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Abstract
Preferences are not always expressible via complete linear orders: sometimes it is more natural to allow for the presence
of incomparable outcomes. This may hold both in the agents’ preference ordering and in the social order. In this article,
we consider this scenario and study what properties it may have. In particular, we show that, despite the added expressivity
and ability to resolve conflicts provided by incomparability, classical impossibility results (such as Arrow’s theorem, Muller–
Satterthwaite’s theorem and Gibbard–Satterthwaite’s theorem) still hold. We also prove some possibility results, generalizing
Sen’s theorem for majority voting. To prove these results, we define new notions of unanimity, monotonicity, dictator, triple-
wise value-restriction and strategy-proofness, which are suitable and natural generalizations of the classical ones for complete
orders.
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1 Introduction

Many problems require the aggregation of preferences of different agents. For example, when
planning a wedding, we must combine the preferences of the bride, the groom and possibly some or
all of the in-laws. Incomparability is an useful mechanism to resolve conflict when aggregating such
preferences. If half of the agents prefer a to b and the other half prefer b to a, then it may be best
to say that a and b are incomparable. In addition, an agent’s preferences are not necessarily total.
As Kelly noticed in page 58 of [20], ‘completeness is not an innocuous assumption’since one could be
asked ‘[…] to judge between two alternatives so unlike one another he just can’t compare them’. For
example, while it is easy and reasonable to compare two apartments, it may be difficult to compare
an apartment and a house. We may simply wish to declare them incomparable. Moreover, an agent
may have several possibly conflicting preference criteria he wants to follow, and their combination
can naturally lead to an incomplete order. For example, one may want a cheap but large apartment,
so an 80 square metre apartment which costs 100,000 euros is incomparable to a 50 square metre
apartment which costs 60,000 euros. We study the situation here as both the preferences of an agent
and the result of preference aggregation can be an incomplete order (i.e. a reflexive and transitive
binary relation).

In this context, it is natural to ask if we can combine preferences satisfying some natural and
desirable properties. For example, it is certainly reasonable to oblige that if all agents expressing
their preferences agree that candidate A is better than candidate B, this should also be true in the
result of the preference aggregation. This property in commonly known as unanimity. Moreover,
it is also desirable that the order between two agents in the result of the preference aggregation
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should be independent of how other candidates are ranked. This is an intuitive description of what is
known in the literature as independence to irrelevant alternatives. Finally, any reasonable preference
aggregation rule should not allow for the existence of an agent that, regardless what other agents
vote, is able to dictate (more or less strictly) his own ordering in the result. The absence of a such an
agent has been denoted in the literature as non-dictatorship.

For complete orders, Arrow’s theorem shows that it is impossible for such properties to coexist
[1]. We show that this result can be generalized to incomplete orders under certain conditions. This is
both disappointing and a little surprising. By moving from complete orders to incomplete orders, we
enrich greatly our ability to combine outcomes. As in the example above, we can use incomparability
to resolve conflict and thereby not contradict agents. Nevertheless, under the conditions identified
here, we still do not escape the reach of Arrow’s theorem.

These results assume that one is interested in obtaining a (possibly incomplete) order over the
different outcomes as the result of preference aggregation. One may wonder if the situation is easier
when we are only interested in the most preferred outcomes in the aggregated preferences. However,
we show that even in this case (i.e. when considering social choice functions over incomplete orders)
the impossibility result continues to hold. This is a generalization of the Muller–Satterthwaite theorem
[25] for strict complete orders.

We also identify two cases of social welfare functions over strict incomplete orders, where it
is possible to satisfy at the same time independence to irrelevant alternatives, unanimity and non-
dictatorship. One of such cases corresponds to the generalization of Sen’s theorem for majority voting
over strict complete orders [34]. The second case concerns profiles with no chain of ordered pairs.
We then consider the notion of strategy-proofness, which denotes the non-manipulability of a social
choice function. The Gibbard–Satterthwaite result [17] tells us it is not possible that a social choice
function defined over strict complete orders, where every candidate can win, is at same time non-
manipulable and with no dictators. We prove that this result also holds when the social choice function
is defined over strict incomplete orders. To do this, we first generalize the notion of strategy-proofness
to partially ordered preferences.

This article is organized as follows. In Section 2, we give the basic notions as well as the
main results on social welfare and social choice functions. Section 3 then defines social
welfare functions on partially ordered profiles and introduces the considered properties, while
Sections 4 and 5 give our possibility and impossibility results with incomplete orders. Section 6
shows cases in which the majority rule can simultaneously satisfy all the properties. Then,
Section 7 defines social choice functions over strict incomplete orders and their properties,
and Section 8 proves the corresponding impossibility result. Section 9 defines the notion of
strategy-proofness for social choice functions over incomplete orders and shows that the Gibbard–
Satterthwaite result also holds in the case of strict incomplete orders. Finally, Section 10 describes
related work, and Section 11 summarizes the results of this article and gives directions for
future work.

All the proofs of the results in this article are contained in the Appendix. This article is an extended
and improved version of [28, 29].

2 Background

We consider the aggregation of the preferences of a set of n agents, N , over a set of outcomes �.
The preferences of each agent over the outcomes are modelled by a binary relation (i.e. a subset of
�×�). We use the symbol � to denote such a binary relation. Intuitively, when we write a�b we
mean that ‘a is at least as good as b’.
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2.1 Basic notions

An incomplete order (IO) is a binary relation which is reflexive and transitive. That is,

– ∀a∈ �, a�a;
– ∀a,b,c∈ �, with a �=b �=c, a�b and b�c implies a�c.

Given an IO �, we write:

– a �� b, read ‘a is incomparable with b’, iff a ��b and b ��a;
– a�b, read ‘a is preferred to b’, iff a�b and b ��a;
– a∼b, read ‘a is indifferent to b’, iff a�b and b�a.

Thus, a and b are incomparable when they are not ordered. They are instead indifferent when they
are ordered in both directions. Notice that indifference is different from equality. Notice also that,
while incomparability (��) is not transitive in general, indifference (∼) and strict preference (�) are
transitive.

A complete order (CO) is an IO where, ∀a,b∈ � with a �=b, a�b or b�a.
An IO (resp., CO) is strict (written SIO, resp., SCO) when ∀a,b∈ � with a �=b, we have a �∼b.
Given an outcome t ∈ �, t is said to be undominated iff ∀a∈ � with a �= t, a �� t (i.e. either t �a,

or t ∼a, or t �� a).
Both incomplete and complete orders can have more than one undominated outcome. Given an IO

or CO o, we write

• top(o)={t ∈ �|∀a∈ � with a �= t,a �� t} and
• bottom(o)={b∈ �|∀a∈ � with a �=b,b ��a}.
In the case of COs, all undominated outcomes are indifferent, while in IOs any two undominated

outcomes can be either indifferent or incomparable.
To summarize, in a CO, two elements can be either ordered or indifferent. On the other hand, in

an IO, two elements can be either ordered, indifferent or incomparable.
In this article, we will sometimes need to consider IOs with some restrictions. In particular,

a restricted IO (rIO) is an IO o where

• ∀t,t′ ∈ top(o), t ∼ t′, or
• ∀b,b′ ∈ bottom(o), b∼b′.

Thus, in a rIO, the top elements are all indifferent, or the bottom elements are all indifferent. Notice
that the ‘or’ is not an exclusive or, thus it is possible that both the top elements and the bottom
elements are all indifferent.

The intuition behind the notion of an rIO is to move from COs towards IOs by allowing
incomparability everywhere except in one extreme (top or bottom) of the ordering. In other words,
in an rIO there is a preference level which is highest (or lowest) than all others.

2.2 Social welfare functions

We will now give the main notions of social welfare [2, 19, 30], that will be useful in the rest of this
article.

Assume that each agent specifies his preferences via a CO over the possible outcomes. A profile
p over COs (resp., SCOs) is a sequence of n COs (resp., SCOs)p1,...,pn over outcomes, one for each
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agent i∈ N ={1,...,n}. Given an agent i, we denote the collection of COs of all the other agents by
p−i. We will denote the set of all profiles over COs with P∗.

A social welfare function f over COs is a function from P∗ to the set of COs over the outcomes.
Given a profile p over COs, we denote the CO of agent i in p by pi.

We denote with f ( p) the CO obtained by applying f to p. Moreover, given a,b∈ �, we will write
pi(a,b) (resp., f ( p)(a,b)) to indicate the restriction of ordering pi (resp., f ( p)) on the two outcomes
a and b.

There is a number of desirable properties for a social welfare function over COs. In particular,
given a social welfare function f over COs, we consider the following properties:

• Freeness: f is surjective, i.e. for every CO o, there is a profile p over COs such that f ( p)=o.
• Unanimity: for every profile p over COs, for all a,b∈ �, if a�pi b for all i∈ N , and also a�f ( p)

b. In words, if all agents agree that a is preferable to b, then the resulting order must agree
as well.

• Independence to irrelevant alternatives (IIA): for every pair of profiles p,p′ over COs, for
all a,b∈ �, if pi(a,b)=p′

i(a,b) for all i∈ N , and also f ( p)(a,b)= f ( p′)(a,b). In words, the
ordering between a and b in the result depends only on the relation between a and b given by the
agents.

• Monotonicity: for every pair of profiles p,p′ over COs, for all agents i∈ N , for all a,b∈ �, if
a�f ( p) b and, whenever a�pi b, and also a�p′

i
b, and also a�f ( p′) b. In words, if a is preferable

to b in the result, and we move to a profile where, if a was preferable to b, it continues to be
preferable to b, then a is still preferable to b in the new result.

• Absence of a dictator: a dictator is an agent i such that, in every profile p over COs, if a�pi b
then a�f ( p) b. If there is no dictator, f is said to be non-dictatorial.

One of the most influential results in social welfare theory states the impossibility of the coexistence
of IIA, unanimity and absence of a dictator for every social welfare function.

