
Multi-agent soft constraint aggregation via sequential voting

Paper 985

Abstract
We consider scenarios where several agents must
aggregate their preferences over a large set of can-
didates with a combinatorial structure. That is, each
candidate is an element of the Cartesian product of
the domains of some variables. We assume agents
compactly express their preferences over the can-
didates via soft constraints. We consider a sequen-
tial procedure that chooses one candidate by ask-
ing the agents to vote on one variable at a time.
While some properties of this procedure have been
already studied, here we focus on independence to
irrelevant alternatives, non-dictatorship, and strat-
egy proofneess. Also, we perform an experimental
study that shows that the proposed sequential pro-
cedure yields a considerable saving in time with re-
spect to a non-sequential approach, while returning
candidates that satisfy the agents just as well, inde-
pendently of the variable ordering and of the pres-
ence of coalitions of agents.

1 Introduction
We consider scenarios where a set of agents needs to select
a common decision from a set of possible decisions, over
which they express their preferences. We also assume that
such a decision set has a combinatorial structure, that is, that
each decision can be seen as the combination of certain fea-
tures, where each feature has a set of possible instances. This
occurs in several AI applications, such as combinatorial auc-
tions, web recommender systems, and configuration systems.
Even if the number of features and instances is small, the
number of possible decisions can be very large. Fortunately,
in the presence of such a combinatorial structure, agents may
describe their preference in a compact and efficient way, us-
ing one of the several formalisms available in the literature,
such as soft constraints [8], CP-nets [3], and graphical util-
ity models [2]. The goal is to aggregate such preferences and
to select the most preferred decision. While such compact
preference formalisms are suitable for aggregating the prefer-
ences of a single agent, they may lead to undesirable results
if used for multi-agent preference aggregation. For example,
in soft constraints, the negative opinion of an agent over a
specific instance of a feature would impact negatively on any

decision containing such an instance, even if all other agents
like it. An alternative could be to search for a decision be-
longing to the Pareto frontier of the multi-agent preferences,
as it is done in [6] for preferences expressed via GAI utility
functions. Another option, that we study in this paper, is to
aggregate the preferences via voting rules.

Voting theory [1] is a wide research area that considers sim-
ilar scenarios: in an election, voters (that we call agents) vote
by expressing their preferences over a set of candidates (that
we call objects or decisions), and a voting rule decides who
the winner candidate is. Voting theory provides many rules
to aggregate preferences, each taking in input (a part of) the
preference orderings of the agents and giving in output the
”winner” object, that is, the object that is considered to be the
best according to the rule. In our context, it may take expo-
nential time just to provide a voting rule with what it needs
of the preference orderings of the agents. A valid alternative
is to use a voting rule several times, on each feature of the
object set (possibly using a different voting rule for each fea-
ture). That is, the voting rule asks the agents to provide their
preferences on each feature at a time, and at each step a win-
ner instance for a certain feature will be returned. At the end,
all the winner instances will constitute the winning object.

This approach is certainly more attractive computationally,
since usually the number of instances of each feature is small.
However, when features are interdependent, it is not clear if
the result of this sequential approach is useful at all. In this
paper we consider this issue, assuming agents express their
preferences via soft constraints.

As an example of the setting we consider, in a combina-
torial auction, the features are the various items to be sold,
and each bid consists of the agent’s preferences over single
items or combinations of them. In this context, a sequential
approach would consider one item at a time, and at each step
it would exploit the bids to allocate this item.

A similar approach has been considered for CP-nets in [7]
and partially investigated for soft constraints in [9]. With re-
spect to CP-nets, soft constraints allow one to avoid impos-
ing many restrictions on the agents’ preferences, since they
are not directional, and thus information can flow from one
variable of a constraint to another one without a predefined
ordering between them. This allows one to not tie the variable
ordering used by the sequential procedure to the topology of
the constraint graph of each agent. Moreover, soft constraints

can model also strict requirements, which are often necessary
in multi-issue settings where one needs to rule out some com-
binations of feature instances.

