
Possible and necessary winners in voting trees:
majority graphs vs. profiles

Maria Silvia Pini
University of Padova

Padova, Italy
mpini@math.unipd.it

Francesca Rossi
University of Padova

Padova, Italy
frossi@math.unipd.it

Kristen Brent Venable
Universita’ di Padova

Padova, Italy
kvenable@math.unipd.it

Toby Walsh
NICTA and UNSW
Sydney, Australia

toby.walsh@nicta.com.au

ABSTRACT
Given the preferences of several agents over a common set
of candidates, voting trees can be used to select a candidate
(the winner) by a sequence of pairwise competitions mod-
elled by a binary tree (the agenda). The majority graph
compactly represents the preferences of the agents and pro-
vides enough information to compute the winner. When
some preferences are missing, there are various notions of
winners, such as the possible winners (that is, winners in
at least one completion) or the necessary winners (that is,
winners in all completions). In this generalized scenario, we
show that using the majority graph to compute winners is
not correct, since it may declare as winners candidates that
are not so. Nonetheless, the majority graph can be used to
compute efficiently an upper or lower approximation of the
correct set of winners.

Categories and Subject Descriptors
I.2.11 [Computing methodologies]: Artificial Intelligence—
Distributed Artificial Intelligence

General Terms
Algorithms, Theory

Keywords
Preferences, incompleteness, necessary winners, voting trees

1. INTRODUCTION
Voting is a simple and natural mechanism to aggregate

the preferences of multiple agents. Results like those of
Gibbard and Sattertwhaite demonstrate that, under weak
assumptions like an election of more than two candidates,
no voting rule is ideal. Many different voting rules, with
different properties, have therefore been proposed. Voting
trees are a general method that can implement many such
rules [2]. A voting tree is a binary tree (called the agenda)

Cite as: Possible and necessary winners in voting trees: majority graphs
vs. profiles, Maria Silvia Pini, Francesca Rossi, Kristen Brent Venable, and
Toby Walsh, Proc. of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonen-
berg and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. XXX-XXX.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

where the leaves are labelled with the candidates in the elec-
tion, the internal nodes are labelled with the winner of the
pairwise comparison between the children, and the root wins
the overall election. Voting trees can implement, for exam-
ple, any voting rule over three candidates [3]. Voting trees
have therefore been studied as a general, abstract model for
decision-making among multiple agents (see, for example,
[10, 9, 11]).

In practice, we often want to make decisions despite the
presence of uncertainty. Uncertainty can come in different
forms. There may be uncertainty about the votes [4, 12, 1,
13]. We may, for example, have only partially elicited pref-
erences, or we may only have partial knowledge about the
votes of other agents. There may also be uncertainty about
the voting rule itself. For instance, with voting trees, there
may be uncertainty about the agenda [7]. This may be be-
cause the agenda is not yet fixed (for example, the agenda is
to be chosen at a later date by means of a random draw as
in the World Cup), or the agenda is not announced in ad-
vance (to impede manipulation), or the chair may still be in
a position to change the agenda (in order to manipulate the
result). We are therefore interested in computing the results
of an election with a voting tree where there is uncertainty
in the vote and/or in the voting tree.

When some preferences are missing, there are various no-
tions of winners, such as the possible winners (that is, win-
ners in at least one completion) or the necessary winners
(that is, winners in all completions) [4]. When computing
possible and necessary winners, we can work from the in-
complete votes or the majority graph. The majority graph
summarizes the votes in the form of a directed graph where
there is a directed arc between two candidates iff a majority
of the agents prefer the first candidate over the second. We
can also consider whether the agenda is fixed or unknown.
Previously, Lang et al. [5] studied the problem of comput-
ing possible and necessary winners from the majority graph.
In [8], Pini et al. compared these results to the problem of
computing possible and necessary winners from incomplete
profiles. However, this work left open several important re-
lationships between the different types of winners, which we
close here.

To be precise, we consider all notions of winners in the set-
ting of incomplete preferences or uncertain agenda (possible
Condorcet, necessary Condorcet, possible Schwartz, neces-
sary Schwartz, possible, and necessary winners) and study

whether each of these sets of winners is computable by just
looking at the majority graph, without having to consider
the whole profile. In other words, we study if the set of win-
ners computed from the majority graph coincides with that
computed from the profile. The reason to do this is that
computing winners from the majority graph takes polyno-
mial time, even when there are exponential many comple-
tions.

For some notions of winners, the literature already tells
us if the two sets coincide or not [8]. In fact, we know
that, when considering simple voting trees (that is, agendas
where each candidate appears exactly once as a leaf), pos-
sible Condorcet winners and necessary Condorcet winners
can be safely computed from the majority graph, while this
is not so for possible Schwartz winners. We first close all
open questions about simple voting trees, showing that un-
fortunately equality does not hold in general for all remain-
ing notions of winners. We then examine the more general
setting of voting trees, where we show that the results for
simple voting trees are maintained. This means that, both
in simple voting trees and in general voting trees, reasoning
with the majority graph always produces correct results only
when we look for possible and necessary Condorcet winners.
When we aim to find other kinds of winners, working with
the majority graph gives an upper or lower approximation
of the correct set of winners. The situation is even worse
for voting trees, since some polynomial algorithms that cor-
rectly return winners from the majority graph in the simple
voting tree setting do not work well for voting trees, since
they may return incorrect responses also w.r.t. the majority
graph-based notion of winners. However, what they return
is still a lower or upper approximation of the correct set of
winners.