Theorem 1 (Arrow’s theorem [1])
Given a social welfare function f over COs, assume that there are at least two agents and three
outcomes. If f is unanimous and IIA, then f is dictatorial.

It is possible to prove that freeness, monotonicity and IIA imply unanimity (see Chapter 3
of [19]). On the other hand, there are social welfare functions which are free, unanimous and
IIA but not monotonic [34]. Thus, unanimity and IIA does not imply freeness and monotonicity.
Therefore, a weaker version of Arrow’s result on complete orders states that, with at least two voters
and three outcomes, it is not possible to have at the same time freeness, monotonicity, IIA and
non-dictatorship [19].

A very reasonable voting function which is often used in elections is the majority rule.
In this voting function, for each pair of outcomes, the order between them in the result is
what the majority says on this pair. This function, however, can produce an ordering which is
cyclic and thus it is not a social welfare function. A sufficient condition on profiles that avoids
generating cycles is the triple-wise value-restriction [34]: for every triple of outcomes x1, x2,
x3, there exists xi ∈ {x1,x2,x3} and r ∈ {1,2,3} such that no agent ranks xi as his r-th preference
among x1, x2, x3.

Given such a restriction, it has been shown that the majority rule is indeed a social welfare function
that satisfies unanimity, IIA and has no dictators.

Such a restriction is sufficient also to have the three above properties (IIA, unanimity and absence
of a dictator) to coexist for majority voting.



Aggregating Partially Ordered Preferences 5

Theorem 2 (Sen’s theorem [34])
The majority rule f over profiles (over SCOs) satisfying the triple-wise value-restriction is a
unanimous, IIA and non-dictatorial social welfare function.

2.3 Social choice functions

When we are aggregating the preferences of a number of agents, we might not need to order all
outcomes. It might be enough to know the ‘most preferred’ outcome.

A social choice function on SCOs [2, 17, 30] is a mapping from a profile over SCOs to an outcome,
also called the winner. Given a social choice function f and a profile p over SCOs, we denote the
winner with f ( p).

We now give some desirable properties that social choice functions should have [17, 30]. Let a,b
be two outcomes in �. A social choice function f over SCOs is:

• onto iff, for any outcome a, there is a profile p over SCOs such that f ( p)=a.
• unanimous iff, for every profile p over SCOs, a= top(pi) for every agent i implies f ( p)=a. In

words, a social choice function is unanimous if, when an outcome is the most preferred element
of all the agents’ orderings, then it is the winner.

• monotonic iff, for every pair of profiles p and p′ over SCOs, f ( p)=a, and for every other
outcome b and for every agent i, a�pi b implies a�p′

i
b, then f ( p′)=a. In words, a social choice

function over SCOs is monotonic if, whenever an agent moves up the position of the winner in
his ordering, then such an outcome continues to be the winner.

• non-dictatorial iff, there is no dictator. A dictator is an agent i such that, for every profile p over
SCOs, f ( p)= top(pi). In words, a dictator is an agent such that the winner is its most preferred
outcome.

• strategy-proof iff, for every agent i, for every pair of profiles p,p′ over SCOs, which are different
only for the ranking of agent i, (i.e. p′ = (p−i,p′

i)) f ( p) �= f ( p′) implies that f ( p)�pi f ( p′), i.e.
f ( p) is better than f ( p′) according to the ranking given by agent i in profile p.

Results similar to Arrow’s theorem have been proven in the context of social choice functions.

Theorem 3 (Muller–Satterthwaite’s theorem [25])
Given a social choice function f over SCOs, assume that there are at least two agents and three
outcomes. If f is unanimous and monotonic, then f is dictatorial.

Proposition 1 ([25])
Given a social choice function f over SCOs, if f is strategy-proof and onto, then f is unanimous and
monotonic.

Theorem 4 (Gibbard–Satterthwaite’s theorem [17, 33])
Given a social choice function f over SCOs, assume that there are at least two agents and three
outcomes. f f is onto and strategy-proof, then f is dictatorial.

2.4 Multi-valued social choice functions

The notions in Section 2.3 have been generalized to the more general context of multi-valued social
choice functions over totally ordered preferences, which return sets of winners instead of a single
winner. In particular, the notions of unanimity and ontoness given in this context, that we will now
present, correspond to the definitions that we will use in this artcle for partially ordered preferences.
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A multi-valued social choice function f over SCOs is:

• unanimous [32, 36] iff, for any outcome a and for any profile p over SCOs, {a}= top (pi) for
every pi, then f (p)={a}. In words, a multi-valued social choice function is unanimous when all
agents say that an outcome is the unique winner, then this is the overall winner.

• onto [31, 36] iff, for every outcome a, there is a profile p over SCOs such that f ( p)={a}. In
words, a multi-valued social choice function is onto if, for every outcome, there is a profile such
that this outcome is the unique winner.

In the case of multi-valued social choice functions over totally ordered preferences, many
definitions of strategy proofness have been given (e.g. [3, 10, 39]). We now give the definition
presented in [39], since this is the one we will generalize to the context of partially ordered preferences.
In [39] a multi-valued social choice function f over SCOs is strategy-proof-CZ iff for every agent
i, for every pair of profiles p and p′ over SCOs, which are different only for the ranking of agent i,
(i.e. p′ = (p−i,p′

i)),

• ∀a∈ f ( p) \ f ( p′), ∀b∈ f ( p′), a�pi b;
• ∀b∈ f ( p′) \ f ( p), ∀a∈ f ( p), a�pi b.

The suffix -CZ (which stands for ‘Ching and Zhou’) is used to avoid confusion with other notions
of strategy-proofness. Notice that strategy-proofness-CZ generalizes strategy-proofness for social
choice functions over SCOs that return single winners: when there is only one winner, the two
definitions coincide.

3 Social welfare functions over IOs

In this article, we consider profiles over IOs. This means that both the agents’ ordering and the social
ordering may have incomparable outcomes.

The definitions of profiles, social welfare functions, as well as the properties of freeness, unanimity
and IIAare the same as in Section 2, except that they apply to IOs instead of COs. What is significantly
different are the notions of monotonicity and dictator.

Monotonicity: for every pair of profiles p, p′ over IOs, for every agent i∈ N , for all a,b∈ �,
if a�f ( p) b and

• whenever a�pi b, then a�p′
i
b,

• whenever a∼pi b or a �� pi b, then a �≺p′
i
b,

then a�f ( p′) b. In words, if a is preferable to b in the result, and we move to a profile where a is not
worsened w.r.t. b, then a is still preferable to b in the new result.

When we may have incomparable candidates, different notions of a dictator can be considered. In
this article, we define the following three notions:

Strong dictator: an agent i such that, for every profile p over IOs, f ( p)=pi, i.e. his ordering is the
result.

Dictator: an agent i such that, for every profile p, if a�pi b then a�f ( p) b.

Weak dictator: an agent i such that, for every profile p, if a�pi b, then a�f ( p) b or a �� f ( p)b.

Notice that, for the notions of dictator and weak dictator, nothing is said about the relationship
between a and b in f ( p) if a is incomparable or indifferent to b in pi. Also notice that the definitions
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of dictator and weak dictator given above, when restricted to complete orders, coincide with the one
considered by Arrow [2].

Clearly, a strong dictator is a dictator, and a dictator is a weak dictator. Also note that, whilst there
can only be one strong dictator or dictator, there can be any number of weak dictators. For example,
the social welfare function which, given any profile, puts every outcome incomparable to every other
outcome in the result is such that, all agents are weak dictators. Instead, nobody is a strong dictator
or a dictator.

4 Dictators and strong dictators

Arrow’s impossibility theorem [1, 19] shows that, with at least two agents and three outcomes, a social
welfare function on complete orders cannot be at the same time unanimous, IIA and non-dictatorial.

We will now consider the counterpart to Arrow’s theorem for our context of partially ordered
preferences.

Proposition 2
A social welfare function over IOs with at least two agents and at least two outcomes, can at the same
time be IIA, unanimous and have no dictator and, thus, no strong dictator.

For example, the Pareto rule, according to which two outcomes are ordered if every agent agrees,
but are incomparable otherwise, is IIA, unanimous and has no dictators. In fact, no agent i stating a�pi

b can dictate a�Pareto(p) b: it is enough that another agent j states that a ��pj b to have a �� Pareto(p)b.
Note that a social welfare function which has no dictators has no strong dictators either. Actually,

requiring that an IIAand unanimous function has no strong dictator is a very weak property to demand.
Even voting rules which appear very ‘unfair’ may not have a strong dictator.

For example, suppose the agents are ordered in some fixed way and in the result two outcomes are
in the same relation as for the first agent (in the fixed ordering on the agents), who declares them as
not indifferent. This social welfare function (which we will call the lex rule) is IIA and unanimous,
and has a dictator (the first agent). However the first agent is not a strong dictator, since the result
may differ from his own ordering (only) on the pairs that he considers indifferent.

5 Generalizing Arrow’s theorem

We now show that, under certain conditions, it is impossible for a social welfare function over
incomplete orders to be IIA, unanimous and have no weak dictator. The conditions involve the shape
of the incomplete orders. In particular, we assume the incomplete orders of the agents to be general
(i.e. IOs), but the resulting incomplete order to be restricted (i.e. rIOs). We recall that a rIO has all
top or all bottom elements indifferent.

Theorem 5
Given a social welfare function f over IOs, assume that the result is a rIO, and there are at least two
agents and three outcomes. Then it is impossible that, f is unanimous, IIA and has no weak dictators.

Proof. In the Appendix. �
Consider, e.g. the Pareto rule defined in the previous section. This rule is unanimous and IIA.

Moreover, every agent is a weak dictator since no agent can ever be contradicted. If an agent i says
that a�pi b, then the result cannot be b�Pareto(p) a. Note that we could consider a social welfare
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function which modifies the Pareto rule by applying the rule only to a strict subset of the agents, and
ignoring the rest of the agents. Then the agents in the subset would all be weak dictators.