In this paper we study some desirable properties of the
considered voting rules, namely independence to irrelevant
alternatives (IIA), non-dictatorship, and strategy proofness.
We prove that IIA of the sequential procedure implies IIA
of all the voting rules used in for the features (also called
‘local rules’), while the opposite does not hold. The same
results hold for strategy proofness. On the other hand,
non-dictatoriality of the sequential procedure implies non-
dictatoriality of at least one local rule, and viceversa. We
also consider the computational complexity of deciding if a
coalition of agents can manipulate the result by forcing the
selection of a certain object (aka coalitional constructive ma-
nipulation): if it is easy to do this for all local rules, then
it is also easy for the sequential procedure, and if it is NP-
complete for at least one local rule, then it is so also for the
sequential procedure.

We also show experimentally that the sequential approach
is convenient in terms of computation time, while satisfying
the agents just as much as the non-sequential approach. Also,
the quality of the returned solution is not affected by the or-
dering of the features, nor by the presence of coalitions of
voters (i.e., voters who vote in the same way) in the profile.

2 Background
Soft Constraints. A soft constraint [8] involves a set of vari-
ables and associates a value from a (totally or partially or-
dered) set to each instantiation of its variables. Such a value is
taken from a c-semiring, which is defined by 〈A,+,×, 0, 1〉,
where A is the set of preference values, + induces an order-
ing over A (where a ≤S b iff a+b = b),× is used to combine
preference values, and 0 and 1 are respectively the worst and
best element. A Soft Constraint Satisfaction Problem (SCSP)
is a tuple 〈V,D,C,A〉 where V is a set of variables, D is the
domain of the variables and C is a set of soft constraints (each
one involving a subset of V) associating values from A.

An instance of the SCSP framework is obtained by choos-
ing a specific c-semiring. For instance, choosing SFCSP =
〈[0, 1], max,min, 0, 1〉 means that preference are in [0,1]
and we want to maximize the minimum preference. This is
the setting of fuzzy CSPs (FCSPs) [8], that we will use in the
examples of this paper. Consider the following figure, which
shows the constraint graph of an FCSP where V = {x, y, z},
D = {a, b} and C = {cx, cy, cz, cxy, cyz}. Each node mod-
els a variable and each arc models a binary constraint, while
unary constraints define variables’ domains. For example, cy
associates preference 0.4 to y = a and 0.7 to y = b. De-
fault constraints such as cx and cz will often be omitted in the
following examples.

x=a −> 1

x=b −> 1

(y=a,z=a) −> 0.9

(y=a,z=b) −> 0.2

(y=b,z=a) −> 0.2

(y=b,z=b) −> 0.5

(x=a,y=a) −> 0.9

(x=a,y=b) −> 0.8

(x=b,y=a) −> 0.7

(x=b,y=b) −> 0.6

 x

y=a −> 0.4 z=a −> 1

 y z

y=b −> 0.7 z=b −> 1

Solving an SCSP means finding the ordering induced by
the constraints over the set of all complete variable assign-
ments. In the case of FCSPs, such an ordering is a total order
with ties. In the example above, the induced ordering has
(x = a, y = b, z = b) and (x = b, y = b, z = b) at the
top with a preference of 0.5, (x = a, y = a, z = a) and
(x = b, y = a, z = a) just below with 0.4, and all oth-
ers tied at the bottom with preference 0.2. An optimal solu-
tion, say s, of an SCSP is then a complete assignment with
an undominated preference (thus (x = a, y = b, z = b) or
(x = b, y = b, z = b) in this example). Given a variable
x, we write s ↓ x to denote the value of x in s. Finding
an optimal solution is an NP-hard problem, unless certain re-
strictions are imposed, such as a tree-shaped constraint graph.

Constraint propagation may improve the search for an op-
timal solution. Given a variable ordering o, a FCSP is direc-
tional arc-consistent (DAC) if, for any two variables x and y
linked by a fuzzy constraint, such that x precedes y in the
ordering o, we have that, for each a in the domain of x,
fx(a) = maxb∈D(y)(min(fx(a), fxy(a, b), fy(b))), where
fx, fy , and fxy are the preference functions of cx, cy and
cxy . This definition can be generalized to any instance of the
SCSP approach by replacing max with + and min with ×.