2. BASIC NOTIONS
We now give the basic notions for (simple) voting trees [5,

8, 6].

2.1 Preferences, profiles, and majority graphs
We assume that each agent’s preferences are specified by

a strict total order (TO), that is, by an asymmetric, tran-
sitive and complete order, on a set of m candidates. The
candidates are taken from a set Ω, and they represent the
possible options over which agents vote.

A profile P on Ω is a collection of n strict total orders
over Ω, i.e., P = (P1, . . . , Pn), where Pi is the preference
relation of agent i. An incomplete preference relation > on
Ω is a strict order on Ω, that is, a transitive and irreflexive
relation on Ω. An incomplete profile on Ω is a collection
P = (P1, . . . , Pn) of incomplete preference relations on Ω.
Let P = (P1, . . . , Pn) be an incomplete profile over a set of
candidates Ω, a completion R of P is a tuple (R1, . . . , Rn)
such that every Ri is a strict total order on Ω containing Pi.
For simplicity, we assume that the number of the agents is

odd.
Given an (incomplete) profile P , the majority graph M(P)

induced by P is the directed graph whose set of vertices is
Ω, and where an edge from A to B (denoted by A >m B)
denotes a strict majority of voters who prefer A to B. A ma-
jority graph is said to be complete if, for any two vertices,
there is a directed edge between them, and fully incomplete
if there are no edges. Also, if M(P) is incomplete, the set of
all complete majority graphs extending M(P) corresponds

to a (possibly proper) superset of the set of complete ma-
jority graphs induced by all possible completions of P .

2.2 Voting trees
Given a set of candidates, the simple voting tree rule (resp.,

voting tree rule) is defined by a binary tree with one candi-
date per leaf. Each candidate appears exactly once in the
leaves (resp., each candidate may appear more than once
in the leaves). Each internal node represents the candidate
that wins the pairwise election between the node’s children.
The winner of every pairwise election is computed by the
majority rule, where A beats B iff there is a majority of
votes stating A > B. The candidate at the root of the tree
is the overall winner. Given a complete profile, candidates
which win for every (simple) voting tree are called Condorcet
winners and candidates which win for at least one (simple)
voting tree are called Schwartz winners.

2.3 Notions of winners
Various kinds of winners have been defined from incom-

plete profiles and from incomplete majority graphs [5, 8, 6].

Definition 1. Let P be an incomplete profile and A a
candidate.

• A is a possible Schwartz winner for P (i.e., A ∈ PossS(P))
iff there exists a completion of P and a simple voting
tree for which A wins;

• A is the necessary Schwartz winner for P (i.e., A ∈
NecS(P)) iff for every completion of P there is a sim-
ple voting tree for which A wins;

• A is a possible Condorcet winner for P (i.e., A ∈
PossC(P)) iff there is a completion of P such that A
is a winner for every simple voting tree;

• A is the necessary Condorcet winner for P (i.e., A ∈
NecC(P)) iff for every completion of P , and for every
simple voting tree, A is a winner.

When the voting tree is given, the following two notions
of winners can also be considered [6, 12].

Definition 2. Let P be an incomplete profile, A a can-
didate, and T a simple voting tree.

• A is a possible winner for P and T (i.e., A ∈ Poss(P, T))
iff there exists a completion of P for which A wins in
T ;

• A is the necessary winner for P and T (i.e., A ∈
Nec(P, T))) iff, for every completion of P , A wins in
T .

When the profile is complete, necessary and possible Con-
dorcet winners coincide. The same holds also for necessary
and possible Schwartz winners, and for necessary and possi-
ble winners.

The definitions of winners given above can be defined also
from incomplete majority graphs [5, 8]. The only difference
is such definitions consider the completions of the incomplete
majority graph and not those of the incomplete profile.

2.4 Majority graph vs. profile
When the profile is complete, the possible and necessary

versions of the same notion of winner collapse, and reasoning
from the majority graph is enough for correctly computing
the winner. However, when the profile is incomplete, consid-
ering the majority graph rather than the profile may give dif-
ferent results. A majority graph may have completions that
do not correspond to any completion of the profile. Thus,
for certain notions of winners, the possible/necessary win-
ners for the incomplete profile do not coincide with the pos-
sible/necessary winner for the incomplete majority graph.

Of course, the correct notion is that defined from the pro-
file, but in some cases the two notions of winners coincide,
so we can safely consider only the majority graph. This is
more convenient since the majority graph is a compact rep-
resentation of the profile. Reasoning over this structure is
therefore more efficient.

In Table 1 we summarize what is known about the re-
lationship between the set of winners from an incomplete
profile P and the set of winners from the incomplete major-
ity graph M(P), both in simple voting trees and in voting
trees.

SVT VT
Possible Schwartz winners 6= [8] ?

Necessary Schwartz winners ? ?
Possible Condorcet = [8] ?

Necessary Condorcet = [8] ?
Possible winners ? ?

Necessary winners ? ?

Table 1: State of the art about winners computed
from majority graph or profile, for simple voting
trees (SVT) and voting trees (VT).