As with complete orders, we can also prove a weaker result in which we replace unanimity by
monotonicity and freeness.

Corollary 1
Given a social welfare function f over IOs, assume the result is a rIO and there are at least two agents
and three outcomes. Then, it is impossible that f is free, monotonic, IIA and has no weak dictators.

Proof. In the Appendix. �
A number of other results follow from the above theorem and corollary. If we denote the class of

all social welfare functions mapping profiles composed of orderings of type A to an ordering of type
B by An �B, then we have proved that, for functions in IOn �rIO, IIA and unanimity imply the
existence of a weak dictator. The first result concerns the restriction of the codomain of the social
welfare functions.

Theorem 6
If, for all functions in An �B, IIA and unanimity imply the existence of a weak dictator, then this is
true also for all functions in An �B′, where B′ is a subtype of B.

Proof. In the Appendix. �
This theorem implies, e.g. that functions in IOn �O, where O is any subtype of rIO that are IIA

and unanimous have at least a weak dictator. For example, this holds for functions in IOn �CO,
since CO is a subtype of rIO.

Now consider the restriction of the domain of the functions, i.e. let us pass from An �B to A′n �B
where A′ is a subtype of A.

We are interested in understanding whether IIA and unanimity imply the existence of a weak
dictator also when performing such a restriction.

Theorem 7
If, for all functions in An �B, IIA and unanimity imply the existence of a weak dictator, then this
is true also for all functions in A′n �B, where A′ is a subtype of A.

Proof. In the Appendix. �
Summarizing, we have proved the same impossibility results for all functions with the following

types:

• IOn �rIO (by Theorem 5);
• IOn �CO (by Theorems 5 and 6);
• COn �rIO (by Theorems 5 and 7);
• COn �CO, i.e. Arrow’s theorem (by the result for COn �rIO and Theorem 6);
• COn �SCO (by Arrow’s theorem and Theorem 6);
• SCOn �CO (by Arrow’s theorem and Theorem 7);
• SCOn �SCO (by the result for SCOn �CO and Theorem 6).

We can arrange these seven results in a lattice where the ordering is given by either domain or codomain
subset, as it can be seen in Figure 1. The lattice ordering can be defined as follows: A�B≤A′ �B′
iff A ⊆ A′ or B ⊆ B′.
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IOn        CO

COn        SCO

SCOn        SCO

COn        CO

COn        rIO 

SCOn        CO 

IOn        rIO

Figure 1. Lattice of impossibility results.

6 Generalizing Sen’s theorem

We now consider ways of assuring that a social welfare function is at the same time
IIA, unanimous and without a weak dictator. In fact, we will identify situations where the
well-known majority rule is transitive, which will allow us to conclude, since it has all the other
properties.

The majority rule, that we will denote with maj, maps profiles over SIOs into SIOs. Given a
profile p over SIOs, and two outcomes a,b∈ �, we have that a�maj(p) b iff the cardinality of the set
{i∈ N |a�pi b} is greater than the cardinality of the set {i∈ N |b�pi a or b �� pi a}. If a ��maj(p) b and
b ��maj(p) a, then a �� maj(p)b.

In words, a is preferred to b in the result iff the number of agents which say that a�b is greater
than the number of agents which say that b�a plus the number of those that say that a and b are
incomparable.

We focus on the condition that Sen has proved sufficient in the case of COs, namely triple-wise
value-restriction [34], as defined in Section 2. To apply Sen’s theorem to this context, we will
consider linearizations of our profiles.

Note that, as we have SIOs instead of SCOs, to assure transitivity in the resulting order, we
must avoid both cycles (as in the complete order case) and incomparability in the wrong places. More
precisely, if the result has a�b�c, we cannot have c�a, which would create a cycle, nor even a �� c,
since in both cases transitivity would not hold. We will say that a profile over SIOs p satisfies the
generalized triple-wise value-restriction (G-TVR) if all the profiles obtained from p by linearizing
any SIO to a SCO have the triple-wise value-restriction property.

Given a SIO, a linearization is a SCO represented by a binary relation which includes the relation
of the IO.

Theorem 8
The majority rule over profiles (over SIOs) satisfying the generalized triple-wise value-restriction is
an IIA and unanimous social welfare function with no weak dictators.

Proof. In the Appendix. �
We have therefore generalized Sen’s theorem This result is useful when the profiles have few

incomparable pairs and, within each profile, the agents have similar preference orderings.
On the other extreme, we will now give another possibility result which can be that applied

to profiles that order few outcomes. This result assures transitivity of the resulting ordering by
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a very simple approach: it just avoids the presence of chains in the result. i.e. for any triple
a1,a2,a3 of outcomes, it makes sure that the result cannot contain ai �aj �ak where i,j,k is
any permutation of {1,2,3}. This is done by restricting the classes of orderings allowed for the
agents.

A profile p over SIOs is non-chaining if one of the following occurs:

– for every triple of distinct outcomes, for every agent i∈ N ,
• the outcomes are all incomparable in pi, or
• only two of them are ordered in pi, or
• two of them are incomparable and the other one is more preferred than both of them in pi;

– for every triple of distinct outcomes, for every agent i∈ N ,
• the outcomes are all incomparable in pi;
• only two of them are ordered in pi, or
• two of them are incomparable and the other one is less preferred than both of them in pi.

Theorem 9
The majority rule over non-chaining profiles over SIOs s an IIAand unanimous social welfare function
with no weak dictators.

Proof. In the Appendix. �

7 Social choice functions over strict IOs

When we are aggregating preferences expressed using IOs, as in the case of COs, it might be enough
to know the ‘most preferred’ outcomes. For example, when aggregating the preferences of two
people who want to buy an apartment, we do not need to know whether they prefer an 80 square
metre apartment at the ground floor, a 50 square metre apartment at the second floor or if they both
prefer a 100 square metre apartment at the third floor. They would just buy the third floor apartment
without trying to order the other two apartments. Social choice functions identify such most preferred
outcomes, and do not care about the ordering on the other outcomes.

We consider here a generalization of social choice functions to SIOs. For such functions, we will
consider the definition of unanimity and ontoness as defined for multi-valued social choice functions
over SCOs (see Section 2.4). For monotonicity, we need to give a new definition, as follows. Let a,b
be two outcomes in � and A ⊆ �. We say that a social choice function f over SIOs is monotonic iff,
for every pair of profiles p and p′ over SIOs,

– a∈ f ( p) and for every other b, for every agent i,
• (a�pi b or a �� pi b) implies (a�p′

i
b or a �� p′

i
b),

then a∈ f ( p′);
– f ( p)=A and for every outcome a in A, for every other b, for every agent i,

• a�pi b implies a�p′
i
b, and

• a �� pi b implies a �� p′
i
b or a�p′

i
b,

then f ( p′)=A.

In words, a social choice function over partially ordered preferences is monotonic if, whenever
an agent does not worsen the position of a winner in his ordering, then, all else being equal, such
an outcome is not removed from the set of winners. Also, whenever an agent improves or leaves the
position of all the winners as equal in his ordering, then, all else being equal, the set of winners does
not change.
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It is easy to see that this definition generalizes the classical one for strict totally ordered preferences
described in Section 2. In fact, in this case (a�pi b or a �� pi b) simply corresponds to a�pi b, and
(a�p′

i
b or a �� p′

i
b), simply means that a�p′

i
b.

We also define three notions of dictators (as we did for social welfare functions):

• a strong dictator is an agent i such that, for every profile p over SIOs, f ( p)= top( pi). In words,
a strong dictator is an agent such that his most preferred outcomes are the winners.

• a dictator is an agent i such that, for every profile p over SIOs, f ( p) ⊆ top( pi). In words, a
dictator is an agent such that the winners are all among its most preferred outcomes.

• a weak dictator is an agent i such that, for every p over SIOs, f ( p)∩ top( pi) �=∅. In words, a
weak dictator is an agent such that some of his most preferred outcomes are winners in the result.
However, there could be winners which are not among his most preferred outcomes.

Notice that, in every profile p over SIOs, if a is the unique top of a weak dictator i, then a∈ f ( p).
However, this is not true if a is not the unique top of i.

Also notice that these three notions are consistent with the corresponding ones for social welfare
functions. More precisely, a dictator (resp., weak, strong) for a social welfare function f over SIOs
is also a dictator (resp. weak, strong) for the social choice function f ′ over SIOs obtained from f by
f ′(p)= top( f ( p)) for any profile p over SIOs.

8 Generalizing Muller-Satterthwaite’s theorem

We now show that it is possible for a social choice function over strict incomplete orders to be IIA,
unanimous and have no dictators.

Proposition 3
A social choice function over SIOs can be at the same time unanimous, monotonic and have no
dictators.

For example, the social choice function corresponding to the Pareto rule is unanimous, monotonic
and has no dictators. Another example is the social choice function that returns

⋃
i top(pi), which

again is unanimous, monotonic and has no dictators. However, in both these rules, all the agents are
weak dictators. On the other hand, the social choice function corresponding to the lex rule over SIOs,
in contrast to that over IOs, has a strong dictator (which is thus also a dictator), i.e. the most important
agent.

In the following theorem, we generalize the Muller–Satterthwaite’s theorem [25] to social choice
functions over SIOs for weak dictators.

Theorem 10
If we have at least two agents and at least three outcomes, and the social choice function over SIOs
is unanimous and monotonic, then there is at least one weak dictator.

Proof. In the Appendix. �
This means that, even if we are only interested in obtaining a set of winners, rather than a whole

preference ordering over all the outcomes, it is impossible for the desirable properties to coexist.

9 Generalizing Gibbard–Satterthwaite’s theorem

In this section, we consider another well-known concept in the context of social choice functions,
i.e. strategy-proofness. Intuitively, a social choice function is strategy-proof if it is best for each
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agent to order outcomes as they prefer and not try to vote tactically. We now propose a definition
of strategy–proofness in the case of SIOs. Given such a definition, we prove a generalization of the
Gibbard-Satterthwaite’s theorem.