DAC is enough to find the preference level of an optimal
solution when the problem has a tree-shape and the variable
ordering is compatible with the father-child relation of the
tree [8]. In fact, such an optimum preference level is the
best preference level in the domain of the root variable.
To find an optimal solution, it is then enough to perform
a backtrack-free search which instantiates variables in the
same order used for DAC (thus, from the root of the tree to
its leaves). In our running example, if we choose the variable
ordering 〈x, y, z〉, achieving DAC means first enforcing the
property over y and z and then over x and y. The first phase
modifies the preference of y = b to 0.5, while the second
phase sets the preferences of both x = a and x = b to 0.5.
We note that, by achieving DAC w.r.t ordering o, we obtain a
total order with ties over the values of the first variable in o,
where each value is associated to the preference of the best
solution having such a variable instantiated to such a value.
In our running example, achieving DAC brings both values
of x in a tie, with 0.5 that is the preference of an optimal
solution.

Voting Rules. A voting rule allows a set of voters to
choose one among a set of candidates. Voters need to submit
their vote, that is, their preference ordering over the set of
candidates (or part of it), and the voting rule aggregates
such votes to yield a final result, usually called the winner.
In the classical setting [1], given a set of candidates C,
a profile is a collection of total orderings over the set of
candidates, one for each voter. Given a profile, a voting rule
maps it onto a single winning candidate (if necessary, ties
are broken appropriately). In this paper, we will often use a
terminology which is more familiar to multi-agent settings:
we will sometimes call ”agents” the voters, ”solutions” the
candidates, and ”decision” or ”best solution” the winning
candidate. Some examples of widely used voting rules
are: Plurality, where each voter states who the preferred

candidate is, and the candidate who is preferred by the largest
number of voters wins; Borda, where, given m candidates,
each voter gives a ranking of all candidates, the ith ranked
candidate scores m − i, and the candidate with the greatest
sum of scores wins; Approval, where each voter approves
between 1 and m − 1 candidates on m total candidates, and
the candidate with most votes of approval wins; Copeland,
where the winner is the candidate that wins the most pairwise
competitions against all the other candidates.

Voting theory has considered many desirable properties of
voting rules. In this paper we will focus on independence
to irrelevant alternatives (IIA), non-dictatorship, and strategy
proofness. A voting rule is IIA [10] if, whenever a candidate
y loses to some winner x, and the relative ranking of x and
y does not change in the profile, then y cannot win (indepen-
dently of any possible change w.r.t. other irrelevant alterna-
tives). A voting rule is non-dictatorial if there is no voter
such that the winner is always a top-ranked alternative of this
voter (the dictator). A voting rule is strategy proof if it is not
manipulable, that is, no voter can get better off by lying on its
preference ordering. All the above rules are non-dictatorial
and manipulable in general, while only Approval is IIA.

Recently, the computational complexity of several kinds
of manipulation has been studied. For example, coalitional
constructive manipulation, denoted by CCM(d,C, r, p),
is the problem of deciding if coalition C can make d win
in profile p via rule r, and it has been shown to be in P
for Copeland with three candidates and Plurality [4], and
NP-complete for Copeland [5].

Sequential preference aggregation.
Assume to have a set of agents, each one expressing his

preferences over a common set of objects via an SCSP whose
variable assignments correspond to the objects. Since the ob-
jects are common to all agents, this means that all the SCSPs
have the same set of variables and the same variable domains
but they may have different constraints, as well as different
preferences over the variable domains. In [9] this is the notion
of soft profile, which is formally defined as a triple (V,D, P)
where V is a set of variables (also called issues), D is a se-
quence of |V | lexicographically ordered finite domains, and
P a sequence of m SCSPs over variables in V with domains
in D1. A fuzzy profile is a soft profile with fuzzy soft con-
straints. An example of a fuzzy profile where V = {x, y},
Dx = Dy = {a, b, c, d, e, f, g}), and P is a sequence of
seven FCSPs, is shown in Fig. 1.