In words, we know that possible Condorcet winners and
necessary Condorcet winners can be correctly computed from
the majority graph, while this is not so for possible Schwartz
winners. However, we don’t know anything about the other
notions of winners, except the obvious subset inclusion that
comes from the simple observation that the majority graph
may have more completions than the profile. More precisely,
every notion in its ”possible” version and related to the pro-
file denotes a subset of the same notion related to the ma-
jority graph. For example, Poss(P, T) ⊆ Poss(M(P), T).
Vice versa, every notion in its ”necessary” version and re-
lated to the majority graph denotes a subset of the same
notion related to the profile. For example, Nec(M(P), T) ⊆
Nec(P, T).

2.5 Computing majority graph winners
All the sets of winners for the majority graph can be com-

puted in polynomial time for simple voting trees [5, 6].
Given a simple voting tree T and an incomplete majority

graph G, algorithm Win, presented in [6], computes, the
set of possible winners for G and T . This algorithm (see the
pseudocode below) recursively takes in input a simple voting
tree T , an incomplete majority graph G, and it returns a set
of candidates W , which is the set of possible winners for G
and T . If root(T) is not empty, and both left(T) (i.e., the
left subtree of T) and right(T) (i.e., the right subtree of T)
are empty, then the algorithm returns label(root(T)) (i.e.,
the candidate which labels the root of T). Otherwise, the
set of winners at the root of T is the set of all candidates

who are possible winners in the left (resp., right) branch of
T and who beat at least one candidate who is a possible
winner in the right (resp., left) branch of T .

Algorithm StrongWin [6] runs algorithm Win on T and
G, and just checks if the output is a single candidate. If so,
it declares it the necessary winner, otherwise it returns the
empty set as there is then no necessary winner.

Algorithm 1: Win

Input: T : a simple voting tree, G: an incomplete majority
graph;
Output: W : set of candidates;
if T contains only one node then

W ← label(root(T))

else
W1 ← Win(left(T), G);
W2 ← Win(right(T), G);
W ← ∅;
foreach (s, t) ∈ W1 ×W2 do

if s >m t then
W ← W ∪ {s}

else
if t >m s then

W ← W ∪ {t}
else

W ← W ∪ {s, t}

return W

3. WINNERS IN SIMPLE VOTING TREES
We now show that the set of the necessary Schwartz win-

ners (resp., possible winners, necessary winners) for an in-
complete profile P may be different from the set of the nec-
essary Schwartz winners (resp., possible winners, necessary
winners) for the incomplete majority graph M(P) in simple
voting trees. These results close all the open questions in
the simple voting tree column of Table 1.

3.1 Necessary Schwartz winners
As noted above, a necessary Schwartz winner from an in-

complete majority graph M(P) is always a necessary Schwartz
winner from the incomplete profile P [8]. More precisely, let
P be an incomplete profile. Then NecS(M(P)) ⊆ NecS(P).
However, in general, the opposite does not hold.

Theorem 1. There is an incomplete profile P such that
NecS(P) 6= NecS(M(P)).

Proof. To show the result, we give an incomplete profile
P and a candidate A such that A ∈ NecS(P) and A 6∈
NecS(M(P)).

Let Ω = {A, A1, B1, B2, B3}. Assume that we have 5
agents and that the incomplete profile P is defined as fol-
lows:

• agent 1: (A1 > B2 > B3, A > B1);

• agent 2: (B2 > B3 > A1 > B1 > A);

• agent 3: (A > A1 > B3 > B1 > B2);

• agent 4: (B1 > A > B2 > B3 > A1);

• agent 5: (B3 > B1 > B2 > A > A1).

Given this profile, the corresponding majority graph has the
following edges:

• A >m A1, B1 >m A, B1 >m B2,

• B2 >m B3, B2 >m A1, B3 >m B1, B3 >m A1.

By Theorem 8 of [5], which states that A ∈ NecS(M(P)) iff
there is a path from A to every other candidate in M(P),
since there is no path from A to B1 in M(P), then A 6∈
NecS(M(P)). However, A ∈ NecS(P). In fact, for every
completion of P , there is a tree where A wins. Notice that
in P only the first agent expresses incomplete preferences.
Therefore, the completions of P are as many as the comple-
tions of the first agent’s preferences. Such completions can
be partitioned in two types: those where the first agent puts
A1 above A and those where the first agent puts A above
A1:

• In every completion of P where A1 is above A in the
first agent’s preferences, we have, by transitivity, A1 >
B1 for this agent. This yields a majority of agents
stating A1 > B1. Therefore, for every completion of
this kind, the corresponding majority graph has the
edge A1 >m B1. It is possible to see that A wins in
the tree where first B2 plays against B3, the winner
(that is, B2) plays against B1, the winner (that is, B1)
plays against A1, and finally the winner (that is, A1)
plays against A.

• In every completion of P where A is above A1 in the
first agent’s preferences, we have, by transitivity, A >
B2 for this agent. This yields a majority of agents
stating A > B2. Therefore, for every completion of
this kind, the corresponding majority graph has the
edge A >m B2. It is possible to see that A wins in the
tree where first B3 plays against B1, the winner (that
is, B3) plays against B2, the winner (that is, B2) plays
against A, and finally the winner (that is, A) plays
against A1. 2

However, in some restricted cases the two notions of win-
ners coincide. For example, when we have 3 candidates, the
necessary Schwartz winners from the incomplete profile and
from the incomplete majority graph coincide.