A social choice function f on SIOs is strategy-proof iff, for every agent i∈ N , for every pair of
profiles p,p′ ∈ P over SIOs, where p′ = (p−i,p′

i) (i.e. p′ is like p except that we substitute p′
i for pi),

f ( p) �= f ( p′) implies that:

(1) ∀a∈ f ( p) \ f ( p′), ∀b∈ f ( p)∩ f ( p′), a�pi b or a �� pi b;
(2) ∀b∈ f ( p′) \ f ( p),

(a) ∀a∈ f ( p), a�pi b or a �� pi b, and
(b) ∃a∈ f ( p), a�pi b.

In words, we say that a function is strategy-proof if, passing from a profile p to a profile p′ = (p−i,p′
i),

a winner a in profile p is a winner also in profile p′ only if this holds for all the other winners of
p which are worse than a in pi. Also, a winner b in p′ which is not a winner in p must be worse than
or incomparable to all winners in p, and worse than at least one of them.

It can be shown that such a definition of strategy-proofness generalizes the one given in [17] for
strict complete orders and social choice functions returning a single winner, and the one given in
[39] for strict complete orders and multi-valued social choice functions (i.e. strategy-proof-CZ, see
Section 2.4). For example, the definition in [17] is just a specific case of item 2 of our definition.
Therefore, if a social choice function over SIOs is strategy-proof according to our definition, then
it is strategy-proof also over SCOs for the definitions in [17, 39]. Hence, if a social choice function
over SCOs is not strategy-proof for the definitions in [17, 39], then it is not strategy-proof even over
SIOs. The implication does not hold in the reverse direction. In fact, there could be a function which
is strategy-proof if we look only at profiles over SCOs, while it is manipulable if we also look at
profiles over SIOs. The reason is that, in the larger domain there could be ways for an agent to lie
and profit.

Theorem 11
The definition of strategy-proofness for social choice functions over SIOs generalizes strategy-
proofness-CZ.

Proof. In the Appendix. �
Notice that, this definition of strategy-proofness induces a relation over sets of outcomes that states

when a set is better or worse than another one. More precisely, the definition compares the set of
winners f ( p) and the set f ( p′), where p and p′ differ only for the preference ordering of agent i:
a function is strategy-proof when, for any two profiles p and p′, f ( p′) is ‘worse’ than f ( p) according
to the preference ordering of agent i. In fact, this means that this agent voted strategically in p′ but
got a worse result.

It is important to notice that this relation on sets of winners follows the dominance (or Gärdenfors)
principle [4], which states that a set of winners A is better than A∪{x}, if x is worse than all elements
in A, and that A is worse than A∪{x}, if x is better than all elements in A. In fact, if we take a set
of winners A and we compare it to the set A∪{x}, where x is worse than all elements in A, then A is
considered better than A∪{x}. Similarly, A is worse than A∪{x} if x is better than all elements in A.

To show that the above definition of strategy-proofness is reasonable, we now provide some
examples of situations which, according to this definition, are not considered manipulations. We
will assume that f is a social choice function over SIOs and p, p′ two profiles over SIOs such that
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p′ = (p−i,p′
i). In all the following items, if no relation is expressively given between two outcomes,

then they are incomparable.

• �={b,c}, b �� pi c, f ( p)={b,c} and f ( p′)={c}. i.e. we have two outcomes, judged incomparable
by pi, that are both winners in p. However, only c is the winner in p′. In this case, item 1 is satisfied,
since the only old winner which is eliminated, b, is incomparable to the one which is kept, c.
Item 2 is trivially satisfied since there are no new winners.

• �={a,b,c,d}, a�pi b, c�pi d, f ( p)={a,c} and f ( p′)={b,d}. Item 1 is trivially satisfied since
no old winners are kept. Item 2 is satisfied as well, since b≺pi a, b �� pi c, d ≺pi c, and d �� pi a.

• The outcomes and profiles are the same as before. i.e. �={a,b,c,d}, a�pi b, c�pi d. However,
now the set of winners are: f ( p)={a,b,c} and f ( p′)={c,d}. Item 1 is satisfied since the
eliminated winners, a and b, are both incomparable to the one which is kept, i.e. c. Moreover,
the new winner d is worse than c and incomparable to a and b (item 2).

• �={a,b,c,d}, a�pi b, a�pi c�pi d, f ( p)={a} and f ( p′)={b,c,d}. Here no old winner is kept.
Thus, item 1 trivially holds. All the new winners, i.e. b, c and d, are all worse than the only old
winner a. Thus, item 2 is satisfied.

• �={a,b,c,d}, a�pi b, f ( p)={a,b,c,d} and f ( p′)={b,c,d}. Here only item 1 applies and it is
satisfied since the only old winner which is eliminated, i.e. a, is better than b and incomparable
to c and d, which are kept.

• �={a,b,c,d,e}, a�pi b, c�pi d, f ( p)={a,b,c,d,e} and f ( p′)={c,d,e}. Again, only item 1
applies, and it is satisfied since both a and b are eliminated and they are incomparable to all the
other winners which are kept.

We now present some examples of situations which are instead considered as manipulations
according to our definition of strategy-proofness:

• �={b,c}, b �� pi c, f ( p)={c} and f ( p′)={b,c}. In this case, the new winner b is not worse than
any other old winner. Thus, item 2(b) is violated.

• �={a,b,c}, c�pi b�pi a, f ( p)={a,c} and f ( p′)={b}. In this example, the old winners are the
two extremes of an ordered chain in pi and the new winner is the outcome in the middle. This has
been recognized to be an ambiguous case also in [3]. For us it is a manipulation (by the violation
of item 2(a)), since the new winner b is better than the old winner a which has been eliminated.
It is also considered a manipulation by [39].

• �={a,b,c}, a�pi b, f ( p)={a} and f ( p′)={b,c}. In this case, the new winner c is not worse
than any old winner. Thus, item 2(b) is not satisfied.

• �={a,b,c,d,e}, a�pi b and c�pi d, f ( p)={a,b,c,d,e} and f ( p′)={a,c}. Old winners d and
b have been removed even if they are worse than c and a, respectively, which are kept. This
violates item 1.

• �={a,b,c,d}, a�pi b, c�pi d, f ( p)={a} and f ( p′)={b,c,d}. In this example there is a new
winner, c, which is not worse than any old winner. Item 2(b) is therefore violated.

We now use our definition of strategy-proofness to generalize the theorem of Gibbard–Satterthwaite
[17, 33] to SIOs. In particular, we show that, if a social choice function is strategy-proof and onto,
then there is at least a weak dictator. To do this, we first prove that, if a social choice function is
strategy-proof and onto, then it is unanimous and monotonic (thus, generalizing Proposition 1), and
then we conclude by using Theorem 10, which states that if a social choice function is unanimous
and monotonic, then there is a weak dictator.

Theorem 12
If a social choice function f over SIOs is strategy-proof and onto, then it is unanimous and monotonic.
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Proof. In the Appendix. �
Theorem 13
If there are at least two agents and at least three outcomes, and the social choice function over SIOs
is strategy-proof and onto, then there is at least one weak dictator.

Proof. In the Appendix. �
When we apply this theorem to a scenario with SCOs rather than SIOs, we get exactly the classical

theorem of Gibbard–Satterthwaite [17]. In fact, with SCOs, weak dictators coincide with dictators
and our definition of strategy-proofness coincides with the classical one.

10 Related work

Our results relax the domain and the codomain of social welfare and choice functions. In fact, for
both kinds of function, we consider profiles with possibly incomplete orders. Moreover, for social
welfare functions, the codomain is again an incomplete order, although restricted. On the other hand,
for social choice functions, we consider sets of winners rather than just one.

Since the original theorem by Arrow [1], many efforts have been made to weaken its conditions.
In fact, both the domain and the codomain of a social welfare function have been the subject of more
relaxed assumptions in several Arrow-like impossibility theorems. Here we review some of them and
we relate them to our work.

In [24], Mas-Colell and Sonnenschein define a weak dictator as an agent i such that, for
every pair of outcomes a,b if a�pi b, then b ��f ( p) a, i.e. a�f ( p) b or a∼f ( p) b, while, according
to our definition, it is an an agent i such that, for every pair of outcomes a,b if a�pi b, then
b ��f ( p) a, i.e. a�f ( p) b or a �� f ( p)b. Thus, in both definitions weak dictators cannot be contradicted
completely.

The Arrovian impossibility result in [24] relaxes transitivity in the codomain. In particular, the
domain of the functions is the set of profiles composed of complete orders, while the codomain is
the set of complete quasi-transitive binary relations. Quasi-transitivity is a weaker assumption than
transitivity. In contrast, we require transitivity both in the agents orderings and in the result. However,
we do not require completeness in either.

In [13], Fishburn permits the codomain to be an IO, and profiles to be strict weak orders, which
are negatively transitive and asymmetric. This structure is more general than complete orders but
less general than incomplete orders, since, e.g. it does not allow situations where a�pi b and c is
incomparable to both a and b. As we do, the author redefines the classical notions of freeness,
unanimity and IIA in terms of the orderings used. Moreover, the notions of dictator and vetoer which
are introduced correspond, respectively, to our notions of dictator and weak dictator.

In [6], Barthelemy considers social orders to be incomplete, and agents to vote using an incomplete
order. However, the set of profiles must be regular, meaning that, for any three alternatives, any
configuration of their orders must be present in a profile. Thus, we are more general in the profiles and
less general in the final ordering. It should be noticed that, in contrast to our setting, the restriction
imposed in [6] on the profiles is not compatible with total orders, and thus the classical Arrow’s
theorem cannot be obtained as a consequence.