The idea proposed in [9] is to sequentially vote on each
variable via a voting rule, possibly using a different one
for each variable. Given a soft profile (V,D, P), assume
|V | = n, and consider an ordering of such variables O =
〈v1, . . . , vn〉, and a corresponding sequence of voting rules
R = 〈r1, . . . , rn〉 (that will be called ”local”). The sequential
procedure is a sequence of n steps, where at each step i,

1. All agents are first asked for their preference ordering

1Notice that a soft profile consists of a collection of SCSPs over
the same set of variables, while a profile (as in the classical social
choice setting) is a collection of total orderings over a set of candi-
dates.

x

y

(x=a,y=a)−>1

(x=b,y=b)−>0.9

(x=a,y=b)−>0.7

(x=b,y=a)−>0.5

(x=a,y=b)−>1

(x=b,y=a)−>0.9

(x=d,y=d)−>1

P4
y

x

all other tuples−>0

(x=a,y=b)−>1

(x=c,y=c)−>1

(x=b,y=a)−>0.9

P3

x

y
all other tuples−>0

x

y

(x=a,y=b)−>1

(x=b,y=a)−>0.9

(x=e,y=e)−>1

P5

all other tuples−>0

x

y

(x=f,y=f)−>1

(x=a,y=b)−>0.9

(x=b,y=a)−>1

P6

all other tuples−>0 y

x

(x=g,y=g)−>1

(x=a,y=b)−>0.9

(x=b,y=a)−>1
all other tuples−>0

P7

P1,P2

all other tuples−>0

Figure 1: A fuzzy profile.

over the domain of variable vi, yielding profile pi over
such a domain. To do this, the agents will perform DAC
on their SCSP, considering the ordering O2.

2. Then, the voting rule ri is applied to profile pi, returning
a winning assignment for variable vi, say di. If there
are ties, the first one following the given lexicographical
order will be taken.

3. Finally, the constraint vi = di is added to the preferences
of each agent and DAC is applied to propagate its effect
considering the reverse order of O.

After all n steps have been executed, the winning assign-
ments are collected in the tuple 〈d1, . . . , dn〉, i.e., the winner
of the election. This is denoted by SeqO,R(V,D, P).

In the soft profile above, assume the variable ordering is
〈x, y〉 and ri = Approval for all i = 1, ..., n. In step 1, agents
apply DAC. This changes the preferences of the agents over
x. For example, in P1 and P2, x = a maintains preference 1,
x = b gets preferences 0.9, and all other domain values get
preference 0, while in P3, x = a and x = c maintain prefer-
ence 1, x = b gets preference 0.9, while all others get prefer-
ence 0. Then, Approval is applied over the domain of x where
the sets of approved values are: {a} for the first two voters
and respectively {c, a}, {d, a}, {e, a}, {f, b}, and {g, b} for
the others. Thus, x = a is chosen and the constraint x = a
added to all SCSPs, and its effect is propagated via DAC on
the domain of y. In step 2, DAC does not modify any pref-
erence (since y is the last variable) and the sets of approved
values for y are all equal and contain only b. Thus the elected
solution with the sequential procedure is s = (x = a, y = b),
which has preference 0.5 for P1 and P2, 1 for P3, P4, and P5,
and 0.9 for P6 and P7.

An alternative to this sequential procedure would be to gen-
erate the preference orderings for each voter from their FC-
SPs, and then to aggregate them in one step via Approval.
In our example, (x = a, y = a), (x = a, y = b), and
(x = b, y = a) each gets 2 votes, (x = f, y = f),
(x = d, y = d), (x = c, y = c), and (x = g, y = g) each gets
1 vote, while all other solutions get no vote. Thus the winner
(breaking ties lexicographically) is (x = a, y = a).

The variable ordering which is used in the sequential pro-
cedure, is assumed to be given in this paper3. In practice, the

2Ties are broken lexicographically if needed (for example, when
using Plurality and there are ties at the top level). Also, Approval is
given the sets of optimal solutions.