Theorem 2. Let P be an incomplete profile over 3 can-
didates. Then NecS(P) = NecS(M(P)).

Proof. For every candidate A, we can partition the set
of candidates in two sets S1 and S2, where S1 contains the
candidates that are reachable from A (i.e., every candidate
X such that there is a path A >m · · · >m X from A to
X in M(P)) and S2 contains the candidates that are not
reachable from A. If there are 3 candidates, (say A, B, and
C), then there are four possible kinds of majority graphs,
depending on who reaches who else:

• S1 = {A} and S2 = {B, C};

• S1 = {A, B} and S2 = {C};

• S1 = {A, C} and S2 = {B};

• S1 = {A, B, C} and S2 = ∅;

In the first case, there is no path from A to B. Therefore,
by Theorem 8 of [5], A 6∈ NecS(M(P)). Moreover, B or
C has no ingoing edges in M(P). Assume that B has no
ingoing edges. Let us consider the completion of P , say P ′,

where we put B > A if the relation between A and B is
unspecified, and B > C if the relation between B and C is
unspecified. Then, B has only outgoing edges in M(P ′) and
so B is a Condorcet winner, i.e., he wins in every tree. Since
there is a completion of P where A is a loser for every tree,
A 6∈ NecS(P).

In the second case, there is no path from A to C. There-
fore, by Theorem 8 of [5], A 6∈ NecS(M(P)). Moreover, C
has no ingoing edges in M(P). Let us consider the com-
pletion of P , say P ′, where we put C > A if the relation
between A and C is unspecified, and C > B if the relation
between B and C is unspecified. Then, C has only outgoing
edges in M(P ′) and so B is a Condorcet winner, i.e., he wins
in every tree. Since there is a completion of P where A is a
loser for every tree, A 6∈ NecS(P).

In the third case, there is no path from A to B. Therefore,
by Theorem 8 of [5], A 6∈ NecS(M(P)). Moreover, B has no
ingoing edges in M(P). We can conclude that A 6∈ NecS(P)
via a reasoning that is similar to the one used in the case
above.

In the fourth case, there is a path from A to every other
candidate. Therefore, A ∈ NecS(M(P)) and so A ∈ NecS(P)
since NecS(M(P)) ⊆ NecS(P). 2

The equality between NecS(P) and NecS(M(P)) holds
also when we have more than 3 candidates, if we impose
some other restrictions.

Theorem 3. Let P be an incomplete profile. Then NecS(P)
= NecS(M(P)) if

• M(P) is complete, or

• M(P) is fully incomplete, or

• there are two candidates with no ingoing edges in M(P)
(in which case NecS(P) = NecS(M(P)) = ∅).

Proof.
• If M(P) is complete, then M(P) is also the major-

ity graph of every completion of P . Therefore, if A 6∈
NecS(M(P)), there is no path from A to some candi-
date B in M(P) and in M(P ′), for every completion
P ′ of P . Therefore, A 6∈ NecS(P) and so NecS(P) ⊆
NecS(M(P)). We can thus conclude that NecS(P) =
NecS(M(P)), since [8] shows that NecS(P)⊇NecS(M(P)).

• If M(P) is fully incomplete, then NecS(M(P)) = ∅.
Moreover, if M(P) is fully incomplete, there are two
candidates, say B1 and B2, with no ingoing edges. If
we consider the completion P1 of P where we put B1 >
C for every C such that the relation between B1 and C
is unspecified, B1 is a Condorcet winner, i.e., B1 wins
in every tree. Similarly, if consider the completion P2

of P where we put B2 > C for every C such that
the relation between B2 and C is unspecified, B2 is a
Condorcet winner, i.e., B2 wins in every tree. Since in
P1 B1 wins for every tree, and since in P2 B2 wins for
every tree, it is not possible to find a unique candidate
that in both completions P1 and P2 wins for some tree.
Therefore, NecS(P) = ∅.

• If there are two candidates with no ingoing edges in
M(P), then we can conclude as in the case above that
NecS(P) = NecS(M(P)) . 2

We now consider cases where a candidate is neither a nec-
essary Schwartz winner from the majority graph nor a nec-
essary Schwartz winner from the profile.

Theorem 4. Let P be an incomplete profile.

• If there is a unique candidate B with no ingoing edges,
then, for every other candidate A, A 6∈ NecS(M(P))
and A 6∈ NecS(P).

• For every candidate A, such that there is at least a
candidate that A does not reach and all the candidates
that are reachable from A in M(P) are beaten by all
the other candidates that are not reachable from A, A 6∈
NecS(M(P)) and A 6∈ NecS(P).

• If there is a partition of the candidates in two sets, say
S1 and S2, such that every element in S1 is worse than
every element in S2 in M(P), then for every A ∈ S1,
A 6∈ NecS(M(P)) and A 6∈ NecS(P).

Proof.