In [38], Weymark considers agents who vote using complete orders, while we allow IOs. Moreover,
the social order can be an IO, while we consider restricted IOs. In [38], it is shown how the relaxation
on codomains considered leads to the existence of groups of voters which are characterized by
collective dictatorship properties. Such groups are called α-oligarchies and β-oligarchies depending
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on which property they satisfy. It is easy to see that a β-oligarch is a weak dictator according to our
definition, but not vice-versa.

A similar setting is considered by Dubois, Fargier and Perny in [9]. This work addresses multi-
criteria decision making, rather than aggregating preferences of different agents. This means that,
what is an agent in our context is instead a criteria, i.e. a different aspect of the decision problem
in [9]. The orderings on the single criteria are assumed to be complete. This is in contrast with
what we propose, since we allow agents to vote with incomplete orders. The resulting ordering is
instead a quasi-ordering (i.e. an IO) and is thus more general than an rIO. However, the result in this
article, which states the existence of an oligarchy, defined in a similar way as in [38], requires several
additional assumptions. For example, one assumption is the discrimination axiom, which requires
that each agent orders strictly at least one triple of candidates.

In [8], Doyle and Wellman model agents’ preferences using a non-monotonic logic, giving a
quasi-ordering (i.e. an IO) on the outcomes. An additional hypothesis is required, called conflict
resolution, which states that if a pair is ordered by any agent, then it must be ordered also in the social
order. Conflict resolution is a very strong property to require. For example, the Pareto rule does not
respect it.

With respect to all these approaches, our profiles are more general, since in our results a profile can
be any set of incomplete orders. However, the resulting order of a social welfare function is required
to be a restricted incomplete order, i.e. an incomplete order with all indifferent top elements, or all
indifferent bottom elements. Thus, our result is incomparable to these previous results. In addition,
our possibility theorems for the majority rule is, to our knowledge, the first result of this kind for
partially ordered profiles in social welfare functions. This applies also to the extension of the Muller–
Satterthwaite theorem. However, weak dictators have been defined before for social choice functions
by Kelly in [20]. In particular, in [20] a weak dictator is defined as an agent i such that, if a�pi b,
b∈ f ( p) implies a∈ f ( p). It is easy to see that a weak dictator according to [20] is also a weak dictator
according to our definition, since the condition above implies that top(pi)∩ f ( p) �=∅. However, the
converse is not true in general. In fact, assuming �={a,b,c}, and given a profile p where a�pi b�pi c
and f ( p)={a,c}, i is a weak dictator according to our definition but not according to [20].

Much work has been done on strategy-proofness for multi-valued social choice functions (see, e.g.
[32], that cites work by Gärdenfors [15], Feldman [12], Duggan and Schwartz [10], Barberà et al.
[5], Benoït [7], Zhou and Ching [39]). However, there is no agreement on what is the best definition
of strategy-proofness for such functions. For example, Gärdenfors [15] studies different definitions
of manipulation given by Pattanaik [26, 27], Gärdenfors [14], Kelly [18], and Feldman [11]. Our
definition generalizes the one in [39], which is stronger than the one of [10]. Our theorem is not a
generalization of the Duggan–Schwartz theorem [10]. However, it is also not an instance of it, since
in [10] a property called residual resoluteness is needed, while we do not assume it for our results.

In addition, efforts have been made to weaken the conditions on the profiles. In particular,
both the Gibbard–Satterthwaite and the Duggan–Schwartz theorems have been shown to hold also
when indifference is allowed in the profiles [35–37]. We show that the Gibbard-Satterthwaite result
continues to hold when we allow simultaneous incomparability (but not indifference) in the profiles
and multiple winners.

11 Conclusions

We have proved that social welfare functions on incomplete orders cannot be at the same time
unanimous, IIA and with no weak dictator if the result is an incomplete order with indifference
between all top or all bottom elements. This result generalizes Arrow’s impossibility theorem
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for combining complete orders. We have then extended Muller–Satterthwaite’s theorem for social
choice functions by proving that social choice functions over incomplete orders cannot be at the
same time unanimous, monotonic and without weak dictators. These results show that the use of
incomplete orders, both for each agent and in the result of the preference aggregation, does not
change many of the fundamental impossibility properties connected to social welfare and social
choice functions.

On the possibility side, we have proved that the majority rule can be an IIA and unanimous social
welfare function with no weak dictators if we put some restrictions on the shape of the orderings of
the agents. In particular, this happens when all the linearizations of the incomplete orders of the agents
have the triple-wise value-restriction, and also when they do not contain any chain of ordered pairs.

We have also generalized the notion of strategy-proofness to the context of social choice functions
over partially ordered preferences, by extending naturally the one in [39], and we have shown that the
well-known Gibbard–Satterthwaite result, which states that strategy–proofness and ontoness imply
dictators, holds also in this more general context.

12 Future work

In this article, incompleteness in the preference ordering is interpreted as incomparability. However,
it is sometimes useful to interpret it as lack of knowledge, e.g. in contexts where the agents do not
want to reveal all their preferences, or when we are eliciting preferences and agents do not reveal their
preferences all at once. Moreover, the two interpretations of incompleteness in the preference ordering
can be combined, since agents may want to express that some objects are really incomparable, while
they may want to hide the actual relationship among other objects. In this more general context,
the notion of winners can be generalized to the notions of possible and necessary winners [21–
23]. We plan to study possibility and impossibility results on the coexistence of IIA, unanimity and
non-dictatorship, as well as non-manipulability, also in this more general scenario.

We have proved impossibility results for aggregating partially ordered preferences. It is likely
that there are ways around these negative results. We plan, e.g. to investigate certain social choice
functions on partial orders which may be computationally hard to manipulate. As another example,
we intend to find certain restrictions on the way agents vote (such as single-peakedness) which may
guarantee strategy-proofness.
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Appendix
Proofs of main results

Theorem 5
Given a social welfare function f over IOs, assume that the result is a rIO, and there are at least two
agents and three outcomes. Then, it is impossible that f is unanimous, IIA and has no weak dictators.

Proof. The structure of the proof is similar to the one ofArrow’s theorem presented in [16]. However,
each step is adapted to the context of incomplete orders. As usual, we denote with N the set of n
voting agents, with � the set of outcomes and with P the set of profiles. We assume the resulting
ordering is a rIO over � with all bottom elements indifferent. The proof can then be repeated very
similarly for the other case in which the resulting ordering is assumed to be a rIO with all top elements
indifferent.

(1) First we prove that, given a profile p∈ P and an outcome b∈ � such that, ∀i∈ N , {b}= top(pi)
or {b}=bottom(pi), then b∈ top( f ( p)) or b∈ bottom( f ( p)). Moreover, if b∈ top( f ( p)) (resp.,
b∈ bottom( f ( p))), then, for every a∈ top( f ( p)) (resp., a∈ bottom( f ( p))), it must be b �� a.

In words, if b is the unique top element or the unique bottom element for all agents, then b must
be a top or bottom element in the resulting order f ( p). Moreover, only elements incomparable
with b can be at the top (or at the bottom) of f ( p) together with b.
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We will prove it by contradiction.
Assume that b �∈ top( f ( p))∪bottom( f ( p)), i.e. b is not a top or bottom element in the result, or
b∈ top( f ( p)) or b∈ bottom( f ( p)) together with some indifferent elements. Then, there must
be two other distinct elements a,c∈ � such that a�f ( p) b�f ( p) c.

Let us consider a profile p′ obtained from p by setting, ∀i∈ N , p′
i(a,c) equal to c�p′

i
a, and

leaving b in its position. This is always possible since b is either a top or a bottom element.
Thus, ∀i∈ N , pi(a,b)=p′

i(a,b) and pi(c,b)=p′
i(c,b), i.e. the ordering relation between a and b

and between c and b in p′ is the same as in p for all agents.

By unanimity, we must have c�f ( p′) a. By IIA, we have a�f ( p′) b and b�f ( p′) c, as we had in
p. By transitivity, we have a�f ( p′) c, which is a contradiction with c�f ( p′) a.

Notice that, since f ( p) is an rIO, if b∈ bottom( f ( p)), then it must be b=boottom( f ( p)).
(2) We now prove that there is a pivotal agent n∗ such that, when he moves b from its bottom to its

top, then b becomes one of the top elements in the result.

Let us start by considering a profile π such that ∀i∈ N , {b}=bottom(πi), i.e. such that all
agents have b as the unique bottom. Then, {b}=bottom( f (π )) by unanimity. We now consider
a scenario in which each agent in turn changes from having b as its unique bottom to having
b as its unique top. If we denote with π ′ a profile obtained after any number of such changes,
by the first item in this proof, it must be that b=bottom( f (π ′)) or b∈ top( f (π ′)) with possibly
some elements incomparable with it.

Let n∗ be the first agent such that, when n∗ changes b from being its unique bottom to being its
unique top, b moves from being the bottom element of the result to the set of top elements, all
incomparable with b, of the result. Note that n∗ must exist, because when all agents have made
b their unique top element, by unanimity b must be the unique top element in the result.

(3) We continue by proving that n∗ is a weak dictator for pairs of elements not involving b. For an
agent i to be a weak dictator on a pair, say (a,c), it means that, in all profiles p, if a�pi c, then
a�f ( p) c or a �� f ( p)c.

Let us consider the following profiles obtained from profile π defined in the previous item of
the proof, in the context of moving b from the bottom to the top of each agent’s incomplete
order.

π1: ∀i<n∗, {b}= top(π1i ) and ∀j≥n∗, {b}=bottom(π1j ). By the definition of n∗ and the fact
that f (π1) is an rIO (and thus all the bottom elements are indifferent), b=bottom( f (π1)).
Thus, ∀d ∈ �, d �f (π1) b.

π2: ∀i≤n∗, {b}= top(π2i ) and ∀j>n∗, {b}=bottom(π2j ). By the definition of n∗, b∈
top( f (π2)), and thus, ∀d ∈ �, b�f (π2) d or b �� f (π2)d.

π3: As π2, except for a�π3n∗ b and for all i �=n∗, π3i (a,c) can be any relation. In words, in π3,
n∗ has now moved a above b (and thus, also above c), and all other agents move freely a
and c leaving b in the top or bottom position.