3In general, different variable orderings may lead to different re-

variable ordering is chosen by the chair of the preference ag-
gregation process, for example by using priority arguments
(one may vote first on the most important features), or by ag-
gregating the agents’s preferences on such orderings (if the
number of features is small, this voting process is feasible).

In [9] it is shown that if the sequential procedure is Con-
dorcet consistent, or anonymous, or neutral, or (strongly)
monotonic, or consistent, or efficient, or participative, then
all the local rules are so. On the other hand, the opposite
holds only for anonymity, (strongly) monotonicity, and con-
sistency. In the following sections we will presents results
about other important properties: IIA, non-dictatorship, and
strategy proofness.

3 Theoretical results
3.1 Independence to Irrelevant Alternatives
The sequential procedure may be not IIA, even starting from
IIA local rules.

Theorem 1 If all the local rules are IIA, the sequential pro-
cedure may be non-IIA.

Proof: Consider the fuzzy profile (V,D, P) in Fig. 1, with
the variable ordering 〈x, y〉 and where ri = Approval (which
is IIA) for each i. In such a scenario the elected solution is
s = (x = a, y = b).

Consider now a different profile, where the winner is s′ =
(x = b, y = a), which differs from the current profile only
on the relationship between assignments other than s′. The
new soft profile is (V,D, P ′) where P ′ is obtained from P
by swapping the preferences of (x = a, y = a) and (x =
b, y = b) in P1 and P2. If we run the sequential election on
P ′, the sets of approved values for x are: {b} for the first two
voters and as in P for the other voters. Thus, b is chosen for
variable x and, given this, the sets of approved values for y
are: {b} for the first two voters and {a} for the remaining five
voters. Thus the winning solution is s′ = (x = b, y = a).
Thus, despite the fact of using IIA local rules on all variables,
the sequential procedure is not IIA. �

On the other hand, if the sequential procedure is IIA, then
all local rules are IIA.

Theorem 2 If one of the local rules is not IIA, then the se-
quential procedure is not IIA as well.

Before proving this theorem, we introduce a notion, that
will be useful in this proof and in other proofs in this paper,
to lift at the sequential procedure level a property that belongs
to one of the voting rules used for a variable. In the context
of a set of variables V with domain D, and a set of m voters,
given a profile pi over a variable vi, we define a soft profile
over V , say Ext(pi) = (V,D, P), such that for any sequen-
tial procedure SeqO,R, where ri is the i-th component of R,
SeqO,R(Ext(pi)) ↓ vi = ri(pi), and, in each SCSP in P ,
the preference of any solution coincides with the preference
of its projection on vi. To achieve this, P consists of SCSPs

sults. However, some orderings will produce the same result. Intu-
itively, these are orderings that differ just for the relative position of
variables that are independent on each other, according to all agents
(we omit details for lack of space).

with only unary constraints: the constraint over vi respects
the ordering in pi, all other unary constraints are the same for
all voters and associate preference 1 to exactly one value per
variable and 0 to all other values. Also, all voting rules are
assumed to be unanimous. Intuitively, Ext(pi) extends the
orderings over variable vi given by pi to a soft profile over all
variables.
Proof: Assume a local rule, say ri, is not IIA. This means
that there is a profile over the values of variable vi, say pi, a
value for vi, say d 6= ri(pi), and another profile p′i on val-
ues of vi, such that d = ri(p

′
i) and the relationship between

ri(pi) and d is the same in pi and p′i. Let us now consider
the two soft profiles Ext(pi) = (V,D, P) and Ext(p′i) =
(V,D, P ′). By definition, we have SeqO,R(Ext(pi)) ↓ vi =
ri(pi) and SeqO,R(Ext(p′i)) ↓ vi = ri(p

′
i) = d and thus

SeqO,R(Ext(pi)) 6= SeqO,R(Ext(p′i)). Moreover, since the
preference for any assignment coincides with the preference
of its projection over variable vi, the relationship between
SeqO,R(Ext(pi)) and SeqO,R(Ext(p′i)) in each SCSP in P
is the same as the one in each corresponding SCSP in P ′.
Thus the sequential approach is not IIA. �

3.2 Non-dictatorship
It is sufficient for one of the local rules to be non-dictatorial
in order for the sequential approach to be non-dictatorial as
well, and viceversa.