• If there is a unique candidate B with no ingoing edges,
then, for every other candidate A 6= B, A does not
reach B. Thus, by Theorem 8 of [5], A 6∈ NecS(M(P)).
Let us consider the completion P ′ where we put B > C
for every C such that the relation between B and C
is unspecified. Then B is a Condorcet winner, i.e., B
wins in every tree, and so every other candidate A is
a loser for every tree. Therefore A 6∈ NecS(P).

• Let us consider a candidate A such that all the candi-
dates that are reachable from A in M(P) are beaten
by all the other candidates that are not reachable from
A. Let us denote with B the candidate that A does not
reach. Since A does not reach B, then, by Theorem 8
of [5], A 6∈ NecS(M(P)). Let us consider the comple-
tion P1 of P where we put C above A for every C where
the relation between C and A is unspecified in M(P)
(and thus also B > A if the relation between A and
B is unspecified in M(P)) and where we put all the
remaining unspecified preferences in an arbitrary way
that satisfies transitivity. A cannot reach B in M(P1).
In fact, A cannot reach B directly by construction.
Moreover, A cannot reach B via the candidates that
A reaches since, by hypothesis, such candidates are all
beaten by every candidate that A does not reach in
M(P). Therefore, they are all beaten by B in M(P)
and thus also in M(P1). Since A cannot reach B in
the complete majority graph M(P1), by Theorem 8 of
[5], A is not a Schwartz winner for P1, i.e., for P1, A
is a loser for every tree. Therefore, A 6∈ NecS(P).

• If there is a partition of the candidates in two sets, say
S1 and S2, such that every element in S1 is worse than
every element in S2 in M(P), then we can conclude by
using a reasoning similar to the one considered in the
previous item. 2

3.2 Possible winners
Given an incomplete profile P and a simple voting tree

T , the possible winners of T for P and for M(P) may be
different.

Theorem 5. There is an incomplete profile P and a sim-
ple voting tree T such that Poss(P, T) 6= Poss(M(P), T).

Proof. We can consider the incomplete profile P with
just one agent and Ω = {A, B, C}, where only the relation
between A and B is specified and it is A > B. The induced
majority graph M(P) has only one edge from A to B. Let
us consider the simple voting tree T where A plays against
C and the winner plays against B. It is easy to see that
B ∈ Poss(M(P), T), since there is a completion of M(P)
where B wins in T , i.e., B >m C >m A. However, for
every completion of P , B does not win in T and so B 6∈
Poss(P, T). 2

3.3 Necessary winners
In general, if there is a necessary winner from an incom-

plete majority graph M(P), then it is also a necessary win-
ner from the incomplete profile P . More precisely, let P
be an incomplete profile and T a simple voting tree, then
Nec(M(P), T) ⊆ Nec(P, T).

We will now show that the opposite does not hold in gen-
eral.

Theorem 6. There is an incomplete profile P and a sim-
ple voting tree T such that Nec(P, T) 6= Nec(M(P), T).

Proof. To show the result, we give an incomplete profile
P , a simple voting tree T , and a candidate A such that A ∈
Nec(P, T) and A 6∈ Nec(M(P), T).

Let Ω = {A, B, C, D, E, F}. Assume to have 5 agents and
that the incomplete profile P is defined as follows:

• agent 1: (E > B > C, F > D > A);

• agent 2: (A > E > F > D > B > C);

• agent 3: (A > C > D > F > E > B);

• agent 4: (C > D > F > E > B > A);

• agent 5: (B > A > F > E > C > D).

The majority graph of P has the following edges:

• A >m C, A >m D, A >m E, A >m F ,

• B >m C, B <m D, B <m E, B <m F ,

• C >m D, C <m E, D <m F , E <m F .

Assume that the voting tree T is defined as follows: the
winner between C and F plays against the winner between
E and D, the winner then plays against B and finally the
winner plays against A.

If we apply Algorithm Win (which is described in Section
2.5) to T and M(P), then the returned set is {A, B}. Since
T is a simple voting tree, the set {A, B} coincides with the
set of the possible winners for M(P) and T . Since there are
two possible winners, then Nec(M(P), T) = ∅.

However, A ∈ Nec(P, T). In fact, for every completion of
P , A wins in T . Note that in P only the first agent expresses
incomplete preferences. Therefore, the completions of P cor-
respond to the completions of the first agent’s preferences.
Such completions can be partitioned into two types: those
where the first agent puts E above F and those where the
first agent puts F above E.

• In every completion of P where E is above F in the first
agent’s preferences, we have, by transitivity, E > D for
this agent, and so there is a majority of agents stating
E > D. Therefore, for every completion of this kind,
its majority graph has the edge E >m D, and thus A
wins in T , since C is beaten by F or by E, then B is
beaten by F and E, and finally A beats both E and
F . Therefore, A is the overall winner.

• In every completion of P where F is above E in the first
agent’s preferences, we have, by transitivity, F > C
for this agent, and so there is a majority of agents
stating F > C. Therefore, for every completion of this
kind, its corresponding majority graph has the edge
F >m C, and thus A wins in T , since C is beaten by
F , then F beats both D and E, then F beats B, and
finally A beats F . Therefore, A is the overall winner.
2

However, in some restricted cases the two notions of win-
ners coincide. For example, when we have 3 candidates, the
necessary winners from the incomplete profile and from the
incomplete majority graph coincide.