By IIA, since passing from π1 to π3 the relation between a and b has not been changed, and
since a�f (π1) b, then a�f (π3) b. Also, b�f (π3) c or b �� f (π3)c, since, ∀i, π3i (b,c)=π2i (b,c) and
(b�f (π2) d or b �� f (π2)d) for all d ∈ � and thus, in particular, for c. By transitivity, it cannot be
c�f (π3) a or c∼f (π3) a, since it would imply c�f (π3) b which is contradictory with the assumption
that b�f (π3) c or b �� f (π3)c. Thus, n∗ is a weak dictator for pairs not involving b.

(4) We now prove that there exists an agent n′ which is a weak dictator for pairs not involving
outcome c, where c is any outcome different from b. To do this, it is enough to use the same
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construction as above but with c in place of b. Thus n′ is the first agent, in the ordering of the
agents used in step 2, that, by moving c from the unique bottom to the unique top, makes c
move from the bottom to the top of the result.

(5) We now show that n∗ =n′. We will consider two cases: either n′ <n∗ or n′ >n∗. Assume n′ <n∗.
Then consider again profile π1. In this profile, n′ has b at its unique top. Thus, b�n′ a for every
a. If n′ is a weak dictator for pairs not involving c, then it must be b�f (π1) a or b �� f (π1)a,
which is in contradiction with the fact that b is the unique bottom of f (π1).

Assume now n′ >n∗. Let us consider profile q, where ∀i∈ N , {b}=bottom(qi) and {c}= top(qi).
i.e. we start with all agents having b at the bottom and c at the top. Then we swap b and c in
each ordering, going through the agents in the same order as in the previous constructions.

Now consider profile q′, in which ∀i≤n∗, {b}= top(q′
i) and {c}=bottom(q′

i), and ∀j>n∗, {b}=
bottom(q′

j) and {c}= top(qj). By the previous part of the proof, we have that b∈ top( f (q′)),
since {b}= top(q′

n∗ ). Moreover, since c is the top or the bottom element of all agents’ ordering
in q′, by item 1 of the proof we have that c∈ top( f (q′)) or c∈ bottom( f (q′)).
If c∈ bottom( f (q′)), then we can repeat the same construction as in points 1,2,3 starting with
c at the top instead of b at the bottom, and by moving c from being the unique top to being the
unique bottom of the agents. Then n∗ makes c move from top to bottom in the result when it
moves c from unique top to unique bottom in its ordering. Thus, by step 3, n∗ is a weak dictator
for pairs not involving c. This contradicts the hypothesis that n′ is the first weak dictator for
pairs not involving c in the ordering of the agents. Thus, we can conclude that n∗ =n′.
Otherwise, c∈ top( f (q′)). Thus, we have both b and c in top( f (q′)). Let us now take any
other candidate a. It must be a �� f (q′)b because n′ dictates over pairs not involving c, and also
a �� f (q′)c because n∗ dictates over pairs not involving b. Let us now assume that, given any
two candidates a and a′ different from both b and c, n∗ and n′ contradict each other (i.e. one
says a>a′ and the other one says a′ >a). Since both n∗ and n′ dictate on such pairs, in the
result f (q′) we must have a �� a′. As of the relationship between b and c in f (q′), we can only
have b �� c or b∼c. Whatever it is, f (q′) is not an rIO. Thus, we reach a contradiction with the
hypothesis.

(6) Since we have shown that n∗ =n′, n∗ is a weak dictator over all pairs except the pair (b,c). We
will now show that this agent also dictates on the pair (b,c). To do this, we repeat steps 1, 2, 3 of
the proof with a at the top or bottom, finding an agent n′′ which dictates on pairs not involving
a. Then, by step 5 we prove that n∗ =n′′. Thus, n∗ dictates on all pairs.

�
Corollary 1
Given a social welfare function f over IOs, assume the result is a rIO and there are at least two agents
and three outcomes. Then, it is impossible that f is free, monotonic, IIA and has no weak dictators.

Proof. Suppose f is free, monotonic, and IIA. We will prove that it is also unanimous. Consider
a profile p such that a�pi b for every i∈ N . Now consider profile p′ obtained from p by setting
{a}= top(p′

i) ∀i∈ N . By IIA, we have f ( p)(a,b)= f ( p′)(a,b). Suppose that a≺f ( p′) b or a �� f ( p′)b.
Since a�p′

i
b for every agent i∈ N , by monotonicity, there is no profile p′′ such that a�f ( p′′) b. This

is in contradiction with the assumption that f is free. Thus, it must be a�f ( p′) b. Thus we also have
a�f ( p) b, since f ( p)(a,b)= f ( p′)(a,b). Thus, f is unanimous.
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We can now apply Theorem 5, which tells us that it is impossible to have at the same time unanimity,
IIA and no weak dictators. Thus, we can conclude that it is impossible to have freeness, monotonicity,
IIA and no weak dictators. �
Theorem 6
If, for all functions in An �B, IIA and unanimity imply the existence of a weak dictator, then this is
true also for all functions in An �B′, where B′ is a subtype of B.

Proof. It follows trivially, since by restricting the co-domain we are just considering a subset of the
social welfare functions. �
Theorem 7
If, for all functions in An �B, IIA and unanimity imply the existence of a weak dictator, then this is
true also for all functions in A′n �B, where A′ is a subtype of A.

Proof. Let us assume that for all functions in An �B IIA and unanimity implies the existence of a
weak dictator. This means that if a function in An �B is IIA and unanimous then there is an agent
i such that, in any profile p∈ An, if a�pi b, then either a�f ( p) b or a �� f ( p)b. Since A′ is a subtype
of A we have that A′n ⊂ An, and thus i is a weak dictator also for all profiles in A′n. We conclude by
noticing that all functions in A′n �B are restrictions of functions in An �B. �
Theorem 8
The majority rule over profiles (over SIOs) satisfying the generalized triple-wise value-restriction is
an IIA and unanimous social welfare function with no weak dictators.

Proof. Given a profile p over SIOs, we say that profile p′ is a linearization of p if, ∀i∈ N , p′
i is a

SCO that linearizes the IO pi. If p satisfies the generalized triple-wise value-restriction then any of
its linearizations, say p′, satisfies it as well. Thus the majority rule applied to p′ produces an ordering
without cycles, by Sen’s theorem. Since p′ is a linearization of p, p has a smaller or equal set of
ordered pairs w.r.t. p′. Therefore, if the majority rule has not produced any cycle starting from p′,
it cannot produce any cycle if it starts from p. In fact, the majority rule counts the number of agents
that order a pair, so if the profile has less-ordered pairs, a smaller or equal number of pairs are ordered
in the result as well.

Assume now to have a�maj(p) b�maj(p) c and a �� maj(p)c in the result. We will now show that, if this
is the case, then there is a linearization which does not satisfy the triple-wise value-restriction property.

In fact, since a�maj(p) b in the result, we know that the cardinality of the set {i∈ N |a�pi b} is
greater than the cardinality of the set {i∈ N |b�pi a or b �� pi a}. Similarly, the cardinality of the
set {i∈ N |b�pi c} is greater than the cardinality of the set {i∈ N |c�pi b or c �� pi b}. Since we are
assuming that a �� maj(p)c, then the cardinality of the set {i∈ N |a�pi c} is smaller than or equal to the
cardinality of the set {i∈ N |c�pi a or c �� pi a}. We know that a majority of agents says that a�pi b.
Let us now assume that no agent says that a is incomparable to b and that no agent says that b is
incomparable to c. Let us consider the agents that say a�pi b. Then each such agent, i, must have one
of the following orderings: (1) a�pi b�pi c; (2) a�pi b∧c�pi b; (3) a�pi c�pi b; (4) c�pi a�pi b.
We want to prove that there is at least one agent that says (1) and there is at least one agent that says
either (2) or (4). In fact, it is not possible that all the agents which have said a�pi b have all ordering
(1) or (3), since it would mean that there is also a majority which says a�pi c, while a �� maj(p)c
by hypothesis. Moreover, it is not possible that all the agents which say a�pi b vote as (2) or (3) or
(4) but none using (1), since this would imply that c�p(i) b. Thus, we can conclude that at least one
agent must vote as in (1) and at least one agent must vote either as in (2) or as in (4).
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Now let us consider the agents in the majority that vote b�pi c. Each of them can have one of
the following orderings: (i) a�pi b�pi c; (ii) b�pi c∧b�pi a; (iii) b�pi c�pi a; (iv) b�pi a�pi c. As
before, they all cannot vote (i), otherwise using the majority rule we would have a�maj(p) c, and not
a �� maj(p)c as assumed. However, at least one must vote (i), since (ii), (iii) and (iv) order b above
a, while we know there is a majority saying a�pi b. Moreover, it is also not possible that all voters
that say b�pi c vote as in (i) or as in (iv), since again that would imply a�maj(p) c. Thus, there is at
least an agent that votes as in (ii) or as in (iii).

To summarize, we have an agent, say i, that says (1) (or (i)), i.e. a�pi b�pi c and we have
an agent, say j, that says either (2) or (4). Notice that, if j votes as in (2), we can linearize (2)
into (4) by adding c�pj a. Thus, for agent j we have c�pj a�pj b. Finally, we have an agent k
that votes either (ii) or (iii). Again, (ii) can be linearized into (iii) by adding c�pk a. Thus, for
agent k we have b�pk c�pk a. This is a linearization which violates the triple-wise value-restriction
property.

Notice that, if we allow the agents to express incomparability between a and b, or between b and
c, this means that agents that voted (3) or (4) now could vote (2) and that agents that voted (iii) or (iv)
now could vote (ii) or give even more incomparability. However, this does not prevent the possibility
to linearize the orderings as above. �
Theorem 9
The majority rule over non-chaining profiles over SIOs is an IIA and unanimous social welfare
function with no weak dictators.

