the existence of a stable roommate
marriage when we have preferences with ties.

7 Conclusions

We have given an algorithm to find male optimal weakly stable solutions when
the men’s preferences are partially ordered. The algorithm is sound but not



complete. We conjecture, however, that incompleteness is rare since very spe-
cific circumstances are required for our algorithm not to return a male optimal
weakly stable marriage when one exists. We have then provided a sufficient con-
dition, which is polynomial to check, for the existence of male optimal weakly
stable marriages. We have also analyzed the issue of uniqueness of weakly stable
marriages, providing sufficient conditions, which are likely to occur in real life
problems, that are also necessary in special cases.
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