Theorem 7. Let P be an incomplete profile over 3 can-
didates and T a simple voting tree. Then, Nec(P, T) =
Nec(M(P), T).

Proof. When there are three candidates, say A, B, and
C, there is only one kind of tree, where one candidate plays
against another candidate, and the winner plays against the
remaining one. Let us consider the simple voting tree T
where A plays against B and the winner plays against C.
Every other simple voting tree can be obtained by T by
renaming the candidates. We now show that for every pos-
sible kind of incomplete majority graph M(P), Nec(P, T)
= Nec(M(P), T). We will say A?mB when the relation be-
tween A and B is missing in M(P).

Assume A >m B. If A >m C or A <m C, M(P) gives all
the information for T and thus Nec(M(P), T) = Nec(P, T).
If A?mC, Poss(M(P), T) = {A, C} and thus Nec(M(P), T)
= ∅. In the completion of P where we put A > C if the
relation between A and C is unspecified, A wins in T , while
in the completion of P where we put C > A, if the relation
between A and C is unspecified, C wins in T . Therefore,
since there is no a single candidate that in every completion
of P wins in T , Nec(P, T) = ∅.

Assume A <m B. We can conclude similarly to the pre-
vious item.

Assume A?mB.

• If C >m A and C >m B, then Nec(M(P), T) =
Nec(P, T)= {C}.

• If C <m A and C <m B, then Poss(M(P), T) =
{A, B} and thus Nec(M(P), T) = ∅. In the comple-
tion of P where we put A > B (resp., B > A) if the
relation between A and B is unspecified, A (resp., B)
wins in T and thus Nec(P, T) = ∅.

• If C <m A and C >m B, then Poss(M(P), T) =
{A, C} and thus Nec(M(P), T) = ∅. In the comple-
tion of P where we put A > B (resp., B > A) if the
relation between A and B is unspecified, A (resp., C)
wins in T and thus Nec(P, T) = ∅.

• If C >m A and C <m B, we can conclude similarly to
the previous item.

• If C >m B and C?mA, then Poss(M(P), T) = {C, A}
and thus Nec(M(P), T) = ∅. Moreover, in the comple-
tion of P where we put C > A if the relation between
A and C is unspecified, C wins in T , while in the com-
pletion of P where we put A > B and A > C, A wins in
T . Therefore, since there is no a single candidate that
in every completion of P wins in T , Nec(P, T) = ∅.

• If C >m A and C?mB, then we can conclude similarly
to the previous item.

• If C <m B and C?mA, then Poss(M(P), T) = {A, B, C}
and thus Nec(M(P), T) = ∅. Moreover, in the com-
pletion of P where we put B > A, if the relation be-
tween A and B is unspecified, B wins in T , while in
the completion of P where we put A > C if the re-
lation between A and C is unspecified, and A > B if
the relation between A and B is unspecified, A wins in
T . Therefore, since there is no single candidate that
in every completion of P wins in T , Nec(P, T) = ∅.

• If C <m A and C?mB, then we can conclude similarly
to the previous item. 2

The equality between Nec(P, T) and Nec(M(P), T) holds
also when we have more than 3 candidates, if we impose
some other restrictions.

Theorem 8. Let P be an incomplete profile and T a sim-
ple voting tree. Then Nec(P, T) = Nec(M(P), T) if

• M(P) is complete, or

• M(P) is fully incomplete (in which case Nec(P, T) =
Nec(M(P), T) = ∅).

Proof.
• If M(P) is complete, then M(P) is also the major-

ity graph of every completion of P . Therefore, if A 6∈
Nec(M(P), T), then A 6∈ Nec(P, T). Therefore, Nec(P,
T)⊆Nec(M(P), T). We can thus conclude that Nec(P,
T) = Nec(M(P), T), since Nec(P, T)⊇Nec(M(P), T).

• If M(P) is fully incomplete, then all the candidates are
possible winners for M(P) and so Nec(M(P), T) = ∅.
Moreover, if M(P) is fully incomplete, there are two
candidates, say B1 and B2 with no ingoing edges. We
can conclude that Nec(P, T) = ∅ by using a reasoning
similar to the one considered in the proof of the second
item of Theorem 3. More precisely, in the completion
P1 of P where we put B1 > C for every C such that
the relation between B1 and C is unspecified, B1 is
a Condorcet winner, and so B1 wins also in T , while
in the completion P2 of P where we put B2 > C for
every C such that the relation between B2 and C is
unspecified, B2 is a Condorcet winner, and so B2 wins
also in T . Therefore, it is not possible to find a unique
candidate that in the completions P1 and P2 wins in
T . Therefore, Nec(P, T) = ∅. 2

We can also identify cases in which a candidate is neither
a necessary winner from the majority graph nor a necessary
winner from the profile.

Theorem 9. Let P be an incomplete profile and T a sim-
ple voting tree. For every candidate A such that, for every
candidate C that may play against A in T , A <m C or
the relation between A and C is unspecified in M(P), A 6∈
Nec(M(P), T) and A 6∈ Nec(P, T).