Proof. We just need to show that the majority rule is transitive since it has all other properties of
fairness. In this proof, we denote with SaRb the set {i∈ N |aRpi b} where R∈ {≺,�,��}. Moreover, we
say that a profile p over SIOs is of type α if, for any triple of distinct outcomes, ∀i∈ N , they are all
incomparable in pi, or only two of them are ordered in pi, or two of them are incomparable and the
other one is more preferred than both in pi.

Similarly, we say that p is of type β if for any triple of distinct outcomes, ∀i∈ N , they are all
incomparable in pi, or only two of them are ordered in pi, or two of them are incomparable and the
other one is less preferred than both in pi. Let us first consider the case in which the profile is of
type α. We will prove that for every triple of outcomes a, b, and c it cannot be a�maj(p) b�maj(p) c,
i.e. there are no transitive chains in the ordering. Let us assume that a�maj(p) b�maj(p) c. Since
a�maj(p) b then:

(1) |Sa�b|> |Sb�a|+|Sa��b|
Also, from b�maj(p) c we have that:

(2) |Sb�c|> |Sc�b|+|Sb��c|
Since p is of type α, we have that:

(3) |Sa�b|≤|Sb��c|
(4) |Sb�c|≤|Sb�a|+|Sb��a|

The reason for inequality (3) is who all the voters who say a�pi b cannot order b and c. The reason for
inequality (4) is that all the voters who put b above c must put a either below b or incomparable to b.

From the above inequalities, we get the following inconsistency:

|Sa�b|
(3)≤ |Sb��c| (2)

< |Sb�c|
(4)≤ |Sb�a|+|Sb��a| (1)

< |Sa�b|.
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Figure 2. Profiles π1 and π2.

Let us now consider the case in which profile p over SIOs is of type β, i.e. for any agent i and any
triple of distinct outcomes, they are all incomparable or only two of them are ordered, or there is one
of them, which is less preferred than the other two.

In situation β, (1) and (2) still hold while we have, from the fact that p is of type β:

(3) |Sb�c|≤|Sa��b|
(4) |Sa�b|≤|Sc�b|+|Sc��b|.

The reason for inequality (3) is that all the voters who say b�pi c cannot order a and b. The reason for
inequality (4) is that all the voters who put a above b must either put b below c or incomparable to c.

From the above inequalities, we get the following inconsistency:

|Sb�c|
(3)≤ |Sa��b| (1)

< |Sa�b|
(4)≤ |Sc�b|+|Sc��b| (2)

< |Sb�c|.

�
Theorem 10
If we have at least two agents and at least three outcomes, and the social choice function over SIOs
is unanimous and monotonic, then there is at least one weak dictator.

Proof. The proof follows the scheme of the proof of the Muller–Satterthwaite theorem that can be
found in [30].

Consider three outcomes a, b and c, and a profile π0 s.t. ∀π0i we have that a �� π0i
c, top(π0i )={a,c}, for every outcome d different from a and c, a�π0i

d and c�π0i
d, bottom(π0i )={b}, and

for every outcome d different from b, d �π0i
b. We want first to show that f (π0)={a,c}. To

do that, we consider the profile π ′
0 (resp., π ′′

0 ) obtained from π0 bringing a (resp., c) at the
unique top of every agent. By unanimity, f (π ′

0)={a} (resp., f (π ′′
0 )={c}). By monotonicity from

π ′
0 (resp., π ′′

0 ) to π0, we have that a∈ f (π0) (resp., c∈ f (π0)). Thus, {a,c} ⊆ f (π0). Moreover,
for every other outcome d, which is different from a and c, we have that d �∈ f (π0). In fact, if
d ∈ f (π0), then, by monotonicity from π0 to π ′

0, we have d ∈ f (π ′
0), that is a contradiction, since

f (π ′
0)={a}.

Let us now rise b one position at a time in agent 1’s ordering. By monotonicity, the set of winners
remains {a,c} as long as b remains below a and below c. In fact, no other outcome d ∈ � \ {a,c,b}
can become a winner since, by monotonicity, it would have been a winner in π0, where b is below
it. When b is rised above a and c, by monotonicity the set of winners may contain b. If we continue
this process with the other agents in the order, at the end we must have b as the only winner by
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Figure 3. Profiles π ′
1 and π ′

2.

unanimity. Thus, at some point b must appear in the set of winners. Let i be the agent such that,
when he moves b above a and c, b appears in the set of winners.

Step 1. Consider profiles π1 and π2 in Figure 2: π1 is the last profile where the set of winners, i.e.
f (π1), is still {a,c}, whereas π2 is the first profile such that the set of winnerscontains b.

Consider now an outcome d ∈ � \ {a,c,b}. If d �∈ f (π1), then d �∈ f (π2). In fact, assume d ∈ f (π2).
Then, by monotonicity on π2 and π1, d ∈ f (π1) as well. Therefore, since f (π1)={a,c}, then f (π2)
can be {b}, {a,b}, {c,b} or {a,c,b}.
Step 2. Consider the new profiles π ′

1 and π ′
2 in Figure 3. In particular, π ′

1 (resp., π ′
2) is obtained from

π1 (resp., π2) by making the bottom for all the agents before i equal to {a,c} and placing a and c just
above the bottom element b for agents after i.

Notice that f (π ′
2) must contain b, by monotonicity on π2 and π ′

2. Let us call a set an excluding set
(ES) if it is a non-empty subset of (� \ {a,b,c}). Then, if D is an ES, f (π ′

2) can be {b}, {b}∪D, {a,b},
{a,b}∪D, {c,b}, {c,b}∪D, {a,c,b}, or {a,c,b}∪D.

Let us show that none of the above cases can be ruled out.
If c �∈ f (π2), then c �∈ f (π ′

2). In fact, assume c∈ f (π ′
2), then monotonicity on π ′

2 and π2 implies
c∈ f (π2). Analogously, if a �∈ f (π2), then a �∈ f (π ′

2). In particular, if f (π2)={b}, then by monotonicity
on π2 and π ′

2, f (π ′
2)={b}. Moreover, if f (π2) �={b}, then f (π ′

2) �={b}, since f (π ′
2)={b} would imply

f (π2)={b} by monotonicity on π ′
2 and π2.

Summarizing, if D is any ES,

• if f (π2)={b}, then f (π ′
2)={b};

• if f (π2)={a,b}, then f (π ′
2)= {b}∪D, {a,b}, {a,b}∪D;

• if f (π2)={c,b}, then f (π ′
2)= {b}∪D, {c,b}, {c,b}∪D;

• if f (π2)={a,b,c}, then f (π ′
2)={b}∪D, {a,b}, {a,b}∪D, {c,b}, {c,b}∪D, {a,c,b} or {a,c,b}∪ D.

Let us now consider the possible results for π ′
1.

Notice that f (π ′
1) does not contain b. In fact, if we assume b∈ f (π ′

1), then by monotonicity on π ′
1

and π1, also f (π1) should contain b.
Moreover, f (π ′

1) is not an ES. In fact, if f (π ′
1)=D, and D is an ES, then by monotonicity on π ′

1
and π ′

2, we have f (π ′
2)=D, which is not one of the possible cases for f (π ′

2). Hence, f (π ′
1) can be {a},

{c}, {a,c}, {a}∪D, {c}∪D, {a,c}∪D.
If D ⊂ f (π ′

2) then D ⊂ f (π ′
1), for monotonicity on profiles π ′

2 and π ′
1.

Moreover ∀d ∈ (� \ {a,b,c}), if d �∈ f (π ′
2), then d �∈ f (π ′

1). In fact, if we assume d ∈ f (π ′
1), then

monotonicity on π ′
1 and π ′

2 implies d ∈ f (π ′
2).
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Figure 4. Profiles π3 and π4.

Moreover, if a∈ f (π ′
2), then by monotonicity on profiles π ′

2 and π ′
1, a∈ f (π ′

1) and, for the same
reason, if c∈ f (π ′

2) then c∈ f (π ′
1).

Summarizing,

• if f (π ′
2)={b}, then f (π ′

1) can be {a}, {c} or {a,c};
• if f (π ′

2)={a,b}, then f (π ′
1) can be {a} or {a,c};

• if f (π ′
2)={c,b}, then f (π ′

1) can be {c} or {a,c};
• if f (π ′

2)={a,c,b}, then f (π ′
1)={a,c};

• if f (π ′
2)={b}∪D, then f (π ′

1) can be {a}∪D, {c}∪D or {a,c}∪D;
• if f (π ′

2)={a,b}∪D, then f (π ′
1) can be {a}∪D or {a,c}∪D;

• if f (π ′
2)={c,b}∪D, then f (π ′

1) can be {c}∪D or {a,c}∪D;
• if f (π ′

2)={a,c,b}∪D, then f (π ′
1)={a,c}∪D;

Step 3. Consider an outcome e, distinct from a, c and b, and a profile π3 in Figure 4, which shares
with π ′

1 the ranking of a and c versus any other outcome in all agents’ rankings, and in which b is
just above a and c (which are at the bottom) for any agent j with j< i, and e is just above b for any
agent j with j≤ i and just above a and c for any agent j with j> i.

Notice that f (π3) cannot contain b. In fact, if b∈ f (π3), then, by monotonicity on π3 and π1,
b∈ f (π1).

Hence f (π3) can be {a}, {c}, D, {a,c}, {a}∪D, {c}∪D, {a,c}∪D, where D is any ES.
By monotonicity on profiles π ′

1 and π3, if a∈ f (π ′
1) then a∈ f (π3) and if c∈ f (π ′

1) then c∈ f (π3).
Thus, since f (π ′

1) always contains either a or c, it is not possible that f (π3)=D for any ES D.
Moreover, if a �∈ f (π ′

1) then a �∈ f (π3). In fact, if we assume a∈ f (π3), then by monotonicity on
profiles π3 and π ′

1 we have that a∈ f (π ′
1). Analogously, if c �∈ f (π ′

1) then c �∈ f (π3).
By monotonicity on profiles π ′

1 and π3, if f (π ′
1)={a} then f (π3)={a}, if f (π ′

1)={c} then f (π3)=
{c} and if f (π ′

1)={a,c} then f (π3)={a,c}. In particular, if f (π ′
1) �={a} then f (π3) �={a}. In fact, if

f (π3)={a}, then by monotonicity on π3 and π ′
1, f (π ′

1) must be {a}. Analogously, if f (π ′
1) �={c} then

f (π3) �={c}, and if f (π ′
1) �={a,c} then f (π3) �={a,c}.