Theorem 3 If a local rule is non-dictatorial, then the se-
quential procedure is non-dictatorial.

Proof: Assume rule ri is non-dictatorial. Thus, for each voter
j there exists a profile over variable vi, say pij , such that
ri(pij) is not a top element for j. Let us now consider the soft
profile Ext(pij). Since SeqO,R(Ext(pij)) ↓ vi = ri(pij), it
is not one of j’s top candidates. �

Theorem 4 If the sequential procedure is non-dictatorial,
then at least one of the local rules is non-dictatorial.

Proof: If the sequential procedure is non-dictatorial, then, for
each agent j, there exists a soft profile (V,D, Pj) such that
SeqO,R(V,D, Pj) is a not an optimal solution of the SCSP
of j. If SeqO,R(V,D, Pj) ↓ v1 is not a top element for j on
the profile p1 on values of v1 obtained applying DAC, then r1
is non-dictatorial. Otherwise, if SeqO,R(V,D, Pj) ↓ v1 is a
top element for j on the profile p1 on values of v1 obtained
applying DAC, then we repeat the reasoning for the next local
rule. Since SeqO,R(V,D, Pj) is not optimal for j, there must
exist a variable vk such that SeqO,R(V,D, Pj) ↓ vk is not a
top element for j on the profile p1 on values of vk obtained
applying DAC. Thus rk is non-dictatorial. �

3.3 Strategy proofness
The presence of a local rule that is manipulable jeopardizes
the strategy-proofness of the sequential approach. Moreover,
the strategy-proofness of all local rules is not sufficient for
ensuring the strategy-proofness of the sequential procedure.

Theorem 5 If one of the local rules is not strategy proof, the
sequential procedure is not strategy proof.

Proof: Assume a voting rule ri is not strategy proof. Thus,
there is an agent j and two profiles over variable vi, say pi and
p′i, that differ only because, in p′i, j misreports his preferences
which are ri(p

′
i) is preferred to ri(pi). Consider now the two

soft profiles Ext(pi) and Ext(p′i). Since SeqO,R(Ext(pi)) ↓
vi = ri(pi) and SeqO,R(Ext(p′i)) ↓ vi = ri(p

′
i), agent j

prefers SeqO,R(Ext(p′i)) to SeqO,R(Ext(pi)) and has thus
succeeded in manipulating the sequential procedure. �

Theorem 6 If all the local rules are strategy proof, the se-
quential procedure may be non-strategy proof.

Proof: Consider the fuzzy profile with V = {x, y},
D = {a, b}, and P = {P1, P2, P3}, as shown below.

x

y

(x=b,y=a) −>0.9

(x=a,y=a) −>1

(x=a,y=b) −>0.8

(x=b,y=b) −>0.7
y

xx

y

(x=a,y=b) −>0.8

(x=a,y=b) −>1

(x=a,y=a) −>0.9

(x=b,y=a) −>0.8

(x=b,y=b) −>0.7

(x=b,y=a) −>1

(x=b,y=b) −>0.9

(x=a,y=a) −>0.7

P3P2P1

Consider the sequential procedure where O = 〈x, y〉
and ri=Plurality for i = 1, 2 (Plurality over two candidates
is strategy proof). The sequential winner is (x = a, y = b).
However, if the first voter lies by swapping the preferences
of (x = a, y = a) and (x = b, y = a) in P1, then in the
first step x = b wins, and the final winner is (x = b, y = a),
which is better for him. Thus, the sequential procedure is not
strategy proof. �

Turning our attention to the complexity of manipulation,
if CCM (coalitional constructive manipulation) is easy for all
the local rules, it remains so for the sequential approach. Ac-
tually, when obtaining the desired manipulation is easy at the
local level, our result gives also a polynomial algorithm to set
the preferences of the coalition in order to manipulate at the
sequential level. Conversely, if CCM is difficult for at least
one of the local rules, then it is so for the sequential proce-
dure.