Proof. If, for every candidate C that may play against A
in T , we have A <m C, then A 6∈ Poss(M(P), T). Thus A 6∈
Nec(M(P), T) and A 6∈ Poss(P, T). Since A 6∈ Poss(P, T),
we have that A 6∈ Nec(P, T). If there is a candidate C
that may play against A in T , such that the relation be-
tween A and C is unspecified in M(P), then either A 6∈
Poss(M(P), T) (and so we can conclude as above) or A ∈
Poss(M(P), T) but |Poss(M(P), T)| > 1. Then, by Algo-
rithm StrongWin [6], A 6∈ Nec(M(P), T). Moreover, let us
consider the completion of P where we put A < C for every
C such that the relation between A and C is unspecified in
M(P). Then, for every tree (and thus also in T) A is a loser.
Therefore, A 6∈ Nec(P, T). 2

4. WINNERS IN VOTING TREES
We now close the open questions of Table 1 in the voting

tree column. We will show that algorithms Win and Strong-
Win [6], that correctly compute possible and necessary win-
ners from an incomplete majority graph and a simple voting
tree, are not correct any longer when we consider voting
trees.

4.1 Winners
We first notice that, since a simple voting tree is a voting

tree, all the inequality results shown in the previous section
(or already known and shown in Table 1) for simple voting
trees hold also for voting trees. Thus, we have inequali-
ties for the notions of possible Schwartz winners, necessary
Schwartz winners, possible winners, and necessary winners.

For the remaining notions of possible and necessary Con-
dorcet winners, we will now show that the equalities that
hold for simple voting trees hold also for voting trees.

Theorem 10. Let P be an incomplete profile. Assume
we consider voting trees. Then

• PossCond(P) = PossCond(M(P));

• NecCond(P) = NecCond(M(P)).

Proof. It follows from the proofs of items 3 and 4 of
Theorem 1 of [8], which show that these equalities hold for
simple voting trees, since this proof depends only on the
completions of M(P) and of P and not on the kind of voting
trees considered. 2

4.2 Majority graph winners
It is easy to see that all the polynomial time algorithms

presented for incomplete majority graphs and simple voting
trees in [5] are sound and complete also for voting trees,
since they don’t exploit the fact that each candidate appears
exactly once in the leaves.

However, we can show that, when we consider voting trees
instead of simple voting trees, algorithms Win and Strong-
Win [6], that compute possible and necessary winners from
an incomplete majority graph and a simple voting tree, are
not correct. In fact, given a voting tree T and a majority

graph M , Algorithm Win may return also candidates that
are not possible winners for M and T , and algorithm Strong-
Win may return the empty set even if there is a necessary
winner for M and T .

Theorem 11. There is an incomplete majority graph M
and a voting tree T such that, if W is the set of candidates
returned by Algorithm Win [6] applied to M and T , then
W 6= Poss(M, T).

Proof. We give an incomplete majority graph M and
a voting tree T , such that the set of candidates returned
by Algorithm Win [6] applied to T and M contains also a
candidate which is not a possible winner for T and M .

Assume we have 5 candidates, say A, B, C, D, and E,
and that the incomplete majority graph M has the following
edges: A >m D, A >m E, B >m A, B >m E, C >m A,
C >m D, D >m B, E >m C. Assume that the voting tree
T is defined as follows:

• left(root(T)) is the voting tree where first B plays
against C, the winner plays against D, and finally the
winner plays against A, and

• right(root(T)) is the voting tree where first B plays
against C, the winner plays against E, and finally the
winner plays against A.

The set of the candidates returned by Algorithm Win [6] is
the set {A, B, C}, while the set of possible winners for M
and T is the set {B, C}. A is not a possible winner for M
and T , since there are only two completions of M , i.e., the
one, say c1, where we put B > C and the one, say c2, where
we put C > B. In the first one, the winner is B, while in
the second one the winner is C:

• In completion c1, A is the winner of left(root(T))
(since B beats C, then B is beaten by D, and finally
D is beaten by A), B is the winner of right(root(T))
(since B beats C, then B beats E, and finally B beats
by A), and thus, since B >m A in M , B is the winner
of T .

• In completion c2, C is the winner of left(root(T))
(since C beats B, then C beats D, and finally C beats
A), A is the winner of right(root(T)) (since C beats
B, then C is beaten by E, and finally E is beaten by
A), and thus, since C >m A in M , C is the winner of
T . 2

Theorem 12. There is an incomplete majority graph M
and a voting tree T such that, if W the set of candidates
returned by Algorithm StrongWin [6] applied to M and T ,
W 6= Nec(M, T).

Proof. We give an incomplete majority graph, say M ′,
and a voting tree, say T ′, such that the set of the candidates
returned by Algorithm StrongWin [6] applied to T ′ and M ′ is
empty, while there is a candidate that is a necessary winner
for T ′ and M ′.

Assume we have 6 candidates, say A, B, C, D, E, and F ,
and that the incomplete majority graph M ′ has the same
edges as the incomplete majority graph M considered in the
proof of Theorem 11 plus the following edges: A >m F ,
F >m B, and F >m C. Assume that the voting tree T ′ is

the voting tree where the winner of the voting tree T consid-
ered in the proof of Theorem 11 plays against F . Algorithm
StrongWin applied to M ′ and T ′ returns the empty set, since
Algorithm Win returns a set (i.e., {A, F}) which has more
than one element. However, we have shown in the proof of
Theorem 11 that, for every completion of M , A does not
win in T . Thus, by construction of M ′, for every comple-
tion of M ′, A does not win in T , and so, since F >m B and
F >m C in M ′, for every completion of M ′, F wins in T .
Therefore, F is the necessary winner for M ′ and T ′. Hence,
there is a necessary winner for M ′ and T ′ but Algorithm
StrongWin says there is none. 2

However, even if algorithm Win may be incorrect, the
set of winners returned by this algorithm may be useful in
the search for the possible/necessary winners. In fact, this
is a superset of the set of the possible winners for M and
T . Moreover, if Algorithm StrongWin applied to M and T
returns a candidate, this is indeed a necessary winner for M
and T .