By Step 2 we know that f (π ′
1) can be {a}, {c}, {a,c}, {a}∪D, {c}∪D or {a,c}∪D. Therefore,

applying the reasoning above, we have that f (π ′
1) is of the same type of f (π3).

Step 4. Consider profile π4 in Figure 4 derived from profile π3 by swapping the ranking of outcomes
a and b for every agent j with j> i, and profile π ′

4 obtained from π4 by setting outcome e to be the
unique top of every agent’s ranking. By unanimity, f (π ′

4)={e}.
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Note that f (π4) cannot contain b. In fact, if b∈ f (π4), by monotonicity on profiles π4 and π ′
4 we

have b∈ f (π ′
4), that is a contradiction since f (π ′

4)={e}.
Also, ∀d ∈ (� \ {a,b,c}), if d �∈ f (π3), then d �∈ f (π4), and if d ∈ f (π3), then d ∈ f (π4).
Moreover, if c �∈ f (π3), then c �∈ f (π4) and analogously if a �∈ f (π3), then a �∈ f (π4). In fact, if

a∈ f (π4), by monotonicity on π4 and π3, then a∈ f (π3).
Notice that if f (π3) �={a}, then f (π4) �={a}. In fact, if we assume f (π4)={a}, then by monotonicity

on profiles π4 and π3, f (π3) must be {a}.
Analogously, if f (π3) �={c} then f (π4) �={c}, if f (π3) �={a,c} then f (π4) �={a,c}, if f (π3) �={a}∪D

then f (π4) �={a}∪D and if f (π3) �={a,c}∪D then f (π4) �={a,c}∪D.
By Step 3, we know that f (π3) can be {a}, {c}, {a,c}, {a}∪D, {c}∪D or {a,c}∪D. Therefore, by the

reasoning above, f (π3)= f (π4).

Step 5. Consider an arbitrary profile π5 where the ordering of agent i satisfies a �� π5i
c, top(π5i )=

{a,c}, and bottom(π5j )={a,c}, ∀j �= i. Remember that, by step 4, f (π4) can be {a}, {c}, {a,c}, {a}∪D,
{c}∪D or {a,c}∪D. By monotonicity on profiles π4 and π5, if a∈ f (π4), then a∈ f (π5), and if
c∈ f (π4), then c∈ f (π5). Therefore, since f (π4) always contains a or c or both, then f (π5) contains a
or c or both. Thus, the set of winners of an arbitrary profile where a and c are the top elements of the
order i must contain at least one (a or c) of the top elements of the agent i. Thus, agent i is a weak
dictator.

It is easy to see that this proof can be easily generalized to the case of more than two top elements
for agent i. Moreover, the case of just one top element for agent i can be proved via a simpler version
of this proof. �
Theorem 11
The definition of strategy-proofness for social choice functions over SIOs generalizes strategy-
proofness-CZ.

Proof. It is enough to notice that item 2 of strategy-proof-CZ’s definition is a specific case of item
2 of the definition of strategy-proofness for social choice functions over SIOs when we don’t allow
for incomparability. Moreover, item 1 of strategy-proof-CZ’s definition can be obtained from items
1 and 2 of the other definition by transitivity as follows:

(i) from item 1 of strategy-proofness on strict total orders we have that, ∀a∈ f ( p) \ f ( p′) and
∀b∈ f ( p′)∩ f ( p), a�pi b;

(ii) from item 2 of strategy-proofness on strict total orders, we have that, ∀b∈ f ( p′)∩ f ( p) and
∀c∈ f ( p′) \ f ( p), b�pi c;

(iii) items (i) and (ii) imply, by transitivity, that ∀a∈ f ( p) \ f ( p′) and ∀c∈ f ( p′) \ f ( p), a�pi c;
(iv) items (i) and (iii) imply that, ∀a∈ f ( p) \ f ( p′) and ∀c∈ f ( p′), a�pi c, which corresponds to

item 1 of strategy-proof-CZ’s definition.

�
Theorem 12
If a social choice function f over SIOs is strategy-proof and onto, then it is unanimous and monotonic.

Proof. The proof consists of two parts. Part 1 shows that, if f is strategy-proof, then it is monotonic,
while Part 2 shows that, if f is onto and monotonic, then it is unanimous.

Part 1. We start considering profiles p and p′, which differ only for the ranking of one agent, say
agent i, i.e. such that p′ = (p−i,p′

i).
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Assume that: (i) a∈ f ( p) and (ii) for any other outcome b, (a�pi b or a �� pi b) implies (a�p′
i
b or

a �� p′
i
b). We want to show that a∈ f ( p′).Assume that a �∈ f ( p′). Since f is strategy-proof, then by item

1 of the definition of strategy-proofness, we have that ∀b∈ f ( p)∩ f ( p′), a�pi b or a �� pi b. Hence, by
hypothesis (ii), a�p′

i
b or a �� p′

i
b. Moreover, by item 2 of the definition of strategy-proofness, we have

that ∀b∈ f ( p′) \ f ( p), a�pi b or a �� pi b. Hence, by hypothesis (ii), ∀b∈ f ( p′) \ f ( p), a�p′
i
b or a ��

p′
i
b. Therefore, ∀b∈ f ( p′), a�p′

i
b or a �� p′

i
b. However, since we are assuming that f is strategy-proof,

consider the move from p′ to p. Then, by item 2 of the definition of strategy-proofness, we have that
∀a∈ f ( p) \ f ( p′), it must hold that ∀b∈ f ( p′), a≺p′

i
b or a �� p′

i
b and ∃b∈ f ( p′), a≺p′

i
b. This is a con-

tradiction, since we have shown before that ∃a∈ f ( p) \ f ( p′) such that ∀b∈ f ( p′), a�p′
i
b or a �� p′

i
b.

Now assume that: (iii) ∀a∈ f ( p) and for any other outcome b, a�pi b implies a�p′
i
b, and a �� pi b

implies a �� pi b or a�p′
i
b. We want to show that f ( p)= f ( p′). Assume that ∃ a∈ f ( p) \ f ( p′) or ∃ a∈

f ( p′) \ f ( p). If ∃ a∈ f ( p) \ f ( p′), then, since f is strategy-proof, we can perform the same reasoning
above which leads to a contradiction. If ∃ a∈ f ( p′) \ f ( p), since f is strategy-proof, then passing from
p′ to p, the outcome a has been removed, hence by item 1 of the definition of strategy-proofness, ∀b∈
f ( p)∩ f ( p′), a�p′

i
b or a �� p′

i
b. Hence, by hypothesis (iii), it must be that ∀b∈ f ( p)∩ f ( p′), a�pi b

or a �� pi b. Otherwise, if ∃b∈ f ( p)∩ f ( p′) s.t. b�pi a, then by hypothesis (iii), b�p′
i
a. Moreover, by

item 2 of the definition of strategy-proofness, ∀b∈ f ( p) \ f ( p′), a�p′
i
b or a �� p′

i
b. Hence, again by

hypothesis (iii), a�pi b or a �� pi b. Thus, for every b∈ f ( p), a�pi b or a �� pi b. However, since f is
strategy-proof, ∀a∈ f ( p′) \ f ( p), then passing from profile p to profile p′, by item 2 of the definition
of strategy-proofness, it must hold that ∀b∈ f ( p), b�pi a or b �� pi a and ∃b∈ f ( p), b�pi a. This is
a contradiction since we have shown before that, given a∈ f ( p′) \ f ( p), for every b∈ f ( p), a�pi b
or a �� pi b.

Now consider two profiles q and q′ such that a∈ f (q) and for every agent i and for every outcome
b, (a�qi b or a �� qi b) implies (a�q′

i
b or a �� q′

i
b). We want to prove that a∈ f (q′) ( first part of

definition of monotonicity). Since we can move from q= (q1,...qn) to q′ = (q′
1,...q

′
n), passing from

q= (q1,q2...,qn) to (q′
1,q2...,qn), and (q′

1q′
2,...,qn) to (q′

1,q
′
2,...,qn) and so on, and we have shown

above that at each step a remains in the set of winners, a∈ f (q′). The same reasoning holds for
profiles q such that f (q)=A and q′ for every agent i, ∀a∈ A, for every other outcome b, such that
a�qi b implies a�q′

i
b, and a �� qi b implies a�q′

i
b or a �� q′

i
b. In this case, we conclude that f (q′)=A

(the second part of the definition of monotonicity). We have thus shown that f is monotonic.

Part 2. To show that f is unanimous, we have to show that for every outcome a and for every profile
p, if a is the unique top of every pi, then f ( p)={a}. Let us consider an outcome a. Since f is onto,
there is a profile p such that f ( p)={a}. If we consider a generic profile p′ where a is the unique top
of every agent’s ranking p′

i, then by monotonicity from p to p′, f ( p′)={a}. Since a is arbitrary, f
satisfies unanimity. �
Theorem 13
If there are at least two agents and at least three outcomes, and the social choice function over SIOs
is strategy-proof and onto, then there is at least one weak dictator.

Proof. Assume to have at least two agents and at least three outcomes. By Theorem 12, if the function
is onto and strategy-proof, then it is monotonic and unanimous. By Theorem 10, if it is monotonic
and unanimous, then it has at least one weak dictator. Thus we can conclude that, if a social choice
function is onto and strategy-proof, then it has at least a weak dictator. �
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