Theorem 7 If CCM is in P for all the local rules, then it is in
P also for the sequential procedure.

Proof: Consider a DAC soft profile (V,D, P) with n vari-
ables and m voters such that all the SCSPs, except those
of agents in the coalition, have been specified. The goal of
the coalition C is to make candidate d = (d1, d2, . . . , dn)
win. The sequential procedure SeqO,R used is such that
CCM(di, C, ri, P) is in P for every ri in R.

We consider the rules one at a time, following O. It is
possible to determine in polynomial time if d1 can win the
election on the domain of v1 and, if so, how the coalition
should vote on the domain values of v1 to achieve this. If d1
cannot win the local election, then candidate d cannot win the
sequential election. If instead d1 can win on v1, then we add
for each agent in the coalition a unary constraint on v1 to his
SCSP simulating the ordering that that agent in the coalition
must give in order to manipulate successfully. In order to so,
the best elements in the ordering are given preference 1 and
the following values are given any preference that respects
the ordering. Then, v1 = d1 is fixed in the SCSPs of all the
agents not in the coalition, the result is propagated, and DAC
is restored.

Next, in polynomial time the possibility of a constructive
manipulation for d2 given r2 is checked, and we proceed as
above, until all the variables have been considered. After (at
most) n polynomial steps, we will either have determined that
d cannot win, or we will have defined the SCSPs of the agents
in the coalition so that d does win. We notice that such SC-
SPs have only unary constraints and thus can be solved in
polynomial time. �

Theorem 8 If CCM is NP-complete for one of the local rules,
then it is so also for the sequential procedure.

Proof: We reduce polynomially an instance of CCM for a
voting rule r to an instance of CCM for the sequential proce-
dure where one of the local rules is r. An instance of CCM for
r consists of a candidate d, a coalition C, and a profile p, writ-
ten as CCM(d,C, r, p). From such an instance, we construct
an instance of CCM for the sequential procedure SeqO,R

where R is any finite sequence of voting rules (r1, . . . , rn)
including r, say in the i-th position, and O is any ordering of
variables v1, . . . , vn, all having the same domain, containing
all the candidates appearing in p. Also, the soft profile con-
sidered for such an instance is Ext(p), the coalition remains
C, and the candidate is E(d) = (d1, . . . , dn) where di = d
and dj for j 6= i has preference 1 in the SCSPs of Ext(p).
We will write it CCM(E(d), C, SeqO,R, Ext(p)).

If CCM(d,C, r, p) = true, then, in the sequential in-
stance, coalition C can set its preferences in profile Ext(p)
to make E(d) win. In fact, such agents can modify their pref-
erences over the domain of vi in the same way as needed to
make d win in the non-sequential instance. Conversely, if
CCM(E(d), C, SeqO,R, Ext(p)) = true, then we compute
the orderings over the domain of vi when v1 = d1, . . . vi−1 =
di−1 (via DAC). By using such orderings, the coalition can
make d win in the non-sequential instance. �

4 Experimental results
If r is a voting rule, we denote by seq(r) the sequential proce-
dure where r is applied at each step. We will compare r and
seq(r) for several voting rules r in terms of computational
cost, satisfaction of voters and sensitivity to coalitions.

To perform the experiments, we have randomly generated
profiles with tree-shaped FCSPs based on the following
parameters: the number of voters m, the number of variables
n, the number of domain elements d, and the tightness t
(the percentage of tuples with preference 0 in each fuzzy
constraint). Given values to such parameters, we generate a
profile with m tree-shaped FCSPs defined over n variables,
with d elements in the domain of each variable, and where
each fuzzy constraint involves two variables and has a
number of tuples with preference 0 which is t% of the
maximum number of tuples (that is, d2). For the other tuples,
we randomly generate preference values in (0, 1]. In each
set of tests, we fix all parameters except one, and let this
last parameter vary. When a parameter is fixed, we use the
following values: m = 25, n = 5, d = 6 and t = 20%. Also,
each result is the average over 50 fuzzy profiles with the
same parameters’ values. The experiments were conducted
on a machine with an Intel Core2 Solo 1.40GHz, with
3GB of RAM. We show detailed results only for Borda,

since all other rules we considered (Plurality, Approval, and
Copeland) have shown the same trends. We have also run
experiments that show that the variable ordering does not
influence the computation time nor the satisfaction of the
agents. However, such results are omitted due to lack of
space.