Theorem 13. Let M be an incomplete majority graph, T
a voting tree, and W the set of the candidates returned by
Algorithm Win [6]. Then W ⊇ Poss(M, T).

Proof. Let A be a candidate. We want to show that,
if A ∈ Poss(M, T), then A ∈ W . Assume that A 6∈ W .
Then, by definition of Algorithm Win, for every subtree T ′

of T where A ∈ root(left(T ′)) (resp., A ∈ root(right(T ′)),
we have A <m C, for every C ∈ root(right(T ′)) (resp., for
every C ∈ root(left(T ′))). This holds for every completion
of M . Therefore, for every completion of M , A is a loser in
T and thus A 6∈ Poss(M, T). 2

Corollary 13.1. Let M be an incomplete majority graph,
T a voting tree, and W the set of the candidates returned by
Algorithm Win [6]. If |W | = 1, then W = Nec(M, T).

Proof. If W = {A}, then, by Theorem 13 and by the fact
that Poss(M, T) cannot be empty, we have that Poss(M, T) =
{A} and thus Nec(M, T) = {A}. 2

5. CONCLUSIONS
In the setting of voting trees with missing preferences

and/or uncertain agenda, we have closed all open questions
about the relation between the notions of winners for the
profile (which are the winners we ultimately want to com-
pute) and the corresponding notions for the majority graph
(which are polynomial to find). More precisely, the overall
results are summarized in Table 2, where we have inserted
our new results in those of Table 1, which described the
previous state of the art.

SVT VT
Possible Schwartz winners 6= [8] 6=

Necessary Schwartz winners 6= 6=
Possible Condorcet = [8] =

Necessary Condorcet = [8] =
Possible winners 6= 6=

Necessary winners 6= 6=

Table 2: New state of the art about winners com-
puted from the majority graph or profile.

Where we see an equality in the table, it means that we
can safely and correctly work from the majority graph. This

is both more compact and efficient. This happens for pos-
sible/necessary Condorcet winners. Instead, where we see
an inequality, it means that using the majority graph may
give us an upper or lower approximation of the desired set
of winners. However, this approximation can be found in
polynomial time. The approximation is closer to the correct
notion in the case of simple voting trees, since algorithms
Win and StrongWin are more correct for simple voting trees
than for voting trees.

6. ACKNOWLEDGMENTS
This work has been partially supported by the MIUR

PRIN 20089M932N project“Innovative and multi-disciplinary
approaches for constraint and preference reasoning”. We
would like to thank Jerome Lang for many stimulating dis-
cussions.

7. REFERENCES
[1] V. Conitzer, T. Sandholm, and J. Lang. When are

elections with few candidates hard to manipulate.
Journal of the ACM, 54(3), 2007.

[2] R. Farquharson. Theory of voting. Yale University
Press, New Haven, 1969.

[3] M. JoséHerrero and S. Srivastava. Implementation via
backward induction. Journal of Economic Theory,
56(1):70 – 88, 1992.

[4] K. Konczak and J. Lang. Voting procedures with
incomplete preferences. In Proceedings of IJCAI’05
Multidisciplinary Workshop on Advances in Preference
Handling, 2005.

[5] J. Lang, M. S. Pini, F. Rossi, K. B. Venable, and
T. Walsh. Winner determination in sequential
majority voting. In Proceedings of IJCAI’07, pages
1372–1377. AAAI Press, 2007.

[6] M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh.
Determining winners in weighted sequential majority
voting: incomplete profiles w.r.t. majority graphs. In
Proceedings of CLIMA VIII, 2007.

[7] M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh.
Incompleteness and incomparability in preference
aggregation. In Proceedings of IJCAI’07, pages
1464–1469. AAAI Press, 2007.

[8] M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh.
Dealing with incomplete agents’ preferences and an
uncertain agenda in group decision making via
sequential majority voting. In Proceedings of KR’08,
pages 571–578. AAAI Press, 2008.

[9] A. D. Procaccia, A. Zohar, Y. Peleg, and J. S.
Rosenschein. Learning voting trees. In Proceedings of
AAAI, pages 110–115, 2007.

[10] M. Trick. Small binary voting trees. In Proceedings of
COMSOC’06, pages 500–511, 2006.

[11] V. Vassilevska. Fixing a tournament. In Proceedings of
AAAI’10, 2010.

[12] T. Walsh. Complexity of terminating preference
elicitation. In Proceedings of AAMAS’08, pages
967–974, 2008.

[13] L. Xia and V. Conitzer. Determining possible and
necessary winners under common voting rules given
partial orders. In Proceedings of AAAI’08, pages
196–201. AAAI Press, 2008.