Computation time. As it can be seen in Fig. 2, the
sequential procedure substantially outperforms the non-
sequential rule in terms of the time needed to find the winner.
An increase in the values of all the parameters, except
tightness, causes a non-trivial growth in the computation
time of the non-sequential approach, while leaving the time
for the sequential approach practically unchanged.

(a) (b)

(c) (d)

Figure 2: Time for Borda.

Solution quality. We measure the error as the distance,
for each voter, of his preference for the winner from the
preference of his optimal solutions, averaged over all voters.
Quite surprisingly, for all rules, the agents are on average al-
most equally satisfied with the winner elected by the two ap-
proaches (see Figure 3). When the number of values in the
domains, or the number of variables, grows, the error grows
as well. The reason for this is that an increase in the number
of solutions makes it less likely for the winner to have a high
preference in each SCSP. The same trend can be observed
when the number of voters grows. In this case, however, the
higher error is due to an increased amount of disagreement
among the larger number of voters. This is supported also by
the fact that the preference decreases. When tightness grows,
instead, the error decreases. In fact, the less solutions with a
non-zero preference each FCSP has, the more likely it is that
the winner has a preference close to the optimal one for each
voter.

Coalitions. Since each agent’s SCSP is generated ran-
domly, the probability that two voters vote equally is very
small and thus there is a large amount of disagreement among
the agents. To check also instances with some amount of con-
sensus among agents, we considered several partitions of a
set of 30 voters into subsets, where all the voters in a subset
have exactly the same FCSP. The cardinality of the partitions
we have considered are 2, 3, 6, 15, and 30. Our experiments

(a) (b)

(c) (d)

Figure 3: Error for Borda.

(omitted for lack of space) show that the error decreases as
consensus increases. Thus the error shown in Fig. 3 is an up-
per bound w.r.t. to cases with coalitions. This holds for both
the sequential and the non-sequential approach. For example,
for the Borda rule, the error of the sequential approach ranges
from 0.14 with 2 subsets to 0.31 with 30 subsets and for the
non-sequential approach from 0.1 with 2 subsets to 0.3 with
30 subsets.

5 Future Work
We plan to consider the complexity of other kinds of manipu-
lation, the presence of feasibility constraints over the decision
set, and agents’ preferences expressed via a combination of
compact preference formalisms.

References
[1] K. J. Arrow and A. K. Sen amd K. Suzumura. Handbook of

Social Choice and Welfare. North-Holland, 2002.
[2] F. Bacchus and A.J. Grove. Graphical models for preference

and utility. In UAI, 1995.
[3] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and

D. Poole. CP-nets: A tool for representing and reasoning
with conditional ceteris paribus preference statements. JAIR,
21:135–191, 2004.

[4] V. Conitzer, T. Sandholm, and J. Lang. When are elections
with few candidates hard to manipulate. JACM, 54(3), 2007.

[5] P. Faliszewski, E. Hemaspaandra, and H. Schnoor. Copeland
voting: ties matter. In AAMAS (2), 2008.

[6] C. Gonzales, P. Perny, and S. Queiroz. Preference aggregation
with graphical utility models. In AAAI, 2008.

[7] J. Lang and L. Xia. Sequential composition of voting rules in
multi-issue domains. Mathematical social sciences, 57:304–
324, 2009.

[8] P. Meseguer, F. Rossi, and T. Schiex. Soft constraints. In
P. Van Beek F. Rossi and T. Walsh, editors, Handbook of Con-
straint Programming. Elsevier, 2005.

[9] G. Dalla Pozza, F. Rossi, and B. Venable. Multi-agent soft con-
straint aggregation:a sequential approach. In ICAART, 2011.

[10] A.D. Taylor. Social Choice and the Mathematics of Manipula-
tion. Cambridge University Press, 2005.

